Neuroimaging Mechanisms of Therapeutic Transcranial Magnetic Stimulation for Major Depressive Disorder

  • Noah S. Philip
    Correspondence
    Address correspondence to Noah S. Philip, M.D., 345 Blackstone Boulevard, Providence, RI 02906.
    Affiliations
    Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, Rhode Island

    Mood Disorders Research Program and Neuromodulation Research Facility, Butler Hospital, Providence, Rhode Island

    Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island
    Search for articles by this author
  • Jennifer Barredo
    Affiliations
    Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, Rhode Island

    Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island
    Search for articles by this author
  • Emily Aiken
    Affiliations
    Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, Rhode Island
    Search for articles by this author
  • Linda L. Carpenter
    Affiliations
    Mood Disorders Research Program and Neuromodulation Research Facility, Butler Hospital, Providence, Rhode Island

    Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island
    Search for articles by this author
Published:November 10, 2017DOI:https://doi.org/10.1016/j.bpsc.2017.10.007

      Abstract

      Research into therapeutic transcranial magnetic stimulation (TMS) for major depression has dramatically increased in the last decade. Understanding the mechanism of action of TMS is crucial to improve efficacy and develop the next generation of therapeutic stimulation. Early imaging research provided initial data supportive of widely held assumptions about hypothesized inhibitory or excitatory consequences of stimulation. Early work also indicated that while TMS modulated brain activity under the stimulation site, effects at deeper regions, in particular, the subgenual anterior cingulate cortex, were associated with clinical improvement. Concordant with earlier findings, functional connectivity studies also demonstrated that clinical improvements were related to changes distal, rather than proximal, to the site of stimulation. Moreover, recent work suggests that TMS modulates and potentially normalizes functional relationships between neural networks. An important observation that emerged from this review is that similar patterns of connectivity changes are observed across studies regardless of TMS parameters. Though promising, we stress that these imaging findings must be evaluated cautiously given the widespread reliance on modest sample sizes and little implementation of statistical validation. Additional limitations included use of imaging before and after a course of TMS, which provided little insight into changes that might occur during the weeks of stimulation. Furthermore, as studies to date have focused on depression, it is unclear whether our observations were related to mechanisms of action of TMS for depression or represented broader patterns of functional brain changes associated with clinical improvement.

      Keywords

      To read this article in full you will need to make a payment

      References

        • O’Reardon J.
        • Solvason H.
        • Janicak P.
        • Sampson S.
        • Isenberg K.
        • Nahas Z.
        • et al.
        Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: A multisite randomized controlled trial.
        Biol Psychiatry. 2007; 62: 1208-1216
        • George M.
        • Lisanby S.
        • Avery D.
        • McDonald W.
        • Durkalski V.
        • Pavlvicova M.
        • et al.
        Daily left prefrontal transcranial magnetic stimulation therapy for major depressive disorder: A sham-controlled randomized trial.
        Arch Gen Psychiatry. 2010; 67: 507-516
        • Carpenter L.L.
        • Janicak P.
        • Aaronson S.
        • Boyadjis T.
        • Brock D.
        • Cook I.
        • et al.
        Transcranial magnetic stimulation (TMS) for major depression: A multisite, naturalistic, observational study of acute treatment outcomes in clinical practice.
        Depress Anxiety. 2012; 29: 587-596
        • Philip N.S.
        • Dunner D.L.
        • Dowd S.M.
        • Aaronson S.T.
        • Brock D.G.
        • Carpenter L.L.
        • et al.
        Can medication free, treatment-resistant, depressed patients who initially respond to TMS be maintained off medications? A prospective, 12-month multisite randomized pilot study.
        Brain Stimul. 2016; 9: 251-257
        • Sabesan P.
        • Lankappa S.
        • Khalifa N.
        • Krishnan V.
        • Gandhi R.
        • Palaniyappan L.
        Transcranial magnetic stimulation for geriatric depression: Promises and pitfalls.
        World J Psychiatry. 2015; 5: 170-181
        • Wall C.A.
        • Croarkin P.E.
        • Maroney-Smith M.J.
        • Haugen L.M.
        • Baruth J.M.
        • Frye M.A.
        • et al.
        Magnetic resonance imaging-guided, open-label, high-frequency repetitive transcranial magnetic stimulation for adolescents with major depressive disorder.
