Advertisement

Primary and Secondary Variants of Psychopathy in a Volunteer Sample Are Associated With Different Neurocognitive Mechanisms

Published:April 12, 2018DOI:https://doi.org/10.1016/j.bpsc.2018.04.002

      Abstract

      Background

      Recent work has indicated that there at least two distinct subtypes of psychopathy. Primary psychopathy is characterized by low anxiety and thought to result from a genetic predisposition, whereas secondary psychopathy is characterized by high anxiety and thought to develop in response to environmental adversity. Primary psychopathy is robustly associated with reduced neural activation to others’ emotions and, in particular, distress. However, it has been proposed that the secondary presentation has different neurocognitive correlates.

      Methods

      Primary (n = 50), secondary (n = 100), and comparison (n = 82) groups were drawn from a large volunteer sample (N = 1444) using a quartile-split approach across psychopathic trait (affective-interpersonal) and anxiety measures. Participants performed a widely utilized emotional face processing task during functional magnetic resonance imaging.

      Results

      The primary group showed reduced amygdala and insula activity in response to fear. The secondary group did not differ from the comparison group in these regions. Instead, the secondary group showed reduced activity compared with the comparison group in other areas, including the superior temporal sulcus/inferior parietal lobe, thalamus, pallidum, and substantia nigra. Both psychopathy groups also showed reduced activity in response to fear in the anterior cingulate cortex. During anger processing, the secondary group exhibited reduced activity in the anterior cingulate cortex compared with the primary group.

