Advertisement

Transdiagnostic Effects of Ventromedial Prefrontal Cortex Transcranial Magnetic Stimulation on Cue Reactivity

  • Tonisha E. Kearney-Ramos
    Affiliations
    Department of Psychiatry, Medical University of South Carolina, Charleston, South Carolina

    Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina

    Ralph H. Johnson VA Medical Center, Charleston, South Carolina
    Search for articles by this author
  • Logan T. Dowdle
    Affiliations
    Department of Psychiatry, Medical University of South Carolina, Charleston, South Carolina

    Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina

    Ralph H. Johnson VA Medical Center, Charleston, South Carolina
    Search for articles by this author
  • Daniel H. Lench
    Affiliations
    Department of Psychiatry, Medical University of South Carolina, Charleston, South Carolina

    Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina

    Ralph H. Johnson VA Medical Center, Charleston, South Carolina
    Search for articles by this author
  • Oliver J. Mithoefer
    Affiliations
    Department of Psychiatry, Medical University of South Carolina, Charleston, South Carolina
    Search for articles by this author
  • William H. Devries
    Affiliations
    Department of Psychiatry, Medical University of South Carolina, Charleston, South Carolina
    Search for articles by this author
  • Mark S. George
    Affiliations
    Department of Psychiatry, Medical University of South Carolina, Charleston, South Carolina

    Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina

    Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina

    Ralph H. Johnson VA Medical Center, Charleston, South Carolina
    Search for articles by this author
  • Raymond F. Anton
    Affiliations
    Department of Psychiatry, Medical University of South Carolina, Charleston, South Carolina

    Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina

    Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina
    Search for articles by this author
  • Colleen A. Hanlon
    Correspondence
    Address correspondence to Colleen A. Hanlon, Ph.D., Medical University of South Carolina, Institute of Psychiatry, 67 President St, MSC 861, Charleston, SC 29425.
    Affiliations
    Department of Psychiatry, Medical University of South Carolina, Charleston, South Carolina

    Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina

    Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina

    Ralph H. Johnson VA Medical Center, Charleston, South Carolina
    Search for articles by this author
Published:April 09, 2018DOI:https://doi.org/10.1016/j.bpsc.2018.03.016

      Abstract

      Background

      Elevated frontal and striatal reactivity to drug cues is a transdiagnostic hallmark of substance use disorders. The goal of these experiments was to determine if it is possible to decrease frontal and striatal reactivity to drug cues in both cocaine users and heavy alcohol users through continuous theta burst stimulation (cTBS) to the left ventromedial prefrontal cortex (VMPFC).

      Methods

      Two single-blinded, within-subject, active sham–controlled experiments were performed wherein neural reactivity to drug/alcohol cues versus neutral cues was evaluated immediately before and after receiving real or sham cTBS (110% resting motor threshold, 3600 pulses, Fp1 location; N = 49: 25 cocaine users [experiment 1], 24 alcohol users [experiment 2]; 196 total functional magnetic resonance imaging scans). Generalized psychophysiological interaction and three-way repeated-measures analysis of variance were used to evaluate cTBS-induced changes in drug cue-associated functional connectivity between the left VMPFC and eight regions of interest: ventral striatum, left and right caudate, left and right putamen, left and right insula, and anterior cingulate cortex.

      Results

      In both experiments, there was a significant interaction between treatment (real/sham) and time (pre/post). In both experiments, cue-related functional connectivity was significantly attenuated following real cTBS versus sham cTBS. There was no significant interaction with region of interest for either experiment.

