Advertisement

Connectomics in Schizophrenia: From Early Pioneers to Recent Brain Network Findings

  • Author Footnotes
    1 Authors GC and ET contributed equally to this work.
    Guusje Collin
    Correspondence
    Address correspondence to: Guusje Collin, M.D., Ph.D., University Medical Center Utrecht, Department of Psychiatry, Brain Center Rudolf Magnus, Heidelberglaan 100, 3508 GA Utrecht, PO Box 85500, Utrecht, Netherlands.
    Footnotes
    1 Authors GC and ET contributed equally to this work.
    Affiliations
    Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
    Search for articles by this author
  • Author Footnotes
    1 Authors GC and ET contributed equally to this work.
    Elise Turk
    Footnotes
    1 Authors GC and ET contributed equally to this work.
    Affiliations
    Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
    Search for articles by this author
  • Martijn P. van den Heuvel
    Affiliations
    Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
    Search for articles by this author
  • Author Footnotes
    1 Authors GC and ET contributed equally to this work.
Published:January 27, 2016DOI:https://doi.org/10.1016/j.bpsc.2016.01.002

      Abstract

      Schizophrenia has been conceptualized as a brain network disorder. The historical roots of connectomics in schizophrenia go back to the late 19th century, when influential scholars such as Theodor Meynert, Carl Wernicke, Emil Kraepelin, and Eugen Bleuler worked on a theoretical understanding of the multifaceted syndrome that is currently referred to as schizophrenia. Their work contributed to the understanding that symptoms such as psychosis and cognitive disorganization might stem from abnormal integration or dissociation due to disruptions in the brain’s association fibers. As methods to test this hypothesis were long lacking, the claims of these early pioneers remained unsupported by empirical evidence for almost a century. In this review, we revisit and pay tribute to the old masters and, discussing recent findings from the developing field of disease connectomics, we examine how their pioneering hypotheses hold up in light of current evidence.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • da Mota Gomes M.
        • Engelhardt E.
        Meynert and the biological German psychiatry.
        Arq Neuropsiquiatr. 2012; 70: 894-896
      1. Wallace E. Gach J. History of Psychiatry and Medical Psychology. Springer Science + Business Media, LLC, New York2008
        • Volkow N.D.
        • Wolf A.P.
        • Brodie J.D.
        • Cancro R.
        • Overall J.E.
        • Rhoades H.
        • Van Gelder P.
        Brain interactions in chronic schizophrenics under resting and activation conditions.
        Schizophr Res. 1988; 1: 47-53
        • Friston K.J.
        • Frith C.D.
        Schizophrenia: A disconnection syndrome?.
        Clin Neurosci. 1995; 3: 89-97
        • Bullmore E.
        • Sporns O.
        Complex brain networks: Graph theoretical analysis of structural and functional systems.
        Nat Rev Neurosci. 2009; 10: 186-198
        • Van den Heuvel M.P.
        • Fornito A.
        Brain networks in schizophrenia.
        Neuropsychol Rev. 2014; 24: 32-48
        • Houts A.C.
        Fifty years of psychiatric nomenclature: Reflections on the 1943 War Department Technical Bulletin, Medical 203.
        J Clin Psychol. 2000; 56: 935-967
        • Meynert T.
        Amentia, die Verwirrtheit.
        Jahrbu¨cher fu¨r Psychiatr und Neurol. 1890; 9: 1-112
        • Kraepelin E.
        Psychiatrie: Ein Lehrbuch fur Studirende und Aerzte.
        6th ed. Verlag von Johann Ambrosius Barth, Leipzig, Germany1899
        • Bleuler E.
        Dementia Praecox oder die Gruppe der Schizophrenien.
        Aschaffenburgs Handbuch, Deutike, Leipzig, Germany1911
        • Shorter E.
        A Historical Dictionary of Psychiatry.
        Oxford University Press, Inc., New York2005
      2. Fink P.J. Tasman A. Stigma and Mental Illness. American Psychiatric Press, Washington, DC1992
        • Burns J.
        The Descent of Madness. Evolutionary Origins of Psychosis and the Social Brain.
        Routledge, New York2007
        • Griesinger W.
        Pathologie und Therapie der psychischen Krankheiten.
