Advertisement
Archival Report| Volume 3, ISSUE 7, P591-598, July 2018

Enhanced Striatal Dopamine Release to Expectation of Alcohol: A Potential Risk Factor for Alcohol Use Disorder

Published:April 20, 2018DOI:https://doi.org/10.1016/j.bpsc.2018.03.018

      Abstract

      Background

      We used positron emission tomography imaging with [11C]raclopride to examine the effects of consumption of alcohol or placebo beverage by participants with alcohol use disorder (AUD) compared with healthy participants with and without family history of AUD. We sought to assess dopamine release following alcohol exposure in relation to AUD risk.

      Methods

      Three groups were enrolled: participants with AUD (n = 15) and healthy participants with family history negative (n = 34) or positive (n = 16) for AUD. Participants consumed a placebo (n = 65) or alcohol (n = 63) beverage in counterbalanced order before positron emission tomography scanning (128 scans). Binding potential (BPND) in the two drink conditions and the percent change in BPND between conditions were evaluated across striatal subregions. Subjective effects of beverage consumption were rated. Effects of group, drink order, and sex were evaluated.

      Results

      Alcohol resulted in greater dopamine release than did placebo in the ventral striatum (p < .001). There were no main effects of group, drink order, or sex on ventral striatum BPND or percent change in BPND. However, there was a drink order-by-group interaction (p = .02) whereby family history–positive participants who received placebo first had both lower placebo BPND and less difference between placebo and alcohol BPND than all other groups, consistent with expectation of alcohol powerfully evoking dopamine release in this group. Subjective responses showed the same order-by-group interaction.