      Conclusions

      This is the first sham-controlled investigation to demonstrate, in two populations, that VMPFC cTBS can attenuate neural reactivity to drug and alcohol cues in frontostriatal circuits. These results provide an empirical foundation for future clinical trials that may evaluate the efficacy, durability, and clinical implications of VMPFC cTBS to treat addictions.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Sinha R.
        New findings on biological factors predicting addiction relapse vulnerability.
        Curr Psychiatry Rep. 2011; 13: 398-405
        • Kilts C.D.
        • Schweitzer J.B.
        • Quinn C.K.
        • Gross R.E.
        • Faber T.L.
        • Muhammad F.
        • et al.
        Neural activity related to drug craving in cocaine addiction.
        Arch Gen Psychiatry. 2001; 58: 334-341
        • Schacht J.P.
        • Anton R.F.
        • Myrick H.
        Functional neuroimaging studies of alcohol cue reactivity: A quantitative meta-analysis and systematic review.
        Addict Biol. 2013; 18: 121-133
        • Engelmann J.M.
        • Versace F.
        • Robinson J.D.
        • Minnix J.A.
        • Lam C.Y.
        • Cui Y.
        • et al.
        Neural substrates of smoking cue reactivity: A meta-analysis of fMRI studies.
        Neuroimage. 2012; 60: 252-262
        • Filbey F.M.
        • Claus E.
        • Audette A.R.
        • Niculescu M.
        • Banich M.T.
        • Tanabe J.
        • et al.
        Exposure to the taste of alcohol elicits activation of the mesocorticolimbic neurocircuitry.
        Neuropsychopharmacology. 2008; 33: 1391-1401
        • Li Q.
        • Li W.
        • Wang H.
        • Wang Y.
        • Zhang Y.
        • Zhu J.
        • et al.
        Predicting subsequent relapse by drug-related cue-induced brain activation in heroin addiction: An event-related functional magnetic resonance imaging study.
        Addict Biol. 2015; 20: 968-978
        • Hoogendam J.M.
        • Ramakers G.M.
        • Di Lazzaro V.
        Physiology of repetitive transcranial magnetic stimulation of the human brain.
        Brain Stimul. 2010; 3: 95-118
        • Huang Y.Z.
        • Edwards M.J.
        • Rounis E.
        • Bhatia K.P.
        • Rothwell J.C.
        Theta burst stimulation of the human motor cortex.
        Neuron. 2005; 45: 201-206
        • Huang Y.Z.
        • Sommer M.
        • Thickbroom G.
        • Hamada M.
        • Pascual-Leone A.
        • Paulus W.
        • et al.
        Consensus: New methodologies for brain stimulation.
        Brain Stimul. 2009; 2: 2-13
        • Dunlop K.
        • Hanlon C.A.
        • Downar J.
        Noninvasive brain stimulation treatments for addiction and major depression.
        Ann N Y Acad Sci. 2017; 1394: 31-54
        • Hanlon C.A.
        • Canterberry M.
        • Taylor J.J.
        • DeVries W.
        • Li X.
        • Brown T.R.
        • George M.S.
        Probing the frontostriatal loops involved in executive and limbic processing via interleaved TMS and functional MRI at two prefrontal locations: A pilot study.
        PLoS One. 2013; 8: e67917
        • Hanlon C.A.
        • Beveridge T.J.
        • Porrino L.J.
        Recovering from cocaine: Insights from clinical and preclinical investigations.
        Neurosci Biobehav Rev. 2013; 37: 2037-2046
        • Hanlon C.A.
        • Dowdle L.T.
        • Correia B.
        • Mithoefer O.
        • Kearney-Ramos T.
        • Lench D.
        • et al.
        Left frontal pole theta burst stimulation decreases orbitofrontal and insula activity in cocaine users and alcohol users.
        Drug Alcohol Depend. 2017; 178: 310-317
        • Hanlon C.A.
        • Dowdle L.T.
        • Moss H.
        • Canterberry M.
        • George M.S.
        Mobilization of Medial and lateral frontal-striatal circuits in cocaine users and controls: An interleaved TMS/BOLD functional connectivity study.
        Neuropsychopharmacology. 2016; 41: 3032-3041
        • Hanlon C.A.
        • Dowdle L.T.
        • Austelle C.W.
        • DeVries W.
        • Mithoefer O.
        • Badran B.W.
        • George M.S.
        What goes up, can come down: Novel brain stimulation paradigms may attenuate craving and craving-related neural circuitry in substance dependent individuals.