        Adolf Krabbe Verlag, Stuttgart, Germany1845
        • Marx O.
        Nineteenth-century medical psychology: Theoretical problems in the work of Griesinger, Meynert, and Wernicke.
        Isis. 1970; 61: 355-370
        • Marx O.
        Wilhelm Griesinger and the history of psychiatry: A reassessment.
        Bull Hist Med. 1972; 46: 519
        • Meynert T.
        Anatomie der Stirnrinde und ihre Verbindungsbahnen mit den empfindenden Ober-fla¨chen und den bewegenden Massen.
        in: Leidesdorf M. Lehrb der Psychiatr Krankheiten. 2nd ed. Ferdinand Enke, Erlangen, Germany1865: 45-73
        • Meynert T.
        Der Bau der Grosshirnrinde und seine ortlichen Verschiedenheiten, nebst einem pathologisch-anatomischen Corollarium.
        Vierteljschr Psychiat. 1867; 1: 77-93
        • Seitelberger F.
        Theodor Meynert (1833-1892), pioneer and visionary of brain research.
        J Hist Neurosci. 1997; 6: 264-274
        • Pappenheim E.
        On Meynert’s amentia.
        Int J Neurol. 1975; 9: 311-326
        • Haas L.
        Theodor Meynert (1833–92).
        J Neurol Neurosurg Psychiatry. 1999; 66: 330
      3. Golgi C (1967): The Neuron Doctrine – Theory and Facts (Lecture delivered December 11, 1906). In: Nobel Lectures, Physiology and Medicine 1901–1921. New York: Elsevier.

      4. Wernicke C (1899): Psychiatrie, 1st ed. Leipzig, Germany: Barth.

        • Wernicke C.
        Grundrisse der psychiatrie.
        Thieme, Leipzig, Germany1906
        • Pillmann F.
        Carl Wernicke and the neurobiological paradigm in psychiatry.
        Acta Neuropsychol. 2007; 5: 246-260
        • Moseley M.E.
        • Cohen Y.
        • Kucharczyk J.
        • Mintorovitch J.
        • Asgari H.S.
        • Wendland M.F.
        • et al.
        Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system.
        Radiology. 1990; 176: 439-445
        • Ellison-Wright I.
        • Bullmore E.
        Meta-analysis of diffusion tensor imaging studies in schizophrenia.
        Schizophr Res. 2009; 108: 3-10
        • Van den Heuvel M.P.
        • Mandl R.C.W.
        • Stam C.J.
        • Kahn R.S.
        • Hulshoff Pol H.E.
        Aberrant frontal and temporal complex network structure in schizophrenia: A graph theoretical analysis.
        J Neurosci. 2010; 30: 15915-15926
        • Zalesky A.
        • Fornito A.
        • Seal M.L.
        • Cocchi L.
        • Westin C.
        • Bullmore E.T.
        • et al.
        Disrupted axonal fiber connectivity in schizophrenia.
        Biol Psychiatry. 2011; 69: 80-89
        • Leonhard K.
        Wernicke’s Psychiatry in Contrast with Kraepelin’s Psychiatry.
        in: Pichot P. Berner P. Wolf R. Thau K. Psychiatry The State of the Art. Springer Science + Business Media, New York1985: 59-64
        • American Psychiatric Association
        Diagnostical and Statistical Manual of Mental Disorders (4th Ed, Text Rev).
        American Psychiatric Association, Washington, DC2000
        • von Economo C.
        • Koskinas G.
        Die Cytoarchitektonik der Hirnrinde des Erwachsenen Menschen.
        Springer, Berlin, Germany1925
        • Scholtens L.H.
        • Reus MA De, Heuvel MP
        • Van Den
        Linking contemporary high resolution magnetic resonance imaging to the von Economo legacy: A study on the comparison of MRI cortical thickness and histological measurements of cortical structure.
        Hum Brain Mapp. 2015; 36: 3038-3046
        • Hippius H.
        • Mu¨ller N.
        The work of Emil Kraepelin and his research group in Mu¨nchen.
        Eur Arch Psychiatry Clin Neurosci. 2008; 258: 3-11
        • Nissl F.
        Histologische und histopathologische Arbeiten u¨ber die Grosshirnrinde. vol 1. Gustav Fischer, Jena, Germany1904
        • Alzheimer A.