        J Child Adolesc Psychopharmacol. 2016; 26: 582-589
        • Conelea C.A.
        • Philip N.A.
        • Yip A.G.
        • Barnes J.L.
        • Niedzwiecki M.J.
        • Greenberg B.D.
        • et al.
        Transcranial magnetic stimulation for treatment-resistant depression: Naturalistic treatment outcomes for younger versus older patients.
        J Affect Disord. 2017; 217: 42-47
        • Hasan A.
        • Guse B.
        • Coredes J.
        • Wölwer W.
        • Winterer G.
        • Gaebel W.
        • et al.
        Cognitive effects of high-frequency rTMS in schizophrenia patients with predominant negative symptoms: Results from a multicenter randomized sham-controlled trial.
        Schizophr Bull. 2016; 42: 608-618
        • Paillère-Martinot M.L.
        • Galinowski A.
        • Plaze M.
        • Andoh J.
        • Bartrés-Faz D.
        • Bellivier F.
        • et al.
        Active and placebo transcranial magnetic stimulation effects on external and internal auditory hallucinations of schizophrenia.
        Acta Psychiatr Scand. 2017; 135: 228-238
        • Watts B.V.
        • Landon B.
        • Grott A.
        • Young-Xu Y.
        A sham controlled study of repetitive transcranial magnetic stimulation for posttraumatic stress disorder.
        Brain Stimul. 2012; 5: 38-43
        • Philip N.S.
        • Ridout S.J.
        • Albright S.E.
        • Sanchez G.
        • Carpenter L.L.
        5-Hz Transcranial magnetic stimulation for comorbid posttraumatic stress disorder and major depression.
        J Trauma Stress. 2016; 29: 93-96
        • Noh T.S.
        • Kyong J.S.
        • Chang M.Y.
        • Park M.K.
        • Lee J.H.
        • Oh S.H.
        • et al.
        Comparison of treatment outcomes following either prefrontal cortical-only or dual-site repetitive transcranial magnetic stimulation in chronic tinnitus patients: A double-blind randomized study.
        Otol Neurotol. 2017; 38: 296-303
        • Kalita J.
        • Laskar S.
        • Bhoi S.K.
        • Misra U.K.
        Efficacy of single versus three sessions of high rate repetitive transcranial magnetic stimulation in chronic migraine and tension-type headache.
        J Neurol. 2016; 263: 2238-2246
        • Short E.B.
        • Borckardt J.J.
        • Anderson B.S.
        • Frohman H.
        • Beam W.
        • Reeves S.T.
        • George M.S.
        Ten sessions of adjunctive left prefrontal rTMS significantly reduces fibromyalgia pain: A randomized, controlled pilot study.
        Pain. 2011; 152: 2477-2484
        • Pogarell O.
        • Koch W.
        • Pöpperl G.
        • Tatsch K.
        • Jokob F.
        • Zwanzger P.
        • et al.
        Striatal dopamine release after prefrontal repetitive transcranial magnetic stimulation in major depression: Preliminary results of a dynamic [123I] IBZM SPECT study.
        J Psychiatr Res. 2006; 40: 307-314
        • Pogarell O.
        • Koch W.
        • Pöpperl G.
        • Tatsch K.
        • Jokob F.
        • Mulert C.
        • et al.
        Acute prefrontal rTMS increases striatal dopamine to a similar degree as D-amphetamine.
        Psychiatry Res. 2007; 156: 251-255
        • Kuroda Y.
        • Motohashi N.
        • Ito H.
        • Ito S.
        • Takano A.
        • Nishikawa T.
        • Suhara T.
        Effects of repetitive transcranial magnetic stimulation on [11C]raclopride binding and cognitive function in patients with depression.
        J Affect Disord. 2006; 95: 35-42
        • Kuroda Y.
        • Motohashi N.
        • Ito H.
        • Ito S.
        • Takano A.
        • Takahashi H.
        • et al.
        Chronic repetitive transcranial magnetic stimulation failed to change dopamine synthesis rate: Preliminary L-[β-11C]DOPA positron emission tomography study in patients with depression.
        Psychiatry Clin Neurosci. 2010; 64: 659-662
        • Dubin M.J.
        • Mao X.
        • Banerjee S.
        • Goodman Z.
