Advertisement

Auditory System Target Engagement During Plasticity-Based Interventions in Schizophrenia: A Focus on Modulation of N-Methyl-D-Aspartate–Type Glutamate Receptor Function

Published:February 22, 2018DOI:https://doi.org/10.1016/j.bpsc.2018.02.002

      Abstract

      Cognitive deficits are predictive of long-term social and occupational functional deficits in schizophrenia but are currently without gold-standard treatments. In particular, augmentation of auditory cortical neuroplasticity may represent a rate-limiting first step before addressing higher-order cognitive deficits. We review the rationale for N-methyl-d-aspartate–type glutamate receptor (NMDAR) modulators as treatments for auditory plasticity deficits in schizophrenia, along with potential serum and electroencephalographic target engagement biomarkers for NMDAR function. Several recently published NMDAR-modulating treatment studies are covered, involving D-serine, memantine, and transcranial direct current stimulation. While all three interventions appear to modulate auditory plasticity, direct agonists (D-serine) appear to have the largest and most consistent effects on plasticity, at least acutely. We hypothesize that there may be synergistic effects of combining procognitive NMDAR-modulating approaches with auditory cortical neuroplasticity cognitive training interventions. Future studies should assess biomarkers for target engagement and patient stratification, along with head-to-head studies comparing putative interventions and potential long-term versus acute effects.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Kantrowitz J.T.
        Managing negative symptoms of schizophrenia: How far have we come?.
        CNS Drugs. 2017; 31: 373-388
        • Kurtz M.M.
        • Moberg J.P.
        • Ragland J.D.
        • Gur R.C.
        • Gur R.E.
        Symptoms versus neurocognitive test performance as predictors of psychosocial status in schizophrenia: A 1- and 4-year prospective study.
        Schizophr Bull. 2005; 31: 167-174
        • Buchanan R.W.
        Persistent negative symptoms in schizophrenia: An overview.
        Schizophr Bull. 2007; 33: 1013-1022
        • Fenton W.S.
        • McGlashan T.H.
        Antecedents, symptom progression, and long-term outcome of the deficit syndrome in schizophrenia.
        Am J Psychiatry. 1994; 151: 351-356
        • Kirkpatrick B.
        • Buchanan R.W.
        • Ross D.E.
        • Carpenter Jr., W.T.
        A separate disease within the syndrome of schizophrenia.
        Arch Gen Psychiatry. 2001; 58: 165-171
        • Green M.F.
        • Hellemann G.
        • Horan W.P.
        • Lee J.
        • Wynn J.K.
        From perception to functional outcome in schizophrenia: Modeling the role of ability and motivation.
        Arch Gen Psychiatry. 2012; 69: 1216-1224
        • Green M.F.
        • Horan W.P.
        • Lee J.
        Social cognition in schizophrenia.
        Nat Rev Neurosci. 2015; 16: 620-631
        • Kantrowitz J.T.
        • Epstein M.L.
        • Beggel O.
        • Rohrig S.
        • Lehrfeld J.M.
        • Revheim N.
        • et al.
        Neurophysiological mechanisms of cortical plasticity impairments in schizophrenia and modulation by the NMDA receptor agonist D-serine.
        Brain. 2016; 139: 3281-3295
        • Fisher M.
        • Mellon S.H.
        • Wolkowitz O.
        • Vinogradov S.
        Neuroscience-informed auditory training in schizophrenia: A final report of the effects on cognition and serum brain-derived neurotrophic factor.
        Schizophr Res Cogn. 2016; 3: 1-7
        • Thomas M.L.
        • Green M.F.
        • Hellemann G.
        • Sugar C.A.
        • Tarasenko M.
        • Calkins M.E.
        • et al.
        Modeling deficits from early auditory information processing to psychosocial functioning in schizophrenia.
        JAMA Psychiatry. 2017; 74: 37-46
        • Medalia A.
        • Erlich M.
        Why cognitive health matters.
        Am J Pub Health. 2017; 107: 45-47
        • Medalia A.
        • Saperstein A.M.
        • Hansen M.C.
        • Lee S.
        Personalised treatment for cognitive dysfunction in individuals with schizophrenia spectrum disorders.
        Neuropsychol Rehabil. 2018; 28: 602-613
        • Ahissar M.
        • Lubin Y.
        • Putter-Katz H.
        • Banai K.
        Dyslexia and the failure to form a perceptual anchor.
        Nat Neurosci. 2006; 9: 1558-1564
        • Murthy N.V.
        • Mahncke H.
        • Wexler B.E.
        • Maruff P.
        • Inamdar A.
        • Zucchetto M.
        • et al.
        Computerized cognitive remediation training for schizophrenia: An open label, multi-site, multinational methodology study.
        Schizophr Res. 2012; 139: 87-91
        • Barch D.M.
        There are currently no proven pharmacological or psychological treatments for the core cognitive deficits of schizophrenia [Abstract 19].