        Über eine eigenartige Erkrankung der Hirnrinde.
        Allg Zschr Psychiatr Psych Gerichtl Med. 1907; 64: 146-148
        • Alzheimer A.
        Über einen eigenartigen schweren Erkrankungsprozeβ der Hirnrincle.
        Neurol Cent. 1906; 25: 1134
        • Hippius H.
        • Neundörfer G.
        The discovery of Alzheimer’s disease.
        Dialogues Clin Neurosci. 2003; 5: 101-108
      5. Kraepelin E (1913): Psychiatry, 8th ed. Leipzig, Germany: Barth

        • Kraepelin E.
        Dementia-Praecox and Paraphrenia.
        Huntington, New York1919
        • Mott F.
        Studies in the Pathology of Dementia Praecox.
        Proc R Soc Med. 1920; 13: 25-63
        • Conn J.
        An examination of the clinico-pathological evidence offered for the concept of dementia praecox as a specific disease entity.
        Am J Psychiatry. 1934; 90: 1039-1082
        • Glantz L.
        • Lewis D.
        Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia.
        Arch Gen Psychiatry. 2000; 57: 65-73
        • Glausier J.R.
        • Lewis D.A.
        Dendritic spine pathology in schizophrenia.
        Neuroscience. 2013; 251: 90-107
        • van den Heuvel M.P.
        • Scholtens L.H.
        • de Reus M.A.
        • Kahn R.S.
        Associated microscale spine density and macroscale connectivity disruptions in schizophrenia [published online ahead of print October 3].
        Biol Psychiatry. 2015;
        • Ross C.
        Dissociation in classical texts on schizophrenia.
        Psychosis. 2014; 2439: 1-13
        • Van den Heuvel M.P.
        • Sporns O.
        Rich-club organization of the human connectome.
        J Neurosci. 2011; 31: 15775-15786
        • Van den Heuvel M.P.
        • Kahn R.S.
        • Goñi J.
        • Sporns O.
        High-cost, high-capacity backbone for global brain communication.
        Proc Natl Acad Sci U S A. 2012; 109: 11372-11377
        • Sporns O.
        The human connectome: Origins and challenges.
        Neuroimage. 2013; 80: 53-61
        • Van den Heuvel M.P.
        • Sporns O.
        • Collin G.
        • Scheewe T.
        • Mandl R.C.W.
        • Cahn W.
        • et al.
        Abnormal rich club organization and functional brain dynamics in schizophrenia.
        JAMA Psychiatry. 2013; 70: 783-792
        • Collin G.
        • Kahn R.
        • de Reus M.
        • Cahn W.
        • van den Heuvel M.
        Impaired rich club connectivity in unaffected siblings of schizophrenia patients.
        Schizophr Bull. 2014; 40: 438-448
        • Griffa A.
        • Baumann P.
        • Ferrari C.
        • Do K.
        • Conus P.
        • Thiran J.
        • Hagmann P.
        Characterizing the dysconnectivity syndrome of schizophrenia with diffusion spectrum imaging.
        Hum Brain Mapp. 2015; 366: 354-366
        • Lynall M.
        • Bassett D.S.
        • Kerwin R.
        • Mckenna P.J.
        • Müller U.
        • Bullmore E.
        Functional connectivity and brain networks in schizophrenia.
        J Neurosci. 2011; 30: 9477-9487
        • Rubinov M.
        • Bullmore E.
        Schizophrenia and abnormal brain network hubs.
        Dialogues Clin Neurosci. 2013; 15: 339-349
        • Eysenck H.
        • Barrett P.
        The nature of schizotypy.
        Psychol Rep. 1993; 73: 59-63
        • Heckers S.
        Bleuler and the neurobiology of schizophrenia.
        Schizophr Bull. 2011; 37: 1131-1135
        • Maatz A.
        • Hoff P.
        • Angst J.
        Eugen Bleuler’s schizophrenia—a modern perspective.
        Dialogues Clin Neurosci. 2015; 17: 43-49
        • Lynall M.-E.
        • Bassett D.S.
        • Kerwin R.
        • McKenna P.J.
        • Kitzbichler M.
        • Muller U.
        • Bullmore E.
        Functional connectivity and brain networks in schizophrenia.