      Conclusions

      Distinct neural correlates of fear processing characterize individuals with primary and secondary psychopathy. The reduced neural response to fear that characterizes individuals with the primary variant of psychopathic traits is not observed in individuals with the secondary presentation. The neurocognitive mechanisms underpinning secondary psychopathy warrant further systematic investigation.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Hare R.D.
        • McPherson L.M.
        Violent and aggressive behavior by criminal psychopaths.
        Int J Law Psychiatry. 1984; 7: 35-50
        • Serin R.C.
        Psychopathy and violence in criminals.
        J Interpers Violence. 1991; 6: 423-431
        • Hare R.D.
        • Neumann C.S.
        Psychopathy as a clinical and empirical construct.
        Annu Rev Clin Psychol. 2008; 4: 217-246
        • Hare R.D.
        The Hare Psychopathy Checklist-Revised (Hare PCL-R).
        Multi Health Systems Inc, Toronto2003
        • Salekin R.T.
        • Trobst K.K.
        • Krioukova M.
        Construct validity of psychopathy in a community sample: A nomological net approach.
        J Pers Disord. 2001; 15: 425-441
        • Neumann C.S.
        • Hare R.D.
        Psychopathic traits in a large community sample: Links to violence, alcohol use, and intelligence.
        J Consult Clin Psychol. 2008; 76: 893-899
        • Mahmut M.K.
        • Menictas C.
        • Stevenson R.J.
        • Homewood J.
        Validating the factor structure of the Self-Report Psychopathy scale in a community sample.
        Psychol Assess. 2011; 23: 670-678
        • Paulhus D.L.
        • Neumann C.S.
        • Hare R.D.
        Manual for the Self-Report Psychopathy Scale.
        Multi Health Systems Inc, Toronto2015
        • Neumann C.S.
        • Pardini D.
        Factor structure and construct validity of the Self-Report Psychopathy (SRP) Scale and the Youth Psychopathic Traits Inventory (YPI) in young men.
        J Pers Disord. 2014; 28: 419-433
        • Patrick C.J.
        • Bradley M.M.
        • Lang P.J.
        Emotion in the criminal psychopath: Startle reflex modulation.
        J Abnorm Psychol. 1993; 102: 82-92
        • Benning S.D.
        • Patrick C.J.
        • Iacono W.G.
        Psychopathy, startle blink modulation, and electrodermal reactivity in twin men.
        Psychophysiology. 2005; 42: 753-762
        • Carré J.M.
        • Hyde L.W.
        • Neumann C.S.
        • Viding E.
        • Hariri A.R.
        The neural signatures of distinct psychopathic traits.
        Soc Neurosci. 2013; 8: 122-135
        • Seara-Cardoso A.
        • Viding E.
        Functional neuroscience of psychopathic personality in adults.
        J Pers. 2015; 83: 723-737
        • Seara-Cardoso A.
        • Sebastian C.L.
        • Viding E.
        • Roiser J.P.
        Affective resonance in response to others’ emotional faces varies with affective ratings and psychopathic traits in amygdala and anterior insula.
        Soc Neurosci. 2016; 11: 140-152
        • Blair J.R.
        The neurobiology of psychopathic traits in youths.
        Nat Rev Neurosci. 2013; 14: 786-799
        • Cleckley H.M.
        The Mask of Sanity.
        Mosby, Oxford1941
        • Skeem J.
        • Johansson P.
        • Andershed H.
        • Kerr M.
        • Louden J.E.
        Two subtypes of psychopathic violent offenders that parallel primary and secondary variants.
        J Abnorm Psychol. 2007; 116: 395-409
        • Kahn R.E.
        • Frick P.J.
        • Youngstrom E.A.
        • Kogos Youngstrom J.
        • Feeny N.C.
        • Findling R.L.
        Distinguishing primary and secondary variants of callous-unemotional traits among adolescents in a clinic-referred sample.
        Psychol Assess. 2013; 25: 966-978
        • Viding E.
        • McCrory E.J.
        Developmental risk for psychopathy.
        in: Thapar A. Pine D.S. Leckman J.F. Scott S. Snowling M.J. Taylor E. Rutter’s Child Adolescent Psychiatry, 6th ed. Wiley-Blackwell, Chichester, UK2015: 966-988
        • Fanti K.A.
        • Demetriou C.A.
        • Kimonis E.R.
        Variants of callous-unemotional conduct problems in a community sample of adolescents.
        J Youth Adolesc. 2013; 42: 964-979
        • Dean A.C.
        • Altstein L.L.
        • Berman M.E.
        • Constans J.I.
        • Sugar C.A.
        • McCloskey M.S.
        Secondary psychopathy, but not primary psychopathy, is associated with risky decision-making in noninstitutionalized young adults.
        Pers Individ Dif. 2013; 54: 272-277
        • Kimonis E.R.
        • Skeem J.L.