        Biol Psychiatry. 2011; 69: 6S
        • Barch D.M.
        Pharmacological strategies for enhancing cognition in schizophrenia.
        Curr Top Behav Neurosci. 2010; 4: 43-96
        • Buchanan R.W.
        • Javitt D.C.
        • Marder S.R.
        • Schooler N.R.
        • Gold J.M.
        • McMahon R.P.
        • et al.
        The Cognitive and Negative Symptoms in Schizophrenia Trial (CONSIST): The efficacy of glutamatergic agents for negative symptoms and cognitive impairments.
        Am J Psychiatry. 2007; 164: 1593-1602
        • Green M.F.
        Cognition, drug treatment, and functional outcome in schizophrenia: A tale of two transitions.
        Am J Psychiatry. 2007; 164: 992-994
        • Goff D.C.
        Once-weekly D-cycloserine effects on negative symptoms and cognition in schizophrenia: An exploratory study.
        Schizophr Res. 2008; 106: 320-327
        • Goff D.C.
        • Keefe R.
        • Citrome L.
        • Davy K.
        • Krystal J.H.
        • Large C.
        • et al.
        Lamotrigine as add-on therapy in schizophrenia: Results of 2 placebo-controlled trials.
        Journal of clinical psychopharmacology. 2007; 27: 582-589
        • Javitt D.C.
        • Spencer K.M.
        • Thaker G.K.
        • Winterer G.
        • Hajos M.
        Neurophysiological biomarkers for drug development in schizophrenia.
        Nat Rev Drug Discov. 2008; 7: 68-83
        • Heresco-Levy U.
        • Javitt D.C.
        • Ebstein R.
        • Vass A.
        • Lichtenberg P.
        • Bar G.
        • et al.
        D-serine efficacy as add-on pharmacotherapy to risperidone and olanzapine for treatment-refractory schizophrenia.
        Biol Psychiatry. 2005; 57: 577-585
        • Goff D.C.
        D-cycloserine: An evolving role in learning and neuroplasticity in schizophrenia.
        Schizophr Bull. 2012; 38: 936-941
        • Javitt D.C.
        Harnessing N-methyl-d-aspartate receptors for new treatment development in psychiatry: Positive lessons from negative studies.
        Am J Psychiatry. 2013; 170: 699-702
        • Cain C.K.
        • McCue M.
        • Bello I.
        • Creedon T.
        • Tang D.I.
        • Laska E.
        • et al.
        d-Cycloserine augmentation of cognitive remediation in schizophrenia.
        Schizophr Res. 2014; 153: 177-183
        • Ori R.
        • Amos T.
        • Bergman H.
        • Soares-Weiser K.
        • Ipser J.C.
        • Stein D.J.
        Augmentation of cognitive and behavioural therapies (CBT) with d-cycloserine for anxiety and related disorders.
        Cochrane Database Syst Rev. 2015; 5CD007803
        • Ahissar M.
        • Nahum M.
        • Nelken I.
        • Hochstein S.
        Reverse hierarchies and sensory learning.
        Philos Trans R Soc Lond B Biol Sci. 2009; 364: 285-299
        • Kantrowitz J.T.
        • Javitt D.C.
        Thinking glutamatergically: Changing concepts of schizophrenia based upon changing neurochemical models.
        Clin Schizophr Relat Psychoses. 2010; 4: 189-200
        • Levin R.
        • Dor-Abarbanel A.E.
        • Edelman S.
        • Durrant A.R.
        • Hashimoto K.
        • Javitt D.C.
        • et al.
        Behavioral and cognitive effects of the N-methyl-D-aspartate receptor co-agonist D-serine in healthy humans: Initial findings.
        J Psychiatr Res. 2015; 61: 188-195
        • Javitt D.C.
        • Zukin S.R.
        Recent advances in the phencyclidine model of schizophrenia.
        Am J Psychiatry. 1991; 148: 1301-1308
        • Hunt D.L.
        • Castillo P.E.
        Synaptic plasticity of NMDA receptors: Mechanisms and functional implications.
        Curr Opin Neurobiol. 2012; 22: 496-508
        • Luscher C.
        • Malenka R.C.
        NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD).
        Cold Spring Harb Perspect Biol. 2012; 4: a005710
        • Watanabe Y.
        • Saito H.
        • Abe K.
        Effects of glycine and structurally related amino acids on generation of long-term potentiation in rat hippocampal slices.
        Eur J Pharmacol. 1992; 223: 179-184
        • Watt A.J.
        • Sjostrom P.J.
        • Hausser M.
        • Nelson S.B.
        • Turrigiano G.G.
        A proportional but slower NMDA potentiation follows AMPA potentiation in LTP.
        Nat Neurosci. 2004; 7: 518-524
        • Bado P.
        • Madeira C.
        • Vargas-Lopes C.
        • Moulin T.C.
        • Wasilewska-Sampaio A.P.
        • Maretti L.