        J Neurosci. 2010; 30: 9477-9487
        • Fornito A.
        • Zalesky A.
        • Pantelis C.
        • Bullmore E.T.
        Schizophrenia, neuroimaging and connectomics.
        Neuroimage. 2012; 62: 2296-2314
        • Collin G.
        • Hulshoff Pol H.E.
        • Haijma S.V.
        • Cahn W.
        • Kahn R.S.
        • van den Heuvel M.P.
        Impaired cerebellar functional connectivity in schizophrenia patients and their healthy siblings.
        Front Psychiatry. 2011; 2: 73
        • Van den Heuvel M.P.
        • Sporns O.
        An anatomical substrate for integration among functional networks in human cortex.
        J Neurosci. 2013; 33: 14489-14500
        • Honey C.J.
        • Sporns O.
        • Cammoun L.
        • Gigandet X.
        • Thiran J.P.
        • Meuli R.
        • Hagmann P.
        Predicting human resting-state functional connectivity from structural connectivity.
        Proc Natl Acad Sci U S A. 2009; 106: 2035-2040
        • Honey C.J.
        • Thivierge J.P.
        • Sporns O.
        Can structure predict function in the human brain?.
        Neuroimage. 2010; 52: 766-776
        • Greicius M.D.
        • Supekar K.
        • Menon V.
        • Dougherty R.F.
        Resting-state functional connectivity reflects structural connectivity in the default mode network.
        Cereb Cortex. 2009; 19: 72-78
        • van den Heuvel M.P.
        • Mandl R.C.W.
        • Kahn R.S.
        • Hulshoff Pol H.E.
        Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain.
        Hum Brain Mapp. 2009; 30: 3127-3141
        • Kleist K.
        Kriegsverletzungen des Gehirns in ihrer Bedeutung für die Hirnlokalisation und Hirnpathologie.
        Barth, Leipzig, Germany1934
        • Nieuwenhuys R.
        The myeloarchitectonic studies on the human cerebral cortex of the Vogt-Vogt school, and their significance for the interpretation of functional neuroimaging data.
        Brain Struct Funct. 2013; 218: 303-352
        • Kleist K.
        Der Bau- und Funktionsplan der Großhirnrinde. Gehirnpathologische und lokalisatorische Ergebnisse. 10 Mitteilung.
        Nervenarzt. 1934; 7: 329-334
        • Ungvari G.
        The Wernicke-Kleist-Leonhard school of psychiatry.
        Biol Psychiatry. 1993; 34: 749-752
        • Neumärker K.-J.
        • Bartsch A.J.
        Karl Kleist (1879-1960) – a pioneer of neuropsychiatry.
        Hist Psychiatry. 14. 2003: 411-458
        • Stephan K.E.
        • Friston K.J.
        • Frith C.D.
        Dysconnection in schizophrenia: From abnormal synaptic plasticity to failures of self-monitoring.
        Schizophr Bull. 2009; 35: 509-527
        • Van den Heuvel M.P.
        • Kahn R.S.
        Abnormal brain wiring as a pathogenetic mechanism in schizophrenia.
        Biol Psychiatry. 2011; 70: 1107-1108
        • Fornito A.
        • Harrison B.J.
        • Goodby E.
        • Dean A.
        • Ooi C.
        • Nathan P.J.
        • et al.
        Functional dysconnectivity of corticostriatal circuitry as a risk phenotype for psychosis.
        JAMA Psychiatry. 2013; 70: 1143-1151
        • Turing A.
        On computable numbers, with an application to the Entscheidungsproblem.
        Proc London Math Soc. 1936; 42: 230-265
        • Copeland B.
        • Proudfoot D.
        Alan Turing, father of the modern computer.
        The Rutherford Journal 4. 2011
        • Wiener N.
        Cybernetics or Control and Communication in the Animal and the Machine.
        MIT Press, Cambridge, MA1948
        • Sporns O.
        Brain network disease. Networks of the brain.
        MIT Press, Cambridge, MA2010: 207-208
        • Laborit H.
        • Huguenard P.
        • Alluame R.
        Un noveau stabilisateur végétatif.
        La Press Médicale. 1952; 60: 206-208
        • Ban T.A.