        Brain Res. 2015; 1628: 199-209
        • O'Reardon J.P.
        • Solvason H.B.
        • Janicak P.G.
        • Sampson S.
        • Isenberg K.E.
        • Nahas Z.
        • et al.
        Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: A multisite randomized controlled trial.
        Biol Psychiatry. 2007; 62: 1208-1216
        • First M.B.
        • Spritzer R.L.
        • Gibbon M.
        Structured Clinical Interview for DSM-IV-TR Axis 1 Disorders, Research Version, Non-Patient Edition (SCID-I/NP).
        Biometrics Research, New York State Psychiatric Institute, New York2001
        • Sobell L.
        • Sobell M.
        Timeline Follow Back Manual.
        Addiction Research Foundation, Toronto, Canada1996
        • Babor T.
        • Higgins-Biddle J.C.
        • Saunders J.B.
        • Monteiro M.
        • Maristela G.
        The Alcohol Use Disorders Identification Test: Guidelines for Use in Primary Healthcare. WHO Publication No. 92.4.
        World Health Organization, Geneva, Switzerland1992
        • Heatherton T.F.
        • Kozlowski L.T.
        • Frecker R.C.
        • Fagerström K.O.
        The Fagerström Test for Nicotine Dependence: A Revision of the Fagerström Tolerance Questionnaire.
        Br J Addict. 1991; 86: 1119-1127
        • Beck A.
        • Steer R.
        • Brown G.
        Manual for the Beck Depression Inventory–II.
        Psychological Corporation, San Antonio, TX1996
        • Spielberger C.D.
        • Gorsuch R.L.
        • Lushene R.
        • Vagg P.R.
        • Jacobs G.A.
        Manual for the State-Trait Anxiety Inventory.
        Consulting Psychologists Press, Palo Alto, CA1983
        • Prisciandaro J.J.
        • McRae-Clark A.L.
        • Myrick H.
        • Henderson S.
        • Brady K.T.
        Brain activation to cocaine cues and motivation/treatment status.
        Addict Biol. 2014; 19: 240-249
        • Schacht J.P.
        • Anton R.F.
        • Randall P.K.
        • Li X.
        • Henderson S.
        • Myrick H.
        Stability of fMRI striatal response to alcohol cues: A hierarchical linear modeling approach.
        Neuroimage. 2011; 56: 61-68
        • Borckardt J.J.
        • Nahas Z.
        • Koola J.
        • George M.S.
        Estimating resting motor thresholds in transcranial magnetic stimulation research and practice: A computer simulation evaluation of best methods.
        J ECT. 2006; 22: 169-175
        • Robjant K.
        • Fazel M.
        The emerging evidence for Narrative Exposure Therapy: A review.
        Clin Psychol Rev. 2010; 30: 1030-1039
        • McLaren D.G.
        • Ries M.L.
        • Xu G.
        • Johnson S.C.
        A generalized form of context-dependent psychophysiological interactions (gPPI): A comparison to standard approaches.
        Neuroimage. 2012; 61: 1277-1286
        • Kozel F.A.
        • Nahas Z.
        • deBrux C.
        • Molloy M.
        • Lorberbaum J.P.
        • Bohning D.
        • et al.
        How coil-cortex distance relates to age, motor threshold, and antidepressant response to repetitive transcranial magnetic stimulation.
        J Neuropsychiatry Clin Neurosci. 2000; 12: 376-384
        • Stokes M.G.
        • Barker A.T.
        • Dervinis M.
        • Verbruggen F.
        • Maizey L.
        • Adams R.C.
        • Chambers C.D.
        Biophysical determinants of transcranial magnetic stimulation: Effects of excitability and depth of targeted area.
        J Neurophysiol. 2013; 109: 437-444
        • Summers P.M.
        • Hanlon C.A.
        BrainRuler-A free, open-access tool for calculating scalp to cortex distance.
        Brain Stimul. 2017; 10: 1009-1010
        • Cohen J.
        Statistical Power Analysis for the Behavioral Sciences.
        Routledge Academic, New York1988
        • Politi E.
        • Fauci E.
        • Santoro A.
        • Smeraldi E.
        Daily sessions of transcranial magnetic stimulation to the left prefrontal cortex gradually reduce cocaine craving.
        Am J Addict. 2008; 17: 345-346
        • Courtney K.E.
        • Schacht J.P.
        • Hutchison K.
        • Roche D.J.
        • Ray L.A.