        • Cauffman E.
        • Dmitrieva J.
        Are secondary variants of juvenile psychopathy more reactively violent and less psychosocially mature than primary variants?.
        Law Hum Behav. 2011; 35: 381-391
        • Kimonis E.R.
        • Fanti K.A.
        • Isoma Z.
        • Donoghue K.
        Maltreatment profiles among incarcerated boys with callous-unemotional traits.
        Child Maltreat. 2013; 18: 108-121
        • Cecil C.A.M.
        • McCrory E.J.
        • Barker E.D.
        • Guiney J.
        • Viding E.
        Characterising youth with callous-unemotional traits and concurrent anxiety: Evidence for a high-risk clinical group.
        Eur Child Adolesc Psychiatry. 2018; 27: 885-898
        • Viding E.
        • Kimonis E.R.
        Callous-unemotional traits.
        in: Patrick C.J. Handbook of Psychopathy, 2nd ed. Guilford Press, New York2018
        • Cecil C.A.M.
        • Lysenko L.J.
        • Jaffee S.R.
        • Pingault J.-B.
        • Smith R.G.
        • Relton C.L.
        • et al.
        Environmental risk, oxytocin receptor gene (OXTR) methylation and youth callous-unemotional traits: A 13-year longitudinal study.
        Mol Psychiatry. 2014; 19: 1071-1077
        • McCrory E.J.
        • De Brito S.A.
        • Sebastian C.L.
        • Mechelli A.
        • Bird G.
        • Kelly P.A.
        • Viding E.
        Heightened neural reactivity to threat in child victims of family violence.
        Curr Biol. 2011; 21: R947-R948
        • McCrory E.J.
        • De Brito S.A.
        • Kelly P.A.
        • Bird G.
        • Sebastian C.L.
        • Mechelli A.
        • et al.
        Amygdala activation in maltreated children during pre-attentive emotional processing.
        Br J Psychiatry. 2013; 202: 269-276
        • Kimonis E.R.
        • Frick P.J.
        • Cauffman E.
        • Goldweber A.
        • Skeem J.
        Primary and secondary variants of juvenile psychopathy differ in emotional processing.
        Dev Psychopathol. 2012; 24: 1091-1103
        • Bishop S.J.
        • Duncan J.
        • Lawrence A.D.
        State anxiety modulation of the amygdala response to unattended threat-related stimuli.
        J Neurosci. 2004; 24: 10364-10368
        • Bishop S.J.
        Neurocognitive mechanisms of anxiety: An integrative account.
        Trends Cogn Sci. 2007; 11: 307-316
        • McCrory E.J.
        • De Brito S.A.
        • Viding E.
        The impact of childhood maltreatment: A review of neurobiological and genetic factors.
        Front Psychiatry. 2011; 2: 48
        • Blair R.J.
        The neurobiology of impulsive aggression.
        J Child Adolesc Psychopharmacol. 2016; 26: 4-9
        • Spielberger C.
        State-Trait Anxiety Inventory.
        Consulting Psychologists Press, Palo Alto, CA1983
        • Wechsler D.
        Wechsler Abbreviated Scale of Intelligence.
        Pearson Education, San Antonio, TX1999
        • Pennebaker J.W.
        • Susman J.R.
        Disclosure of traumas and psychosomatic processes.
        Soc Sci Med. 1988; 26: 327-332
        • Buss A.H.
        • Perry M.P.
        The aggression questionnaire.
        J Pers Soc Psychol. 1992; 63: 452-459
        • Spielberger C.D.
        The State-Trait Anger Expression Inventory-2 (STAXI-2): Professional Manual.
        Psychological Assessment Resources, Inc, Odessa, FL1999
        • Patton J.H.
        • Stanford M.S.
        • Barratt E.S.
        Factor structure of the Barratt impulsiveness scale.
        J Clin Psychol. 1995; 51: 768-774
        • Cohen S.
        • Kamarck T.
        • Mermelstein R.
        A global measure of perceived stress.
        J Health Soc Behav. 1983; 24: 385-396
        • Watson D.
        • Weber K.
        • Assenheimer J.S.
        • Clark L.A.
        • Strauss M.E.
        • McCormick R.A.
        Testing a tripartite model: I. Evaluating the convergent and discriminant validity of anxiety and depression symptom scales.
        J Abnorm Psychol. 1995; 104: 3-14
        • Watson D.
        • Clark L.A.
        • Weber K.
        • Assenheimer J.S.
        • Strauss M.E.
        • McCormick R.A.
        Testing a tripartite model: II. Exploring the symptom structure of anxiety and depression in student, adult, and patient samples.
        J Abnorm Psychol. 1995; 104: 15-25
        • Bohn M.J.
        • Babor T.F.
        • Kranzler H.R.
        The Alcohol Use Disorders Identification Test (AUDIT): Validation of a screening instrument for use in medical settings.
        J Stud Alcohol. 1995; 56: 423-432
        • Sheehan D.V.
        • Lecrubier Y.
        • Sheehan K.H.
        • Amorim P.
        • Janavs J.