        Fifty years chlorpromazine: A historical perspective.
        Neuropsychiatr Dis Treat. 2007; 3: 495-500
        • Hamon J.
        • Paraire J.
        • Velluz J.
        Remarques sur l’action du 4560 RP sur l’agitation maniaque.
        Ann Med Psychol (Paris). 1952; 110: 403-407
        • Carpenter W.T.
        • Davis J.M.
        Another view of the history of antipsychotic drug discovery and development.
        Mol Psychiatry. 2012; 17: 1168-1173
        • Mesulam M.M.
        Fifty years of disconnexion syndromes and the Geschwind legacy.
        Brain. 2015; 138: 2791-2799
        • Geschwind N.
        Disconnection syndromes in animals and man. Part I.
        Brain. 1965; 88: 237-294
        • Geschwind N.
        Disconnexion syndromes in animals and man. Part II.
        Brain. 1965; 88: 585-644
        • Catani M.
        The rises and falls of disconnection syndromes.
        Brain. 2005; 128: 2224-2239
        • Wernicke C.
        The aphasia symptom-complex: A psychological study on an anbatomical basis (1875).
        in: Eling P. Reader in the History of Aphasia. vol. 4. John Benjamins, Amsterdam1994: 69-89
        • Lichtheim L.
        U¨ber Aphasie. Aus der Med Klin Bern Dtsch Arch fu¨r Klin Med.
        Bergmann, Mu¨nchen, Germany1885: 204-628
        • Flechsig P.
        Developmental (myelogenetic) localisation of the cerebral cortex in the human subject.
        Lancet. 1901; 2: 1027
        • Liepman H.
        as Krankheitsbild der Apraxie (motorische Asymbolie) auf Grund eines Falles von einseitiger Apraxie.
        Monatssch Psychia Neurol. 1900; 8:15–44 (182–197): 102-132
        • Weinberger D.R.
        • Berman K.F.
        • Suddath R.
        • Fuller Torrey E.
        Evidence of dysfunction of a prefrontal-limbic network in schizophrenia: A magnetic resonance imaging and regional cerebral blood flow study of discordant monozygotic twins.
        Am J Psychiatry. 1992; 149: 890-897
        • Andreasen N.C.
        • O’Leary D.S.
        • Cizadlo T.
        • Arndt S.
        • Rezai K.
        • Ponto L.L.
        • et al.
        Schizophrenia and cognitive dysmetria: A positron-emission tomography study of dysfunctional prefrontal-thalamic-cerebellar circuitry.
        Proc Natl Acad Sci U S A. 1996; 93: 9985-9990
        • Fristen K.J.
        • Frith C.D.
        • Fletcher P.
        • Liddle P.F.
        • Frackowiak R.S.J.
        Functional topography: Multidimensional scaling and functional connectivity in the brain.
        Cereb Cortex. 1996; 6: 156-164
        • Mallet L.
        • Mazoyer B.
        • Martinot J.
        Functional connectivity in depressive, obsessive-compulsive, and schizophrenic disorders: An explorative correlational analysis of regional cerebral metabolism.
        Psychiatry Res. 1998; 82: 83-93
        • Saito N.
        • Kuginuki T.
        • Yagyu T.
        • Kinoshita T.
        • Koenig T.
        • Pascual-Marqui R.D.
        • et al.
        Global, regional, and local measures of complexity of multichannel electroencephalography in acute, neuroleptic-naïve, first-break schizophrenics.
        Biol Psychiatry. 1998; 43: 794-802
        • Breier A.
        • Buchanan R.
        • Elkashef A.
        • Munson R.
        • Kirkpatrick B.
        • Gellad F.
        Brain morphology and schizophrenia. A magnetic resonance imaging study of limbic, prefrontal cortex, and caudate structures.
        Arch Gen Psychiatry. 1992; 49: 921-926
        • Buchanan R.
        • Vladar K.
        • Barta P.
        • Pearlson G.
        Structural evaluation of the prefrontal cortex in schizophrenia.
        Am J Psychiatry. 1998; 155: 1049-1055
        • Lim K.O.
        • Adalsteinsson E.
        • Spielman D.
        • Sullivan E.V.
        • Rosenbloom M.J.
        • Pfefferbaum A.