        • et al.
        Effects of low-dose D-serine on recognition and working memory in mice.
        Psychopharmacology (Berl). 2011; 218: 461-470
        • Balu D.T.
        • Coyle J.T.
        The NMDA receptor ‘glycine modulatory site' in schizophrenia: D-serine, glycine, and beyond.
        Curr Opin Pharmacol. 2015; 20: 109-115
        • Cho S.E.
        • Na K.S.
        • Cho S.J.
        • Kang S.G.
        Low d-serine levels in schizophrenia: A systematic review and meta-analysis.
        Neurosci Lett. 2016; 634: 42-51
        • Panizzutti R.
        • Fisher M.
        • Garrett C.
        • Man W.H.
        • Sena W.
        • Madeira C.
        • Vinogradov S.
        Association between increased serum D-serine and cognitive gains induced by intensive cognitive training in schizophrenia [published online ahead of print Apr 23].
        Schizophr Res. 2018;
        • Naatanen R.
        • Sussman E.S.
        • Salisbury D.
        • Shafer V.L.
        Mismatch negativity (MMN) as an index of cognitive dysfunction.
        Brain Topogr. 2014; 27: 451-466
        • Naatanen R.
        • Todd J.
        • Schall U.
        Mismatch negativity (MMN) as biomarker predicting psychosis in clinically at-risk individuals.
        Biol Psychol. 2016; 116: 36-40
        • Mantysalo S.
        • Naatanen R.
        The duration of a neuronal trace of an auditory stimulus as indicated by event-related potentials.
        Biol Psychol. 1987; 24: 183-195
        • Javitt D.C.
        Intracortical mechanisms of mismatch negativity dysfunction in schizophrenia.
        Audiol Neurootol. 2000; 5: 207-215
        • Perrin M.A.
        • Kantrowitz J.T.
        • Silipo G.
        • Dias E.
        • Jabado O.
        • Javitt D.C.
        Mismatch negativity (MMN) to spatial deviants and behavioral spatial discrimination ability in the etiology of auditory verbal hallucinations and thought disorder in schizophrenia.
        Schizophr Res. 2018; 191: 140-147
        • Umbricht D.
        • Krljes S.
        Mismatch negativity in schizophrenia: A meta-analysis.
        Schizophr Res. 2005; 76: 1-23
        • Erickson M.A.
        • Ruffle A.
        • Gold J.M.
        A meta-analysis of mismatch negativity in schizophrenia: From clinical risk to disease specificity and progression.
        Biol Psychiatry. 2016; 79: 980-987
        • Light G.A.
        • Swerdlow N.R.
        • Thomas M.L.
        • Calkins M.E.
        • Green M.F.
        • Greenwood T.A.
        • et al.
        Validation of mismatch negativity and P3a for use in multi-site studies of schizophrenia: Characterization of demographic, clinical, cognitive, and functional correlates in COGS-2.
        Schizophr Res. 2015; 163: 63-72
        • Friedman T.
        • Sehatpour P.
        • Dias E.
        • Perrin M.
        • Javitt D.C.
        Differential relationships of mismatch negativity and visual p1 deficits to premorbid characteristics and functional outcome in schizophrenia.
        Biol Psychiatry. 2012; 71: 521-529
        • Hermens D.F.
        • Ward P.B.
        • Hodge M.A.
        • Kaur M.
        • Naismith S.L.
        • Hickie I.B.
        Impaired MMN/P3a complex in first-episode psychosis: Cognitive and psychosocial associations.
        Prog Neuropsychopharmacol Biol Psychiatry. 2010; 34: 822-829
        • Light G.A.
        • Swerdlow N.R.
        • Braff D.L.
        Preattentive sensory processing as indexed by the MMN and P3a brain responses is associated with cognitive and psychosocial functioning in healthy adults.
        J Cogn Neurosci. 2007; 19: 1624-1632
        • Wynn J.K.
        • Sugar C.
        • Horan W.P.
        • Kern R.
        • Green M.F.
        Mismatch negativity, social cognition, and functioning in schizophrenia patients.
        Biol Psychiatry. 2010; 67: 940-947
        • Jahshan C.
        • Wynn J.K.
        • Green M.F.
        Relationship between auditory processing and affective prosody in schizophrenia.
        Schizophr Res. 2013; 143: 348-353
        • Kantrowitz J.T.
        • Hoptman M.J.
        • Leitman D.I.
        • Moreno-Ortega M.
        • Lehrfeld J.M.
        • Dias E.
        • et al.
        Neural substrates of auditory emotion recognition deficits in schizophrenia.
        J Neurosci. 2015; 35: 14909-14921
        • Light G.A.
        • Swerdlow N.R.
        • Rissling A.J.
        • Radant A.
        • Sugar C.A.
        • Sprock J.
        • et al.
        Characterization of neurophysiologic and neurocognitive biomarkers for use in genomic and clinical outcome studies of schizophrenia.