        Neural substrates of cue reactivity: association with treatment outcomes and relapse.
        Addict Biol. 2016; 21: 3-22
        • Schacht J.P.
        • Randall P.K.
        • Latham P.K.
        • Voronin K.E.
        • Book S.W.
        • Myrick H.
        • Anton R.F.
        Predictors of naltrexone response in a randomized trial: Reward-related brain activation, OPRM1 genotype, and smoking status.
        Neuropsychopharmacology. 2017; 42: 2654
        • Grüsser S.M.
        • Wrase J.
        • Klein S.
        • Hermann D.
        • Smolka M.N.
        • Ruf M.
        • et al.
        Cue-induced activation of the striatum and medial prefrontal cortex is associated with subsequent relapse in abstinent alcoholics.
        Psychopharmacology (Berl). 2004; 175: 296-302
        • Heinz A.
        • Beck A.
        • Grüsser S.M.
        • Grace A.A.
        • Wrase J.
        Identifying the neural circuitry of alcohol craving and relapse vulnerability.
        Addict Biol. 2009; 14: 108-118
        • Janes A.C.
        • Pizzagalli D.A.
        • Richardt S.
        • de Fredrick
        • Chuzi S.
        • Pachas G.
        • et al.
        Brain reactivity to smoking cues prior to smoking cessation predicts ability to maintain tobacco abstinence.
        Biol Psychiatry. 2010; 67: 722-729
        • Versace F.
        • Engelmann J.M.
        • Robinson J.D.
        • Jackson E.F.
        • Green C.E.
        • Lam C.Y.
        • et al.
        Prequit fMRI responses to pleasant cues and cigarette-related cues predict smoking cessation outcome.
        Nicotine Tob Res. 2014; 16: 697-708
        • Menossi H.S.
        • Goudriaan A.E.
        • de Azevedo-Marques Périco C.
        • Nicastri S.
        • de Andrade A.G.
        • d’Elia G.
        • et al.
        Neural bases of pharmacological treatment of nicotine dependence - insights from functional brain imaging: A systematic review.
        CNS Drugs. 2013; 27: 921-941
        • Dinur-Klein L.
        • Dannon P.
        • Hadar A.
        • Rosenberg O.
        • Roth Y.
        • Kotler M.
        • Zangen A.
        Smoking cessation induced by deep repetitive transcranial magnetic stimulation of the prefrontal and insular cortices: A prospective, randomized controlled trial.
        Biol Psychiatry. 2014; 76: 742-749
        • Muellbacher W.
        • Ziemann U.
        • Boroojerdi B.
        • Cohen L.
        • Hallett M.
        Role of the human motor cortex in rapid motor learning.
        Exp Brain Res. 2001; 136: 431-438
        • Rioult-Pedotti M.S.
        • Friedman D.
        • Donoghue J.P.
        Learning-induced LTP in neocortex.
        Science. 2000; 290: 533-536
        • Gorelick D.A.
        • Zangen A.
        • George M.S.
        Transcranial magnetic stimulation in the treatment of substance addiction.
        Ann N Y Acad Sci. 2014; 1327: 79-93
        • Li X.
        • Hartwell K.J.
        • Owens M.
        • Lematty T.
        • Borckardt J.J.
        • Hanlon C.A.
        • et al.
        Repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex reduces nicotine cue craving.
        Biol Psychiatry. 2013; 73: 714-720
        • Camprodon J.A.
        • Martínez-Raga J.
        • Alonso-Alonso M.
        • Shih M.C.
        • Pascual-Leone A.
        One session of high frequency repetitive transcranial magnetic stimulation (rTMS) to the right prefrontal cortex transiently reduces cocaine craving.
        Drug Alcohol Depend. 2007; 86: 91-94
        • Mishra B.R.
        • Nizamie S.H.
        • Das B.
        • Praharaj S.K.
        Efficacy of repetitive transcranial magnetic stimulation in alcohol dependence: A sham-controlled study.
        Addiction. 2010; 105: 49-55
        • Peters J.
        • LaLumiere R.T.
        • Kalivas P.W.
        Infralimbic prefrontal cortex is responsible for inhibiting cocaine seeking in extinguished rats.
        J Neurosci. 2008; 28: 6046-6053
        • Rocha A.
        • Kalivas P.W.
        Role of the prefrontal cortex and nucleus accumbens in reinstating methamphetamine seeking.
        Eur J Neurosci. 2010; 31: 903-909
        • Bossert J.M.
        • Stern A.L.
        • Theberge F.R.M.
        • Cifani C.
        • Koya E.
        • Hope B.T.
        • Shaham Y.