        Proton magnetic resonance spectroscopic imaging of cortical gray and white matter in schizophrenia.
        Arch Gen Psychiatry. 1998; 55: 346-352
        • Buchsbaum M.S.
        • Tang C.Y.
        • Peled S.
        • Gudbjartsson H.
        • Lu D.
        • Hazlett E.A.
        • et al.
        MRI white matter diffusion anisotropy and PET metabolic rate in schizophrenia.
        Neuroreport. 1998; 9: 425-430
        • Lim K.O.
        • Hedehus M.
        • Moseley M.
        • de Crespigny A.
        • Sullivan E.V.
        • Pfefferbaum A.
        Compromised white matter tract integrity in schizophrenia inferred from diffusion tensor imaging.
        Arch Gen Psychiatry. 1999; 56: 367-374
        • Harrison P.J.
        The neuropathology of schizophrenia. A critical review of the data and their interpretation.
        Brain. 1999; 122: 593-624
        • Sweet R.
        • Henteleff R.
        • Zhang W.
        • Sampson A.
        • Lewis D.
        Reduced dendritic spine density in auditory cortex of subjects with schizophrenia.
        Neuropsychopharmacology. 2009; 34: 374-389
        • Uranova N.A.
        • Vostrikov V.M.
        • Vikhreva O.V.
        • Zimina I.S.
        • Kolomeets N.S.
        • Orlovskaya D.D.
        The role of oligodendrocyte pathology in schizophrenia.
        Int J Neuropsychopharmacol. 2007; 10: 537-545
        • Uranova N.
        • Vikhreva O.
        • Rachmanova V.
        • Orlovskaya D.
        Ultrastructural alterations of myelinated fibers and oligodendrocytes in the prefrontal cortex in schizophrenia: A postmortem morphometric study.
        Schizophr Res Treatment. 2011; 2011: 325789
        • Pettersson-Yeo W.
        • Allen P.
        • Benetti S.
        • McGuire P.
        • Mechelli A.
        Dysconnectivity in schizophrenia: Where are we now?.
        Neurosci Biobehav Rev. 2011; 35: 1110-1124
        • Johansen-Berg H.
        • Rushworth M.F.S.
        • Bogdanovic M.D.
        • Kischka U.
        • Wimalaratna S.
        • Matthews P.M.
        The role of ipsilateral premotor cortex in hand movement after stroke.
        Proc Natl Acad Sci U S A. 2002; 99: 14518-14523
        • Riecker A.
        • Gröschel K.
        • Ackermann H.
        • Schnaudigel S.
        • Kassubek J.
        • Kastrup A.
        The role of the unaffected hemisphere in motor recovery after stroke.
        Hum Brain Mapp. 2010; 31: 1017-1029
        • Stephan K.E.
        • Baldeweg T.
        • Friston K.J.
        Synaptic plasticity and dysconnection in schizophrenia.
        Biol Psychiatry. 2006; 59: 929-939
        • Stephan K.E.
        • Iglesias S.
        • Heinzle J.
        • Diaconescu A.O.
        Translational perspectives for computational neuroimaging.
        Neuron. 2015; 87: 716-732
        • Friston K.J.
        The disconnection hypothesis.
        Schizophr Res. 1998; 30: 115-125
        • Schizophrenia Working Group of the Psychiatric Genomics Consortium
        Biological insights from 108 schizophrenia-associated genetic loci.
        Nature. 2014; 511: 421-427
        • Kubicki M.
        • McCarley R.
        • Westin C.-F.
        • Park H.-J.
        • Maier S.
        • Kikinis R.
        • et al.
        A review of diffusion tensor imaging studies in schizophrenia.
        J Psychiatr Res. 2007; 41: 15-30
        • Fitzsimmons J.
        • Kubicki M.
        • Shenton M.E.
        Review of functional and anatomical brain connectivity findings in schizophrenia.
        Curr Opin Psychiatry. 2013; 26: 172-187
        • Kubicki M.
        • Shenton M.E.
        Diffusion tensor imaging findings and their implications in schizophrenia.
        Curr Opin Psychiatry. 2014; 27: 179-184
        • Wheeler A.L.
        • Voineskos A.N.
        A review of structural neuroimaging in schizophrenia: From connectivity to connectomics.