        PLoS One. 2012; 7e39434
        • Javitt D.C.
        • Steinschneider M.
        • Schroeder C.E.
        • Arezzo J.C.
        Role of cortical N-methyl-D-aspartate receptors in auditory sensory memory and mismatch negativity generation: Implications for schizophrenia.
        Proc Natl Acad Sci U S A. 1996; 93: 11962-11967
        • Amann L.C.
        • Gandal M.J.
        • Halene T.B.
        • Ehrlichman R.S.
        • White S.L.
        • McCarren H.S.
        • et al.
        Mouse behavioral endophenotypes for schizophrenia.
        Brain Res Bull. 2010; 83: 147-161
        • Ehrlichman R.S.
        • Maxwell C.R.
        • Majumdar S.
        • Siegel S.J.
        Deviance-elicited changes in event-related potentials are attenuated by ketamine in mice.
        J Cogn Neurosci. 2008; 20: 1403-1414
        • Gil-da-Costa R.
        • Stoner G.R.
        • Fung R.
        • Albright T.D.
        Nonhuman primate model of schizophrenia using a noninvasive EEG method.
        Proc Natl Acad Sci U S A. 2013; 110: 15425-15430
        • Javitt D.C.
        • Schoepp D.
        • Kalivas P.W.
        • Volkow N.D.
        • Zarate C.
        • Merchant K.
        • et al.
        Translating glutamate: From pathophysiology to treatment.
        Sci Transl Med. 2011; 3: 102mr102
        • Umbricht D.
        • Schmid L.
        • Koller R.
        • Vollenweider F.X.
        • Hell D.
        • Javitt D.C.
        Ketamine-induced deficits in auditory and visual context-dependent processing in healthy volunteers: Implications for models of cognitive deficits in schizophrenia.
        Arch Gen Psychiatry. 2000; 57: 1139-1147
        • Gunduz-Bruce H.
        • Reinhart R.M.
        • Roach B.J.
        • Gueorguieva R.
        • Oliver S.
        • D'Souza D.C.
        • et al.
        Glutamatergic modulation of auditory information processing in the human brain.
        Biol Psychiatry. 2012; 71: 969-977
        • Heekeren K.
        • Daumann J.
        • Neukirch A.
        • Stock C.
        • Kawohl W.
        • Norra C.
        • et al.
        Mismatch negativity generation in the human 5HT2A agonist and NMDA antagonist model of psychosis.
        Psychopharmacology. 2008; 199: 77-88
        • Catts V.S.
        • Lai Y.L.
        • Weickert C.S.
        • Weickert T.W.
        • Catts S.V.
        A quantitative review of the postmortem evidence for decreased cortical N-methyl-d-aspartate receptor expression levels in schizophrenia: How can we link molecular abnormalities to mismatch negativity deficits?.
        Biol Psychol. 2015; 116: 57-67
        • Rosburg T.
        • Kreitschmann-Andermahr I.
        The effects of ketamine on the mismatch negativity (MMN) in humans: A meta-analysis.
        Clin Neurophysiol. 2016; 127: 1387-1394
        • Rowland L.M.
        • Summerfelt A.
        • Wijtenburg S.A.
        • Du X.
        • Chiappelli J.J.
        • Krishna N.
        • et al.
        Frontal glutamate and gamma-aminobutyric acid levels and their associations with mismatch negativity and digit sequencing task performance in schizophrenia.
        JAMA Psychiatry. 2016; 73: 166-174
        • Nagai T.
        • Kirihara K.
        • Tada M.
        • Koshiyama D.
        • Koike S.
        • Suga M.
        • et al.
        Reduced mismatch negativity is associated with increased plasma level of glutamate in first-episode psychosis.
        Sci Rep. 2017; 7: 2258
        • Umbricht D.
        • Javitt D.
        • Novak G.
        • Bates J.
        • Pollack S.
        • Lieberman J.
        • et al.
        Effects of risperidone on auditory event-related potentials in schizophrenia.
        Int J Neuropsychopharmacol. 1999; 2: 299-304
        • Umbricht D.
        • Javitt D.
        • Novak G.
        • Bates J.
        • Pollack S.
        • Lieberman J.
        • et al.
        Effects of clozapine on auditory event-related potentials in schizophrenia.
        Biol Psychiatry. 1998; 44: 716-725
        • Friston K.
        A theory of cortical responses.
        Philos Trans R Soc Lond B Biol Sci. 2005; 360: 815-836
        • Perez V.B.
        • Tarasenko M.
        • Miyakoshi M.
        • Pianka S.T.
        • Makeig S.D.
        • Braff D.L.
        • et al.
        Mismatch negativity is a sensitive and predictive biomarker of perceptual learning during auditory cognitive training in schizophrenia.
        Neuropsychopharmacology. 2017; 42: 2206-2213
        • Biagianti B.
        • Roach B.J.
        • Fisher M.
        • Loewy R.