        • Lapidus K.A.
        • Kang G.
        • et al.
        Elevated prefrontal cortex GABA in patients with major depressive disorder after TMS treatment measured with proton magnetic resonance spectroscopy.
        J Psychiatry Neurosci. 2016; 41: E37-E45
        • Baeken C.
        • Lefaucheur J.P.
        • Van Schuerbeek P.
        The impact of accelerated high frequency rTMS on brain neurochemicals in treatment-resistant depression: Insights from 1H MR spectroscopy.
        Clin Neurophysiol. 2017; 128: 1664-1672
        • Kozel F.A.
        • Johnson K.A.
        • Nahas Z.
        • Nakonezny P.A.
        • Morgan P.S.
        • Anderson B.S.
        • et al.
        Fractional anisotropy changes after several weeks of daily left high-frequency repetitive transcranial magnetic stimulation of the prefrontal cortex to treat major depression.
        J ECT. 2011; 27: 5-10
        • Lan M.J.
        • Chhetry B.T.
        • Liston C.
        • Mann J.J.
        • Dubin M.
        Transcranial magnetic stimulation of left dorsolateral prefrontal cortex induces brain morphological changes in regions associated with a treatment resistant major depressive episode: An exploratory analysis.
        Brain Stimul. 2016; 9: 577-583
        • Perera T.
        • George M.S.
        • Grammer G.
        • Janicak P.G.
        • Pascual-Leone A.
        • Wirecki T.S.
        The Clinical TMS Society consensus review and treatment recommendations for TMS therapy for major depressive disorder.
        Brain Stimul. 2016; 9: 336-346
        • McClintock S.M.
        • Reti I.M.
        • Carpenter L.L.
        • McDonald W.M.
        • Dubin M.
        • Taylor S.F.
        • et al.
        Consensus recommendations for the clinical application of repetitive transcranial magnetic stimulation (rTMS) in the treatment of depression.
        J Clin Psychiatry. 2017; ([published online ahead of print May 23])
        • George M.S.
        • Nahas Z.
        • Molloy M.
        • Speer A.M.
        • Oliver N.C.
        • Li X.B.
        • et al.
        A controlled trial of daily left prefrontal cortex TMS for treating depression.
        Biol Psychiatry. 2000; 48: 962-970
        • Kozel F.A.
        • Nahas Z.
        • deBrux C.
        • Molloy M.
        • Lorberbaum J.P.
        • Bohning D.
        • et al.
        How coil-cortex distance relates to age, motor threshold, and antidepressant response to repetitive transcranial magnetic stimulation.
        J Neuropsychiatry Clin Neurosci. 2000; 12: 376-384
        • Holtzheimer 3rd, P.E.
        • McDonald W.M.
        • Mufti M.
        • Kelley M.E.
        • Quinn S.
        • Corso G.
        • Epstein C.M.
        Accelerated repetitive transcranial magnetic stimulation for treatment-resistant depression.
        Depress Anxiety. 2010; 27: 960-963
        • Herbsman T.
        • Avery D.
        • Ramsey D.
        • Holtzheimer P.
        • Wadjik C.
        • Hardaway F.
        More lateral and anterior prefrontal coil location is associated with better repetitive transcranial magnetic stimulation antidepressant response.
        Biol Psychiatry. 2009; 66: 509-515
        • Beam W.
        • Borckardt J.
        • Reeves S.
        • George M.
        An efficient and accurate new method for locating the F3 position for prefrontal TMS applications.
        Brain Stimul. 2009; 2: 50-54
        • Ahdab R.
        • Avache S.S.
        • Brugières P.
        • Goujon C.
        • Lefaucheur J.P.
        Comparison of “standard” and “navigated” procedures of TMS coil positioning over motor, premotor and prefrontal targets in patients with chronic pain and depression.
        Neurophysiol Clin. 2010; 40: 27-36
        • Mir-Moghtadaei A.
        • Caballero R.
        • Fried P.
        • Fox M.D.
        • Lee K.
        • Giacobbe P.
        • et al.
        Concordance between BeamF3 and MRI-neuronavigated target sites for repetitive transcranial magnetic stimulation of the left dorsolateral prefrontal cortex.
        Brain Stimul. 2015; 8: 965-973
        • Downar J.
        • Daskalakis Z.J.