        Front Hum Neurosci. 2014; 8: 653
        • Sporns O.
        The human connectome: A complex network.
        Ann N Y Acad Sci. 2011; 1224: 109-125
        • Li Y.
        • Liu Y.
        • Li J.
        • Qin W.
        • Li K.
        • Yu C.
        • Jiang T.
        Brain anatomical network and intelligence.
        PLoS Comput Biol. 2009; 5: e1000395
        • Van den Heuvel M.P.
        • Stam C.J.
        • Kahn R.S.
        • Hulshoff Pol H.E.
        Efficiency of functional brain networks and intellectual performance.
        J Neurosci. 2009; 29: 7619-7624
        • Baggio H.
        • Segura B.
        • Junque C.
        • De Reus M.
        • Sala-Llonch R.
        • Van den Heuvel M.
        Rich club organization and cognitive performance in healthy older participants.
        J Cogn Neurosci. 2015; 27: 1801-1810
        • Bassett D.S.
        • Bullmore E.T.
        • Meyer-Lindenberg A.
        • Apud J.A.
        • Weinberger D.R.
        • Coppola R.
        Cognitive fitness of cost-efficient brain functional networks.
        Proc Natl Acad Sci U S A. 2009; 106: 11747-11752
        • Cole M.W.
        • Yarkoni T.
        • Repovs G.
        • Anticevic A.
        • Braver T.S.
        Global connectivity of prefrontal cortex predicts cognitive control and intelligence.
        J Neurosci. 2012; 32: 8988-8999
        • Adelstein J.S.
        • Shehzad Z.
        • Mennes M.
        • Deyoung C.G.
        • Zuo X.-N.
        • Kelly C.
        • et al.
        Personality is reflected in the brain’s intrinsic functional architecture.
        PLoS One. 2011; 6: e27633
        • Gao Q.
        • Xu Q.
        • Duan X.
        • Liao W.
        • Ding J.
        • Zhang Z.
        • et al.
        Extraversion and neuroticism relate to topological properties of resting-state brain networks.
        Front Hum Neurosci. 2013; 7: 257
        • Ryman S.G.
        • van den Heuvel M.P.
        • Yeo R.A.
        • Caprihan A.
        • Carrasco J.
        • Vakhtin A.A.
        • et al.
        Sex differences in the relationship between white matter connectivity and creativity.
        Neuroimage. 2014; 101: 380-389
        • Fornito A.
        • Zalesky A.
        • Breakspear M.
        The connectomics of brain disorders.
        Nat Rev Neurosci. 2015; 16: 159-172
        • van den Heuvel M.P.
        • Hulshoff Pol H.E.
        Exploring the brain network: A review on resting-state fMRI functional connectivity.
        Eur Neuropsychopharmacol. 2010; 20: 519-534
        • Crossley N.A.
        • Mechelli A.
        • Scott J.
        • Carletti F.
        • Fox P.T.
        • McGuire P.
        • Bullmore E.T.
        The hubs of the human connectome are generally implicated in the anatomy of brain disorders.
        Brain. 2014; 137: 2382-2395
        • Stam C.J.
        Modern network science of neurological disorders.
        Nat Rev Neurosci. 2014; 15: 683-695
        • Collin G.
        • van den Heuvel M.P.
        • Abramovic L.
        • Vreeker A.
        • de Reus M.A.
        • van Haren N.E.
        • et al.
        Brain network analysis reveals affected connectome structure in bipolar I disorder.
        Hum Brain Mapp. 2015; 37: 122-134
        • Daianu M.
        • Jahanshad N.
        • Nir T.M.
        • Jack Jr, C.R.
        • Weiner M.W.
        • Bernstein M.A.
        • Thompson P.M.
        Rich club analysis in the Alzheimer’s disease connectome reveals a relatively undisturbed structural core network.
        Hum Brain Mapp. 2015; 36: 3087-3103
        • Dima D.
        • Dietrich D.E.
        • Dillo W.
        • Emrich H.M.
        Impaired top-down processes in schizophrenia: A DCM study of ERPs.
        Neuroimage. 2010; 52: 824-832
        • Dima D.
        • Roiser J.P.
        • Dietrich D.E.
        • Bonnemann C.
        • Lanfermann H.
        • Emrich H.M.