        • Ford J.M.
        • Vinogradov S.
        • et al.
        Trait aspects of auditory mismatch negativity predict response to auditory training in individuals with early illness schizophrenia.
        Neuropsychiatr Electrophysiol. 2017; 3: 2
        • Makeig S.
        • Debener S.
        • Onton J.
        • Delorme A.
        Mining event-related brain dynamics.
        Trends Cogn Sci. 2004; 8: 204-210
        • Lakatos P.
        • Schroeder C.E.
        • Leitman D.I.
        • Javitt D.C.
        Predictive suppression of cortical excitability and its deficit in schizophrenia.
        J Neurosci. 2013; 33: 11692-11702
        • Womelsdorf T.
        • Valiante T.A.
        • Sahin N.T.
        • Miller K.J.
        • Tiesinga P.
        Dynamic circuit motifs underlying rhythmic gain control, gating and integration.
        Nat Neurosci. 2014; 17: 1031-1039
        • Lisman J.E.
        • Coyle J.T.
        • Green R.W.
        • Javitt D.C.
        • Benes F.M.
        • Heckers S.
        • et al.
        Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia.
        Trends Neurosci. 2008; 31: 234-242
        • Javitt D.C.
        • Lee M.
        • Kantrowitz J.T.
        • Martinez A.
        Mismatch negativity as a biomarker of theta band oscillatory dysfunction in schizophrenia.
        Schizophr Res. 2018; 191: 51-60
        • Lee M.
        • Hoptman M.J.
        • Lakatos P.
        • Kantrowitz J.T.
        • Dias E.
        • Martinez A.M.
        • et al.
        Neural basis of mismatch negativity (MMN) dysfunction in schizophrenia: Circuit and cellular level of analysis.
        Mol Psychiatry. 2017; 22: 1585-1593
        • Bickel S.
        • Dias E.C.
        • Epstein M.L.
        • Javitt D.C.
        Expectancy-related modulations of neural oscillations in continuous performance tasks.
        Neuroimage. 2012; 62: 1867-1876
        • Dias E.C.
        • Bickel S.
        • Epstein M.L.
        • Sehatpour P.
        • Javitt D.C.
        Abnormal task modulation of oscillatory neural activity in schizophrenia.
        Front Psychol. 2013; 4: 540
        • Capotosto P.
        • Baldassarre A.
        • Sestieri C.
        • Spadone S.
        • Romani G.L.
        • Corbetta M.
        Task and regions specific top-down modulation of alpha rhythms in parietal cortex.
        Cereb Cortex. 2016; 27: 4815-4822
        • Jahshan C.
        • Wynn J.K.
        • Mathalon D.H.
        • Green M.F.
        Cognitive correlates of visual neural plasticity in schizophrenia.
        Schizophr Res. 2017; 190: 39-45
        • Kantrowitz J.T.
        • Revheim N.
        • Pasternak R.
        • Silipo G.
        • Javitt D.C.
        It's all in the cards: Effect of stimulus manipulation on Wisconsin Card Sorting Test performance in schizophrenia.
        Psychiatry Res. 2009; 168: 198-204
        • Contreras N.A.
        • Tan E.J.
        • Lee S.J.
        • Castle D.J.
        • Rossell S.L.
        Using visual processing training to enhance standard cognitive remediation outcomes in schizophrenia: A pilot study.
        Psychiatry Res. 2018; 262: 494-499
        • Forsyth J.K.
        • Bachman P.
        • Mathalon D.H.
        • Roach B.J.
        • Ye E.
        • Asarnow R.F.
        Effects of augmenting N-methyl-D-Aspartate receptor signaling on working memory and experience-dependent plasticity in schizophrenia: An exploratory study using acute d-cycloserine.
        Schizophr Bull. 2017; 43: 1123-1133
        • D'Souza D.C.
        • Radhakrishnan R.
        • Perry E.
        • Bhakta S.
        • Singh N.M.
        • Yadav R.
        • et al.
        Feasibility, safety, and efficacy of the combination of D-serine and computerized cognitive retraining in schizophrenia: An international collaborative pilot study.
        Neuropsychopharmacology. 2013; 38: 492-503
        • Kantrowitz J.T.
        • Malhotra A.K.
        • Cornblatt B.
        • Silipo G.
        • Balla A.
        • Suckow R.F.
        • et al.
        High dose D-serine in the treatment of schizophrenia.
        Schizophr Res. 2010; 121: 125-130
        • Umbricht D.
        • Alberati D.
        • Martin-Facklam M.
        • Borroni E.
        • Youssef E.A.
        • Ostland M.
        • et al.
        Effect of bitopertin, a glycine reuptake inhibitor, on negative symptoms of schizophrenia: A randomized, double-blind, proof-of-concept study.
        JAMA Psychiatry. 2014; 71: 637-646
        • Kantrowitz J.T.
        • Nolan K.A.
        • Epstein M.L.
        • Lehrfeld N.