        New targets for rTMS in depression: A review of convergent evidence.
        Brain Stimul. 2013; 6: 231-240
        • Levkovitz Y.
        • Harel E.V.
        • Roth Y.
        • Braw Y.
        • Most D.
        • Katz L.N.
        • et al.
        Deep transcranial magnetic stimulation over the prefrontal cortex: Evaluation of antidepressant and cognitive effects in depressive patients.
        Brain Stimul. 2009; 2: 188-200
        • Siebner H.R.
        • Rothwell J.
        Transcranial magnetic stimulation: New insights into representational cortical plasticity.
        Exp Brain Res. 2003; 148: 1-16
        • Siebner H.R.
        • Peller M.
        • Willoch F.
        • Minoshima S.
        • Boecker H.
        • Auer C.
        • et al.
        Lasting cortical activation after repetitive TMS of the motor cortex: A glucose metabolic study.
        Neurology. 2000; 54: 956-963
        • Siebner H.
        • Peller M.
        • Bartenstein P.
        • Willoch F.
        • Rossmeier C.
        • Schwaiger M.
        • Conrad B.
        Activation of frontal premotor areas during suprathreshold transcranial magnetic stimulation of the left primary sensorimotor cortex: A glucose metabolic PET study.
        Hum Brain Mapp. 2001; 12: 157-167
        • Siebner H.R.
        • Takano B.
        • Peinemann A.
        • Schwaiger M.
        • Conrad B.
        • Drzezga A.
        Continuous transcranial magnetic stimulation during positron emission tomography: A suitable tool for imaging regional excitability of the human cortex.
        Neuroimage. 2001; 14: 883-890
        • Cao T.T.
        • Thomson R.H.
        • Bailey N.W.
        • Rogasch N.C.
        • Segrave R.A.
        • Maller J.J.
        • et al.
        A near infra-red study of blood oxygenation changes resulting from high and low frequency repetitive transcranial magnetic stimulation.
        Brain Stimul. 2013; 6: 922-924
        • Eldaief M.C.
        • Halko M.A.
        • Buckner R.L.
        • Pascual-Leone A.
        Transcranial magnetic stimulation modulates the brain’s intrinsic activity in a frequency-dependent manner.
        Proc Natl Acad Sci U S A. 2011; 108: 21229-21234
        • Buchsbaum M.S.
        • Wu J.
        • DeLisi L.E.
        • Holcomb H.
        • Kessler R.
        • Johnson J.
        • et al.
        Frontal cortex and basal ganglia metabolic rates assessed by positron emission tomography with [18F]2-deoxyglucose in affective illness.
        J Affect Disord. 1986; 10: 137-152
        • Martinot J.
        • Hardy P.
        • Feline A.
        • Huret J.
        • Mazoyer B.
        • Attar-Levy D.
        • et al.
        Left prefrontal glucose hypometabolism in the depressed state: A confirmation.
        Am J Psychiatry. 1990; 147: 1313-1317
        • Starkstein S.E.
        • Robinson R.G.
        Affective disorders and cerebral vascular disease.
        Br J Psychiatry. 1989; 154: 170-182
        • Teneback C.C.
        • Nahas Z.
        • Speer A.M.
        • Molloy M.
        • Stallings L.E.
        • Spicer K.M.
        • et al.
        Changes in prefrontal cortex and paralimbic activity in depression following two weeks of daily left prefrontal TMS.
        J Neuropsychiatry Clin Neurosci. 1999; 11: 426-435
        • Speer A.M.
        • Kimbrell T.A.
        • Wassermann E.M.
        • D Repella J.
        • Willis M.W.
        • Herscovitch P.
        • Post R.M.
        Opposite effects of high and low frequency rTMS on regional brain activity in depressed patients.
        Biol Psychiatry. 2000; 48: 1133-1141
        • Nahas Z.
        • Teneback C.C.
        • Kozel A.
        • Speer A.M.
        • DeBrux C.
        • Molloy M.
        • et al.
        Brain effects of TMS delivered over prefrontal cortex in depressed adults: Role of stimulation frequency and coil-cortex distance.
        J Neuropsychiatry Clin Neurosci. 2001; 13: 459-470
        • Loo C.K.
        • Sachdev P.S.
        • Haindl W.
        • Wen W.