        • Dillo W.
        Understanding why patients with schizophrenia do not perceive the hollow-mask illusion using dynamic causal modelling.
        Neuroimage. 2009; 46: 1180-1186
        • Deserno L.
        • Sterzer P.
        • Wu T.
        • Heinz A.
        • Schlagenhauf F.
        Reduced prefrontal-parietal effective connectivity and working memory deficits in schizophrenia.
        J Neurosci. 2012; 32: 12-20
        • Vertes P.E.
        • Alexander-Bloch A.F.
        • Gogtay N.
        • Giedd J.N.
        • Rapoport J.L.
        • Bullmore E.T.
        Simple models of human brain functional networks.
        Proc Natl Acad Sci U S A. 2012; 109: 5868-5873
        • Cabral J.
        • Hugues E.
        • Kringelbach M.L.
        • Deco G.
        Modeling the outcome of structural disconnection on resting-state functional connectivity.
        Neuroimage. 2012; 62: 1342-1353
        • Breakspear M.
        • Jirsa V.
        • Deco G.
        Computational models of the brain: From structure to function.
        Neuroimage. 2010; 52: 727-730
        • Deco G.
        • Senden M.
        • Jirsa V.
        How anatomy shapes dynamics: A semi-analytical study of the brain at rest by a simple spin model.
        Front Comput Neurosci. 2012; 6: 68
        • Woolrich M.W.
        • Stephan K.E.
        Biophysical network models and the human connectome.
        Neuroimage. 2013; 80: 330-338
        • Thompson P.M.
        • Ge T.
        • Glahn D.C.
        • Jahanshad N.
        • Nichols T.E.
        Genetics of the connectome.
        Neuroimage. 2013; 80: 475-488
        • van den Heuvel M.P.
        • de Reus M.A.
        • Feldman Barrett L.
        • Scholtens L.H.
        • Coopmans F.M.
        • Schmidt R.
        • et al.
        Comparison of diffusion tractography and tract-tracing measures of connectivity strength in rhesus macaque connectome.
        Hum Brain Mapp. 2015; 36: 3064-3075
        • van den Heuvel M.P.
        • Scholtens L.H.
        • Feldman Barrett L.
        • Hilgetag C.C.
        • de Reus M.A.
        Bridging cytoarchitectonics and connectomics in human cerebral cortex.
        J Neurosci. 2015; 35: 13943-13948
        • Scholtens L.H.
        • Schmidt R.
        • de Reus M.A.
        • van den Heuvel M.P.
        Linking macroscale graph analytical organization to microscale neuroarchitectonics in the macaque connectome.
        J Neurosci. 2014; 34: 12192-12205
        • Collin G.
        • de Nijs J.
        • Hulshoff Pol H.E.
        • Cahn W.
        • van den Heuvel M.P.
        Connectome organization is related to longitudinal changes in general functioning, symptoms and IQ in chronic schizophrenia [published online ahead of print April 2].
        Schizophr Res. 2015;
        • Irimia A.
        • Wang B.
        • Aylward S.R.
        • Prastawa M.W.
        • Pace D.F.
        • Gerig G.
        • et al.
        Neuroimaging of structural pathology and connectomics in traumatic brain injury: Toward personalized outcome prediction.
        Neuroimage Clin. 2012; 1: 1-17
        • van Essen D.
        • Barch D.
        The human connectome in health and psychopathology.
        World Psychiatry. 2015; 14: 154-157
        • Meynert T.
        Neue Studien u¨ber die Associations-Bu¨ndel des Hirnmantels.
        Indic Austrian Acad Sci Math-Natural Sci Cl. 1892; 101: 361-380
        • Wernicke C.
        Der Aphasische Symptomencomplex. Breslau, Germany: Max Cohn and Weigert.
        in: Cohen R.S. Wartofsky M.W. Boston Studies in the Philosophy of Science. vol. IV. Reidel (German, trans 1969), Dordrecht, The Netherlands1874
        • Graves R.E.
        The legacy of the Wernicke-Lichtheim model.
        J Hist Neurosci. 1997; 6: 3-20
        • Catani M.
        • Mesulam M.
        The arcuate fasciculus and the disconnection theme in language and aphasia: History and current state.
        Cortex. 2008; 44: 953-961