        • Shope C.
        • Petkova E.
        • et al.
        Neurophysiological effects of bitopertin in schizophrenia.
        J Clin Psychopharmacol. 2017; 37: 447-451
        • Bugarski-Kirola D.
        • Iwata N.
        • Sameljak S.
        • Reid C.
        • Blaettler T.
        • Millar L.
        • et al.
        Efficacy and safety of adjunctive bitopertin versus placebo in patients with suboptimally controlled symptoms of schizophrenia treated with antipsychotics: Results from three phase 3, randomised, double-blind, parallel-group, placebo-controlled, multicentre studies in the SearchLyte clinical trial programme.
        Lancet Psychiatry. 2016; 3: 1115-1128
        • Schoemaker J.H.
        • Jansen W.T.
        • Schipper J.
        • Szegedi A.
        The selective glycine uptake inhibitor org 25935 as an adjunctive treatment to atypical antipsychotics in predominant persistent negative symptoms of schizophrenia: Results from the GIANT trial.
        J Clin Psychopharmacol. 2014; 34: 190-198
        • Kantrowitz J.T.
        • Epstein M.L.
        • Lee M.
        • Lehrfeld N.
        • Nolan K.A.
        • Shope C.
        • et al.
        Improvement in mismatch negativity generation during d-serine treatment in schizophrenia: Correlation with symptoms.
        Schizophr Res. 2018; 191: 70-79
        • Fisher M.
        • Herman A.
        • Stephens D.B.
        • Vinogradov S.
        Neuroscience-informed computer-assisted cognitive training in schizophrenia.
        Ann N Y Acad Sci. 2016; 1366: 90-114
        • Fisher M.
        • Holland C.
        • Subramaniam K.
        • Vinogradov S.
        Neuroplasticity-based cognitive training in schizophrenia: An interim report on the effects 6 months later.
        Schizophr Bull. 2010; 36: 869-879
        • Gardoni F.
        • Di Luca M.
        New targets for pharmacological intervention in the glutamatergic synapse.
        Eur J Pharmacol. 2006; 545: 2-10
        • More L.
        • Gravius A.
        • Nagel J.
        • Valastro B.
        • Greco S.
        • Danysz W.
        Therapeutically relevant plasma concentrations of memantine produce significant L-N-methyl-D-aspartate receptor occupation and do not impair learning in rats.
        Behav Pharmacol. 2008; 19: 724-734
        • Mancini M.
        • Ghiglieri V.
        • Bagetta V.
        • Pendolino V.
        • Vannelli A.
        • Cacace F.
        • et al.
        Memantine alters striatal plasticity inducing a shift of synaptic responses toward long-term depression.
        Neuropharmacology. 2016; 101: 341-350
        • Korostenskaja M.
        • Nikulin V.V.
        • Kicic D.
        • Nikulina A.V.
        • Kahkonen S.
        Effects of NMDA receptor antagonist memantine on mismatch negativity.
        Brain Res Bull. 2007; 72: 275-283
        • Swerdlow N.R.
        • van Bergeijk D.P.
        • Bergsma F.
        • Weber E.
        • Talledo J.
        The effects of memantine on prepulse inhibition.
        Neuropsychopharmacology. 2009; 34: 1854-1864
        • Light G.A.
        • Zhang W.
        • Joshi Y.B.
        • Bhakta S.
        • Talledo J.A.
        • Swerdlow N.R.
        Single-dose memantine improves cortical oscillatory response dynamics in patients with schizophrenia.
        Neuropsychopharmacology. 2017; 42: 2633-2639
        • Swerdlow N.R.
        • Bhakta S.
        • Chou H.H.
        • Talledo J.A.
        • Balvaneda B.
        • Light G.A.
        Memantine effects on sensorimotor gating and mismatch negativity in patients with chronic psychosis.
        Neuropsychopharmacology. 2016; 41: 419-430
        • Kishi T.
        • Matsuda Y.
        • Iwata N.
        Memantine add-on to antipsychotic treatment for residual negative and cognitive symptoms of schizophrenia: A meta-analysis.
        Psychopharmacology. 2017; 234: 2113-2125
        • Matsuda Y.
        • Kishi T.
        • Iwata N.
        Efficacy and safety of NMDA receptor antagonists augmentation therapy for schizophrenia: An updated meta-analysis of randomized placebo-controlled trials.
        J Psychiatr Res. 2013; 47: 2018-2020
        • Zheng W.
        • Li X.H.
        • Yang X.H.
        • Cai D.B.
        • Ungvari G.S.
        • Ng C.H.
        • et al.
        Adjunctive memantine for schizophrenia: A meta-analysis of randomized, double-blind, placebo-controlled trials.
        Psychol Med. 2017; 48: 72-81
        • Bhakta S.G.
        • Chou H.H.
        • Rana B.
        • Talledo J.A.
        • Balvaneda B.
        • Gaddis L.
        • et al.