        • Mitchell P.B.
        • Croker V.B.
        • Malhi G.S.
        High (15 Hz) and low (1 Hz) frequency transcranial magnetic stimulation have different acute effects on regional cerebral blood flow in depressed patients.
        Psychol Med. 2003; 33: 997-1006
        • Kito S.
        • Fujita K.
        • Koga Y.
        Regional cerebral blood flow changes after low-frequency transcranial magnetic stimulation of the right dorsolateral prefrontal cortex in treatment-resistant depression.
        Neuropsychobiology. 2008; 58: 29-36
        • Kito S.
        • Hasegawa T.
        • Koga Y.
        Neuroanatomical correlates of therapeutic efficacy of low-frequency right prefrontal transcranial magnetic stimulation in treatment-resistant depression.
        Psychiatry Clin Neurosci. 2011; 65: 175-182
        • Kito S.
        • Hasegawa T.
        • Koga Y.
        Cerebral blood flow in the ventromedial prefrontal cortex correlates with treatment response to low-frequency right prefrontal repetitive transcranial magnetic stimulation in the treatment of depression.
        Psychiatry Clin Neurosci. 2012; 66: 136-145
        • Baeken C.
        • De Raedt R.
        • Van Hove C.
        • Clerinx P.
        • De Mey J.
        • Bossuyt A.
        HF-rTMS treatment in medication-resistant melancholic depression: Results from 18FDG-PET brain imaging.
        CNS Spectr. 2009; 14: 439-448
        • Baeken C.
        • Marinazzo D.
        • Everaert H.
        • Wu G.
        • Van Hove C.
        • Audenaert K.
        • et al.
        The impact of accelerated HF-rTMS on the subgenual anterior cingulate cortex in refractory unipolar major depression: Insights from 18FDG PET brain imaging.
        Brain Stimul. 2015; 8: 808-815
        • Klein J.C.
        • Rushworth M.F.
        • Behrens T.E.
        • Mackay C.E.
        • de Crespigny A.J.
        • D’Arceuil H.
        • Johansen-Berg H.
        Topography of connections between human prefrontal cortex and mediodorsal thalamus studied with diffusion tractography.
        Neuroimage. 2010; 51: 555-564
        • Padberg F.
        • George M.S.
        Repetitive transcranial magnetic stimulation of the prefrontal cortex in depression.
        Exp Neurol. 2009; 219: 2-13
        • Fox M.D.
        • Snyder A.Z.
        • Vincent J.L.
        • Corbetta M.
        • Van Essen D.C.
        • Raichle M.E.
        The human brain is intrinsically organized into dynamic, anticorrelated functional networks.
        Proc Natl Acad Sci U S A. 2005; 102: 9673-9678
        • Buckner R.L.
        • Andrews-Hanna J.R.
        • Schacter D.L.
        The brain’s default network: Anatomy, function, and relevance to disease.
        Ann N Y Acad Sci. 2008; 1124: 1-36
        • Cooney R.E.
        • Joormann J.
        • Eugéne F.
        • Dennis E.L.
        • Gotlib I.H.
        Neural correlates of rumination in depression.
        Cog Affect Behav Neurosci. 2010; 10: 470-478
        • Hamilton J.P.
        • Farmer M.
        • Fogelman P.
        • Gotlib I.H.
        Depressive rumination, the default-mode network, and the dark matter of clinical neuroscience.
        Biol Psychiatry. 2015; 78: 224-230
        • Fox M.D.
        • Buckner R.L.
        • White M.P.
        • Greicius M.D.
        • Pascual-Leone A.
        Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate.
        Biol Psychiatry. 2012; 72: 595-603
        • Fox M.D.
        • Liu H.
        • Pascual-Leone A.
        Identification of reproducible individualized targets for treatment of depression with TMS based on intrinsic connectivity.
        Neuroimage. 2013; 66: 150-160
        • Mayberg H.S.
        • Lozano A.M.
        • Voon V.
        • McNeely H.E.
        • Seminowicz D.
        • Hamani C.
        • et al.
        Deep brain stimulation for treatment-resistant depression.
        Neuron. 2005; 45: 651-660
        • Drevets W.C.
        • Savitz J.
        • Trimble M.
        The subgenual anterior cingulate cortex in mood disorders.