        Ventral medial prefrontal cortex neuronal ensembles mediate context-induced relapse to heroin.
        Nat Neurosci. 2011; 14: 420-422
        • Cao Z.F.
        • Burdakov D.
        • Sarnyai Z.
        Optogenetics: Potentials for addiction research.
        Addict Biol. 2011; 16: 519-531
        • Chen B.T.
        • Yau H.J.
        • Hatch C.
        • Kusumoto-Yoshida I.
        • Cho S.L.
        • Hopf F.W.
        • Bonci A.
        Rescuing cocaine-induced prefrontal cortex hypoactivity prevents compulsive cocaine seeking.
        Nature. 2013; 496: 359-362
        • Stefanik M.T.
        • Moussawi K.
        • Kupchik Y.M.
        • Smith K.C.
        • Miller R.L.
        • Huff M.L.
        • et al.
        Optogenetic inhibition of cocaine seeking in rats.
        Addict Biol. 2013; 18: 50-53
        • Bass C.E.
        • Grinevich V.P.
        • Kulikova A.D.
        • Bonin K.D.
        • Budygin E.A.
        Terminal effects of optogenetic stimulation on dopamine dynamics in rat striatum.
        J Neurosci Methods. 2013; 214: 149-155
        • Cassataro D.
        • Bergfedlt D.
        • Malekian C.
        • Van Snellenberg J.X.
        • Thanos P.K.
        • Fishell G.
        • Sjulson L.
        Reverse pharmacogenetic modulation of the nucleus accumbens reduces ethanol consumption in a limited access paradigm.
        Neuropsychopharmacology. 2014; 39: 283-290
        • Sayette M.A.
        • Shiffman S.
        • Tiffany S.T.
        • Niaura R.S.
        • Martin C.S.
        • Shadel W.G.
        The measurement of drug craving.
        Addiction. 2000; 95: S189-S210
        • Schwarz N.
        Self-reports: How the questions shape the answers.
        Am Psychologist. 1999; 54: 93-105
        • Drummond D.C.
        • Litten R.Z.
        • Lowman C.
        • Hunt W.A.
        Craving research: Future directions.
        Addiction. 2000; 95: S247-S255
        • Perkins K.A.
        Does smoking cue-induced craving tell us anything important about nicotine dependence?.
        Addiction. 2009; 104: 1610-1616
        • Amiaz R.
        • Levy D.
        • Vainiger D.
        • Grunhaus L.
        • Zangen A.
        Repeated high-frequency transcranial magnetic stimulation over the dorsolateral prefrontal cortex reduces cigarette craving and consumption.
        Addiction. 2009; 104: 653-660
        • Terraneo A.
        • Leggio L.
        • Saladini M.
        • Ermani M.
        • Bonci A.
        • Gallimberti L.
        Transcranial magnetic stimulation of dorsolateral prefrontal cortex reduces cocaine use: A pilot study.
        Eur Neuropsychopharmacol. 2016; 26: 37-44
        • Chistyakov A.V.
        • Kreinin B.
        • Marmor S.
        • Kaplan B.
        • Khatib A.
        • Darawsheh N.
        • et al.
        Preliminary assessment of the therapeutic efficacy of continuous theta-burst magnetic stimulation (cTBS) in major depression: A double-blind sham-controlled study.
        J Affect Disord. 2015; 170: 225-229
        • Berlim M.T.
        • van den Eynde F.
        • Tovar-Perdomo S.
        • Daskalakis Z.J.
        Response, remission and drop-out rates following high-frequency repetitive transcranial magnetic stimulation (rTMS) for treating major depression: A systematic review and meta-analysis of randomized, double-blind and sham-controlled trials.
        Psychol Med. 2014; 44: 225-239
        • Gaynes B.N.
        • Lloyd S.W.
        • Lux L.
        • Gartlehner G.
        • Hansen R.A.
        • Brode S.
        • Jonas D.E.
        • et al.
        Repetitive transcranial magnetic stimulation for treatment-resistant depression: A systematic review and meta-analysis.
        J Clin Psychiatry. 2014; 75 (quiz 489): 477-489
        • Carroll K.M.
        • Rounsaville B.J.
        • Bryant K.J.
        Alcoholism in treatment-seeking cocaine abusers: clinical and prognostic significance.
        J Stud Alcohol. 1993; 54: 199-208
        • Budney A.J.
        • Higgins S.T.
        • Hughes J.R.
        • Bickel W.K.
        Nicotine and caffeine use in cocaine-dependent individuals.
        J Subst Abuse. 1993; 5: 117-130
        • Rounsaville B.J.
        Treatment of cocaine dependence and depression.
        Biol Psychiatry. 2004; 56: 803-809