        • Weiller E.
        • et al.
        The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10.
        J Clin Psychiatry. 1998; 22: 33-57
        • Hariri A.R.
        • Mattay V.S.
        • Tessitore A.
        • Kolachana B.
        • Fera F.
        • Goldman D.
        • et al.
        Serotonin transporter genetic variation and the response of the human amygdala.
        Science. 2002; 297: 400-403
        • Hariri A.R.
        • Drabant E.M.
        • Munoz K.E.
        • Kolachana B.S.
        • Mattay V.S.
        • Egan M.F.
        • Weinberger D.R.
        A susceptibility gene for affective disorders and the response of the human amygdala.
        Arch Gen Psychiatry. 2005; 62: 146-152
        • Fisher P.M.
        • Meltzer C.C.
        • Ziolko S.K.
        • Price J.C.
        • Moses-Kolko E.L.
        • Berga S.L.
        • Hariri A.R.
        Capacity for 5-HT1A-mediated autoregulation predicts amygdala reactivity.
        Nat Neurosci. 2006; 9: 1362-1363
        • Fisher P.M.
        • Meltzer C.C.
        • Price J.C.
        • Coleman R.L.
        • Ziolko S.K.
        • Becker C.
        • et al.
        Medial prefrontal cortex 5-HT(2A) density is correlated with amygdala reactivity, response habituation, and functional coupling.
        Cereb Cortex. 2009; 19: 2499-2507
        • Manuck S.B.
        • Brown S.M.
        • Forbes E.E.
        • Hariri A.R.
        Temporal stability of individual differences in amygdala reactivity.
        Am J Psychiatry. 2007; 164: 1613-1614
        • Zhou Z.
        • Zhu G.
        • Hariri A.R.
        • Enoch M.-A.
        • Scott D.
        • Sinha R.
        • et al.
        Genetic variation in human NPY expression affects stress response and emotion.
        Nature. 2008; 452: 997-1001
        • Deen B.
        • Pitskel N.B.
        • Pelphrey K.A.
        Three systems of insular functional connectivity identified with cluster analysis.
        Cereb Cortex. 2011; 21: 1498-1506
        • Coccaro E.F.
        • McCloskey M.S.
        • Fitzgerald D.A.
        • Phan K.L.
        Amygdala and orbitofrontal reactivity to social threat in individuals with impulsive aggression.
        Biol Psychiatry. 2007; 62: 168-178
        • Blair R.J.
        • Morris J.S.
        • Frith C.D.
        • Perrett D.I.
        • Dolan R.J.
        Dissociable neural responses to facial expressions of sadness and anger.
        Brain. 1999; 122: 883-893
        • Kimonis E.R.
        • Fanti K.A.
        • Goulter N.
        • Hall J.
        Affective startle potentiation differentiates primary and secondary variants of juvenile psychopathy.
        Dev Psychopathol. 2017; 29: 1149-1160
        • Etkin A.
        • Egner T.
        • Kalisch R.
        Emotional processing in anterior cingulate and medial prefrontal cortex.
        Trends Cogn Sci. 2011; 15: 85-93
        • Pezze M.A.
        • Feldon J.
        Mesolimbic dopaminergic pathways in fear conditioning.
        Prog Neurobiol. 2004; 74: 301-320
        • LeDoux J.E.
        • Cicchetti P.
        • Xagoraris A.
        • Romanski L.M.
        The lateral amygdaloid nucleus: sensory interface of the amygdala in fear conditioning.
        J Neurosci. 1990; 10: 1062-1069
        • Penzo M.A.
        • Robert V.
        • Tucciarone J.
        • De Bundel D.
        • Wang M.
        • Van Aelst L.
        • et al.
        The paraventricular thalamus controls a central amygdala fear circuit.
        Nature. 2015; 519: 455-459
        • Haber S.N.
        The primate basal ganglia: Parallel and integrative networks.
        J Chem Neuroanat. 2003; 26: 317-330
        • Yim C.Y.
        • Mogenson G.J.
        Response of ventral pallidal neurons to amygdala stimulation and its modulation by dopamine projections to nucleus accumbens.
        J Neurophysiol. 1983; 50: 148-161
        • Frith C.D.
        • Frith U.
        The neural basis of mentalizing.
        Neuron. 2006; 50: 531-534
        • Tatar J.R.
        • Cauffman E.
        • Kimonis E.R.
        • Skeem J.L.
        Victimization history and posttraumatic stress: An analysis of psychopathy variants in male juvenile offenders.
        J Child Adolesc Trauma. 2012; 5: 102-113
        • Vaughn M.G.
        • Edens J.F.
        • Howard M.O.
        • Smith S.T.
        An investigation of primary and secondary psychopathy in a statewide sample of incarcerated youth.
        Youth Violence Juv Justice. 2009; 7: 172-188
        • Lee Z.
        • Salekin R.T.
        • Iselin A.-M.R.
        Psychopathic traits in youth: Is there evidence for primary and secondary subtypes?.
        J Abnorm Child Psychol. 2010; 38: 381-393