        CNS Spectr. 2008; 13: 663-681
        • Baeken C.
        • Marinazzo D.
        • Wu G.R.
        • Van Schuerbeek P.
        • De Mey J.
        • Marchetti I.
        • et al.
        Accelerated HF-rTMS in treatment-resistant unipolar depression: Insights from subgenual anterior cingulate functional connectivity.
        World J Biol Psychiatry. 2014; 15: 286-297
        • Liston C.
        • Chen A.C.
        • Zebley B.D.
        • Drysdale A.T.
        • Gordon R.
        • Leutcher B.
        • et al.
        Default mode network mechanisms of transcranial magnetic stimulation.
        Biol Psychiatry. 2014; 76: 517-526
        • Shirer W.R.
        • Ryali S.
        • Rykhlevskaia E.
        • Menon V.
        • Greicius M.D.
        Decoding subject-driven cognitive states with whole-brain connectivity patterns.
        Cereb Cortex. 2012; 22: 158-165
        • Baeken C.
        • Duprat R.
        • Wu G.
        • De Raedt R.
        • van Heeringen K.
        Subgenual anterior cingulate–medial orbitofrontal functional connectivity in medication-resistant major depression: A neurobiological marker for accelerated intermittent theta burst stimulation treatment?.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2017; 2: 556-565
        • Duprat R.
        • Desmyter S.
        • Rudi D.
        • van Heeringen K.
        • Van den Abbeele D.
        • Tandt H.
        • et al.
        Accelerated intermittent theta burst stimulation treatment in medication-resistant major depression: A fast road to remission?.
        J Affect Disord. 2016; 200: 6-14
        • Philip N.S.
        • Barredo J.
        • van 't Wout-Frank M.
        • Tyrka A.R.
        • Price L.H.
        • Carpenter L.L.
        Network mechanisms of clinical response to transcranial magnetic stimulation in posttraumatic stress disorder and major depressive disorder.
        Biol Psychiatry. 2018; 83: 263-272
        • Kang J.I.
        • Lee H.
        • Jhung K.
        • Kim K.R.
        • An S.K.
        • Yoon K.J.
        • et al.
        Frontostriatal connectivity changes in major depressive disorder after repetitive transcranial magnetic stimulation: A randomized sham-controlled study.
        J Clin Psychiatry. 2016; 77: e1137-e1143
        • Tukey J.W.
        Bias and confidence in not quite large enough samples.
        Ann Math Statist. 1958; 29: 614-623
        • Ge R.
        • Blumberger D.M.
        • Downar J.
        • Daskalakis Z.J.
        • Dipinto A.A.
        • Tham J.C.W.
        • et al.
        Abnormal functional connectivity within resting-state networks is related to rTMS-based therapy effects of treatment resistant depression: A pilot study.
        J Affect Disord. 2017; 218: 75-81
        • Avissar M.
        • Powell F.
        • Ilieva I.
        • Respino M.
        • Gunning F.M.
        • Liston C.
        • Dubin M.J.
        Functional connectivity of the left DLPFC to striatum predicts treatment response of depression to TMS.
        Brain Stimul. 2017; 10: 919-925
        • Downar J.
        • Geraci J.
        • Salomons T.V.
        • Dunlop K.
        • Wheeler S.
        • McAndrews M.P.
        • et al.
        Anhedonia and reward-circuit connectivity distinguish nonresponders from responders to dorsomedial prefrontal repetitive transcranial magnetic stimulation in major depression.
        Biol Psychiatry. 2014; 76: 176-185
        • Sheline Y.I.
        • Price J.L.
        • Yan Z.
        • Mintun M.A.
        Resting-state functional MRL in depression unmasks increased connectivity between networks via the dorsal nexus.
        Proc Natl Acad Sci U S A. 2010; 107: 11020-11025
        • Salomons T.V.
        • Dunlop K.
        • Kennedy S.H.
        • Flint A.
        • Geraci J.
        • Giacobbe P.
        • Downar J.
        Resting-state portico-thalamic-striatal connectivity predicts response to dorsomedial prefrontal rTMS in major depressive disorder.
        Neuropsychopharmacology. 2014; 39: 488-498
        • Craddock R.C.
        • James G.A.
        • Holtzheimer 3rd, P.E.
        • Hu X.P.