        Effects of acute memantine administration on MATRICS Consensus Cognitive Battery performance in psychosis: Testing an experimental medicine strategy.
        Psychopharmacology. 2016; 233: 2399-2410
        • Bikson M.
        • Inoue M.
        • Akiyama H.
        • Deans J.K.
        • Fox J.E.
        • Miyakawa H.
        • et al.
        Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro.
        J Physiol. 2004; 557: 175-190
        • Nitsche M.A.
        • Cohen L.G.
        • Wassermann E.M.
        • Priori A.
        • Lang N.
        • Antal A.
        • et al.
        Transcranial direct current stimulation: State of the art 2008.
        Brain Stimul. 2008; 1: 206-223
        • Nitsche M.A.
        • Muller-Dahlhaus F.
        • Paulus W.
        • Ziemann U.
        The pharmacology of neuroplasticity induced by invasive brain stimulation: Building models for the clinical use of CNS active drugs.
        J Physiol. 2012; 590: 4641-4662
        • Marquez-Ruiz J.
        • Leal-Campanario R.
        • Sanchez-Campusano R.
        • Molaee-Ardekani B.
        • Wendling F.
        • Miranda P.C.
        • et al.
        Transcranial direct-current stimulation modulates synaptic mechanisms involved in associative learning in behaving rabbits.
        Proc Natl Acad Sci U S A. 2012; 109: 6710-6715
        • Reis J.
        • Schambra H.M.
        • Cohen L.G.
        • Buch E.R.
        • Fritsch B.
        • Zarahn E.
        • et al.
        Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation.
        Proc Natl Acad Sci U S A. 2009; 106: 1590-1595
        • Rohan J.G.
        • Carhuatanta K.A.
        • McInturf S.M.
        • Miklasevich M.K.
        • Jankord R.
        Modulating hippocampal plasticity with in vivo brain stimulation.
        J Neurosci. 2015; 35: 12824-12832
        • Nitsche M.A.
        • Paulus W.
        Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans.
        Neurology. 2001; 57: 1899-1901
        • Nitsche M.A.
        • Paulus W.
        Noninvasive brain stimulation protocols in the treatment of epilepsy: Current state and perspectives.
        Neurotherapeutics. 2009; 6: 244-250
        • Priori A.
        • Berardelli A.
        • Rona S.
        • Accornero N.
        • Manfredi M.
        Polarization of the human motor cortex through the scalp.
        Neuroreport. 1998; 9: 2257-2260
        • Liebetanz D.
        • Nitsche M.A.
        • Tergau F.
        • Paulus W.
        Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability.
        Brain. 2002; 125: 2238-2247
        • Nitsche M.A.
        • Fricke K.
        • Henschke U.
        • Schlitterlau A.
        • Liebetanz D.
        • Lang N.
        • et al.
        Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans.
        J Physiol. 2003; 553: 293-301
        • Nitsche M.A.
        • Paulus W.
        Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation.
        J Physiol. 2000; 527: 633-639
        • Monai H.
        • Hirase H.
        Astrocytic calcium activation in a mouse model of tDCS-Extended discussion.
        Neurogenesis (Austin). 2016; 3: e1240055
        • Monai H.
        • Ohkura M.
        • Tanaka M.
        • Oe Y.
        • Konno A.
        • Hirai H.
        • et al.
        Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain.
        Nat Commun. 2016; 7: 11100
        • Goff D.C.
        • Coyle J.T.
        The emerging role of glutamate in the pathophysiology and treatment of schizophrenia.
        Am J Psychiatry. 2001; 158: 1367-1377
        • Nienow T.M.
        • MacDonald 3rd, A.W.
        • Lim K.O.
        TDCS produces incremental gain when combined with working memory training in patients with schizophrenia: A proof of concept pilot study.
        Schizophr Res. 2016; 172: 218-219
        • Horvath J.C.
        • Forte J.D.
        • Carter O.
        Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS).
        Brain Stimul. 2015; 8: 535-550
        • Horvath J.C.
        • Forte J.D.
        • Carter O.
        Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: A systematic review.
        Neuropsychologia. 2015; 66: 213-236
        • Hsu T.Y.
        • Juan C.H.
        • Tseng P.
        Individual differences and state-dependent responses in transcranial direct current stimulation.
        Front Hum Neurosci. 2016; 10: 643
        • Dunn W.
        • Rassovsky Y.
        • Wynn J.K.
        • Wu A.D.
        • Iacoboni M.
        • Hellemann G.
        • et al.
        Modulation of neurophysiological auditory processing measures by bilateral transcranial direct current stimulation in schizophrenia.
        Schizophr Res. 2016; 174: 189-191
        • Chen J.C.
        • Hammerer D.
        • Strigaro G.
        • Liou L.M.
        • Tsai C.H.
        • Rothwell J.C.
        • et al.
        Domain-specific suppression of auditory mismatch negativity with transcranial direct current stimulation.