        • Mayberg H.S.
        A whole brain fMRI atlas generated via spatially constrained spectral clustering.
        Hum Brain Mapp. 2012; 33: 1914-1928
        • Drysdale A.T.
        • Grosenick L.
        • Downar J.
        • Dunlop K.
        • Mansouri F.M.
        • Meng Y.
        • et al.
        Resting-state connectivity biomarkers define neurophysiological subtypes of depression.
        Nat Med. 2017; 23: 28-38
        • Diefenbach G.J.
        • Bragdon L.B.
        • Zertuche L.
        • Hyatt C.J.
        • Hallion L.S.
        • Tolin D.
        • et al.
        Repetitive transcranial magnetic stimulation for generalised anxiety disorder: A pilot randomised, double-blind, sham-controlled trial.
        Br J Psychiatry. 2016; 209: 222-228
        • Yarkoni T.
        Big correlations in little studies: Inflated fMRI correlations reflect low statistical power—commentary on Vul et al. (2009).
        Perspect Psychol Sci. 2009; 4: 294-298
        • Yarkoni T.
        • Braver T.S.
        Cognitive neuroscience approaches to individual differences in working memory and executive control: Conceptual and methodological issues.
        in: Gruszka A. Matthews G. Szymura B. Handbook of Individual Differences in Cognition. Springer Series on Human Exceptionality. Springer, New York2010
        • Saad Z.S.
        • Gotts S.J.
        • Murphy K.
        • Chen G.
        • Jo H.J.
        • Martin A.
        • Cox R.W.
        Trouble at rest: How correlation patterns and group differences become distorted after global signal regression.
        Brain Connect. 2012; 2: 25-32
        • Murphy K.
        • Fox M.D.
        Towards a consensus regarding global signal regression for resting state functional connectivity MRI.
        Neuroimage. 2017; 154: 169-173
        • Power J.D.
        • Barnes K.A.
        • Snyder A.Z.
        • Schlagger B.L.
        • Petersen S.E.
        Spurious by systematic correlations in functional connectivity in MRI networks arise from subject motion.
        Neuroimage. 2012; 59: 2142-2154
        • Satterthwaite T.D.
        • Elliott M.A.
        • Gerraty R.T.
        • Ruparel K.
        • Loughead J.
        • Calkins M.E.
        • et al.
        An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity.
        Neuroimage. 2013; 64: 240-256
        • Ciric R.
        • Wolf D.H.
        • Power J.D.
        • Roalf D.R.
        • Baum G.L.
        • Ruparel K.
        • et al.
        Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity.
        Neuroimage. 2017; 154: 174-187
        • Woo C.W.
        • Krishnan A.
        • Wager T.D.
        Cluster-extent based thresholding in fMRI analyses: Pitfalls and recommendations.
        Neuroimage. 2014; 91: 412-419
        • Eklund A.
        • Nichols T.E.
        • Knutsson H.
        Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates.
        Proc Natl Acad Sci U S A. 2016; 113: 7900-7905
        • Chen A.C.
        • Oathes D.J.
        • Chang C.
        • Bradley T.
        • Zhou Z.W.
        • Williams L.M.
        • et al.
        Causal interactions between fronto-parietal central executive and default-mode networks in humans.
        Proc Natl Acad Sci U S A. 2013; 110: 19944-19949
        • Fitzgerald P.B.
        • Sritharan A.
        • Daskalakis Z.J.
        • de Castella A.R.
        • Kulkarni J.
        • Egan G.
        A functional magnetic resonance imaging study of the effects of low frequency right prefrontal transcranial magnetic stimulation in depression.
        J Clin Psychopharmacol. 2007; 27: 488-492
        • Furtado C.P.
        • Hoy K.E.
        • Maller J.J.
        • Savage G.
        • Daskalakis Z.J.
        • Fitzgerald P.B.
        Cognitive and volumetric predictors of response to repetitive transcranial magnetic stimulation (rTMS)—a prospective follow-up study.
        Psychiatry Res. 2012; 202: 12-19
        • Philip N.S.
        • Nelson B.G.
        • Frohlich F.
        • Lim K.O.
        • Widge A.S.
        • Carpenter L.L.
        Low-intensity transcranial current stimulation in psychiatry.
        Am J Psychiatry. 2017; 174: 628-639