        Clin Neurophysiol. 2014; 125: 585-592
        • Lovio R.
        • Halttunen A.
        • Lyytinen H.
        • Naatanen R.
        • Kujala T.
        Reading skill and neural processing accuracy improvement after a 3-hour intervention in preschoolers with difficulties in reading-related skills.
        Brain Res. 2012; 1448: 42-55
        • Menning H.
        • Roberts L.E.
        • Pantev C.
        Plastic changes in the auditory cortex induced by intensive frequency discrimination training.
        Neuroreport. 2000; 11: 817-822
        • Kantrowitz J.T.
        • Hoptman M.J.
        • Leitman D.I.
        • Silipo G.
        • Javitt D.C.
        The 5% difference: Early sensory processing predicts sarcasm perception in schizophrenia and schizo-affective disorder.
        Psychol Med. 2014; 44: 25-36
        • Javitt D.C.
        • Shelley A.
        • Ritter W.
        Associated deficits in mismatch negativity generation and tone matching in schizophrenia.
        Clin Neurophysiol. 2000; 111: 1733-1737
        • Strous R.D.
        • Cowan N.
        • Ritter W.
        • Javitt D.C.
        Auditory sensory (“echoic”) memory dysfunction in schizophrenia.
        Am J Psychiatry. 1995; 152: 1517-1519
        • Dunn W.
        • Rassovsky Y.
        • Wynn J.
        • Wu A.D.
        • Iacoboni M.
        • Hellemann G.
        • Green M.F.
        The effect of bilateral transcranial direct current stimulation on early auditory processing in schizophrenia: A preliminary study.
        J Neural Transm (Vienna). 2017; 124: 1145-1149
        • Lodge D.
        • Mercier M.S.
        Ketamine and phencyclidine: The good, the bad and the unexpected.
        Br J Pharmacol. 2015; 172: 4254-4276
        • Sanchez J.T.
        • Ghelani S.
        • Otto-Meyer S.
        From development to disease: Diverse functions of NMDA-type glutamate receptors in the lower auditory pathway.
        Neuroscience. 2015; 285: 248-259
        • Fisher M.
        • Loewy R.
        • Carter C.
        • Lee A.
        • Ragland J.D.
        • Niendam T.
        • et al.
        Neuroplasticity-based auditory training via laptop computer improves cognition in young individuals with recent onset schizophrenia.
        Schizophr Bull. 2015; 41: 250-258
        • Nahum M.
        • Lee H.
        • Merzenich M.M.
        Principles of neuroplasticity-based rehabilitation.
        Prog Brain Res. 2013; 207: 141-171
        • Greenwood L.M.
        • Leung S.
        • Michie P.T.
        • Green A.
        • Nathan P.J.
        • Fitzgerald P.
        • et al.
        The effects of glycine on auditory mismatch negativity in schizophrenia.
        Schizophr Res. 2017; 191: 61-69
        • Lin C.Y.
        • Liang S.Y.
        • Chang Y.C.
        • Ting S.Y.
        • Kao C.L.
        • Wu Y.H.
        • et al.
        Adjunctive sarcosine plus benzoate improved cognitive function in chronic schizophrenia patients with constant clinical symptoms: A randomised, double-blind, placebo-controlled trial.
        World J Biol Psychiatry. 2017; 18: 357-368
        • Amiaz R.
        • Kent I.
        • Rubinstein K.
        • Sela B.A.
        • Javitt D.
        • Weiser M.
        Safety, tolerability and pharmacokinetics of open label sarcosine added on to anti-psychotic treatment in schizophrenia - preliminary study.
        Isr J Psychiatry Relat Sci. 2015; 52: 12-15
        • Lin C.-H.
        • Lin C.-H.
        • Chang Y.-C.
        • Huang Y.-J.
        • Chen P.-W.
        • Yang H.-T.
        • Lane H.Y.
        Sodium benzoate, a D-amino acid oxidase inhibitor, added to clozapine for the treatment of schizophrenia: A randomized, double-blind, placebo-controlled trial.
        Biol Psychiatry. 2017; ([published online ahead of print Dec 26])
        • Boland K.
        • Moschetti V.
        • Dansirikul C.
        • Pichereau S.
        • Gheyle L.
        • Runge F.
        • et al.
        A phase I, randomized, proof-of-clinical-mechanism study assessing the pharmacokinetics and pharmacodynamics of the oral PDE9A inhibitor BI 409306 in healthy male volunteers.
        Hum Psychopharmacol. 2017; 32: 2569
        • Duinen M.V.
        • Reneerkens O.A.
        • Lambrecht L.
        • Sambeth A.
        • Rutten B.P.
        • Os J.V.
        • et al.
        Treatment of cognitive impairment in schizophrenia: Potential value of phosphodiesterase inhibitors in prefrontal dysfunction.
        Curr Pharm Des. 2015; 21: 3813-3828

      CHORUS Manuscript

      View Open Manuscript