      Conclusions

      Hyper-responsivity of the dopaminergic system in family history–positive participants to expectation of alcohol may contribute to the expression of familial risk for AUD.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Fibiger H.C.
        Drugs and reinforcement mechanisms: A critical review of the catecholamine theory.
        Annu Rev Pharmacol Toxicol. 1978; 18: 37-56
        • Samson H.H.
        • Tolliver G.A.
        • Haraguchi M.
        • Hodge C.W.
        Alcohol self-administration: Role of mesolimbic dopamine.
        Ann N Y Acad Sci. 1992; 654: 242-253
        • Boileau I.
        • Assaad J.M.
        • Pihl R.O.
        • Benkelfat C.
        • Leyton M.
        • Diksic M.
        • et al.
        Alcohol promotes dopamine release in the human nucleus accumbens.
        Synapse. 2003; 49: 226-231
        • Yoder K.K.
        • Constantinescu C.C.
        • Kareken D.A.
        • Normandin M.D.
        • Cheng T.E.
        • O'Connor S.J.
        • et al.
        Heterogeneous effects of alcohol on dopamine release in the striatum: A PET study.
        Alcohol Clin Exp Res. 2007; 31: 965-973
        • Yoder K.K.
        • Morris E.D.
        • Constantinescu C.C.
        • Cheng T.E.
        • Normandin M.D.
        • O'Connor S.J.
        • et al.
        When what you see isn't what you get: Alcohol cues, alcohol administration, prediction error, and human striatal dopamine.
        Alcohol Clin Exp Res. 2009; 33: 139-149
        • Urban N.B.
        • Kegeles L.S.
        • Slifstein M.
        • Xu X.
        • Martinez D.
        • Sakr E.
        • et al.
        Sex differences in striatal dopamine release in young adults after oral alcohol challenge: A positron emission tomography imaging study with [11C]raclopride.
        Biol Psychiatry. 2010; 68: 689-696
        • Volkow N.D.
        • Wiers C.E.
        • Shokri-Kojori E.
        • Tomasi D.
        • Wang G.J.
        • Baler R.
        Neurochemical and metabolic effects of acute and chronic alcohol in the human brain: Studies with positron emission tomography.
        Neuropharmacology. 2017; 122: 175-188
        • Setiawan E.
        • Pihl R.O.
        • Dagher A.
        • Schlagintweit H.
        • Casey K.F.
        • Benkelfat C.
        • et al.
        Differential striatal dopamine responses following oral alcohol in individuals at varying risk for dependence.
        Alcohol Clin Exp Res. 2014; 38: 126-134
        • Yoder K.K.
        • Albrecht D.S.
        • Dzemidzic M.
        • Normandin M.D.
        • Federici L.M.
        • Graves T.
        • et al.
        Differences in IV alcohol-induced dopamine release in the ventral striatum of social drinkers and nontreatment-seeking alcoholics.
        Drug Alcohol Depend. 2016; 160: 163-169
        • Oberlin B.G.
        • Dzemidzic M.
        • Tran S.M.
        • Soeurt C.M.
        • Albrecht D.S.
        • Yoder K.K.
        • et al.
        Beer flavor provokes striatal dopamine release in male drinkers: Mediation by family history of alcoholism.
        Neuropsychopharmacology. 2013; 38: 1617-1624
        • Martinez D.
        • Gil R.
        • Slifstein M.
        • Hwang D.R.
        • Huang Y.
        • Perez A.
        • et al.
        Alcohol dependence is associated with blunted dopamine transmission in the ventral striatum.
        Biol Psychiatry. 2005; 58: 779-786
        • Volkow N.D.
        • Wang G.J.
        • Telang F.
        • Fowler J.S.
        • Logan J.
        • Jayne M.
        • et al.
        Profound decreases in dopamine release in striatum in detoxified alcoholics: Possible orbitofrontal involvement.
        J Neurosci. 2007; 27: 12700-12706
        • Alvanzo A.A.
        • Wand G.S.
        • Kuwabara H.
        • Wong D.F.
        • Xu X.
        • McCaul M.E.
        Family history of alcoholism is related to increased D2 /D3 receptor binding potential: A marker of resilience or risk?.
        Addict Biol. 2015; 22: 218-228
        • Barker J.M.
        • Taylor J.R.
        Habitual alcohol seeking: Modeling the transition from casual drinking to addiction.
        Neurosci Biobehav Rev. 2014; 47: 281-294
        • Gremel C.M.
        • Lovinger D.M.
        Associative and sensorimotor cortico-basal ganglia circuit roles in effects of abused drugs.
        Genes Brain Behav. 2017; 16: 71-85
        • Casey K.F.
        • Benkelfat C.
        • Cherkasova M.V.
        • Baker G.B.
        • Dagher A.
        • Leyton M.
        Reduced dopamine response to amphetamine in subjects at ultra-high risk for addiction.
        Biol Psychiatry. 2014; 76: 23-30
        • Leyton M.
        Altered dopamine transmission as a familial risk trait for addictions.
        Curr Opin Behav Sci. 2017; 13: 130-138
        • Michigan Department of Community Health
        Fetal Alcohol Spectrum Disorders Program. Fetal alcohol syndrome (FAS) pre-screen.
        (Available at:) (Accessed October 21, 2013)
        • Watson P.E.
        • Watson I.D.
        • Batt R.D.
        Total body water volumes for adult males and females estimated from simple anthropometric measurements.
        Am J Clin Nutr. 1980; 33: 27-39
        • Watson T.E.
        Total body water and alcohol levels: Updating the fundamentals.
        in: Krow K.E. Batt R.D. Human Metabolism of Alcohol. CRC Press, Boca Raton, FL1989: 41-66
        • Curtin J.J.
        • Fairchild B.A.
        Alcohol and cognitive control: Implications for regulation of behavior during response conflict.
        J Abnorm Psychol. 2003; 112: 424-436
        • Mawlawi O.
        • Martinez D.
        • Slifstein M.
        • Broft A.
        • Chatterjee R.
        • Hwang D.R.
        • et al.
        Imaging human mesolimbic dopamine transmission with positron emission tomography: I. Accuracy and precision of D(2) receptor parameter measurements in ventral striatum.
        J Cereb Blood Flow Metab. 2001; 21: 1034-1057
        • Martinez D.
        • Slifstein M.
        • Broft A.
        • Mawlawi O.
        • Hwang D.R.
        • Huang Y.
        • et al.
        Imaging human mesolimbic dopamine transmission with positron emission tomography. Part II: Amphetamine-induced dopamine release in the functional subdivisions of the striatum.
        J Cereb Blood Flow Metab. 2003; 23: 285-300
        • Morean M.E.
        • Corbin W.R.
        • Treat T.A.
        The Subjective Effects of Alcohol Scale: Development and psychometric evaluation of a novel assessment tool for measuring subjective response to alcohol.
        Psychol Assess. 2013; 25: 780-795
        • Ashburner J.
        Computational anatomy with the SPM software.
        Magn Reson Imaging. 2009; 27: 1163-1174
        • Abi-Dargham A.
        • Gil R.
        • Krystal J.
        • Baldwin R.M.
        • Seibyl J.P.
        • Bowers M.
        • et al.
        Increased striatal dopamine transmission in schizophrenia: Confirmation in a second cohort.
        Am J Psychiatry. 1998; 155: 761-767
        • Laruelle M.
        • D'Souza C.D.
        • Baldwin R.M.
        • Abi-Dargham A.
        • Kanes S.J.
        • Fingado C.L.
        • et al.
        Imaging D2 receptor occupancy by endogenous dopamine in humans.
        Neuropsychopharmacology. 1997; 17: 162-174
        • Maisto S.A.
        • Sobell L.C.
        • Cooper A.M.
        • Sobell M.B.
        Comparison of two techniques to obtain retrospective reports of drinking behavior from alcohol abusers.
        Addict Behav. 1982; 7: 33-38
        • Sobell M.B.
        • Sobell L.C.
        • Klajner F.
        • Pavan D.
        • Basian E.
        The reliability of a timeline method for assessing normal drinker college students' recent drinking history: Utility for alcohol research.
        Addict Behav. 1986; 11: 149-161
        • Narendran R.
        • Mason N.S.
        • Paris J.
        • Himes M.L.
        • Douaihy A.B.
        • Frankle W.G.
        Decreased prefrontal cortical dopamine transmission in alcoholism.
        Am J Psychiatry. 2014; 171: 881-888
        • Sulzer D.
        How addictive drugs disrupt presynaptic dopamine neurotransmission.
        Neuron. 2011; 69: 628-649
        • Appel S.B.
        • Liu Z.
        • McElvain M.A.
        • Brodie M.S.
        Ethanol excitation of dopaminergic ventral tegmental area neurons is blocked by quinidine.
        J Pharmacol Exp Ther. 2003; 306: 437-446
        • Schindler A.G.
        • Soden M.E.
        • Zweifel L.S.
        • Clark J.J.
        Reversal of alcohol-induced dysregulation in dopamine network dynamics may rescue maladaptive decision-making.
        J Neurosci. 2016; 36: 3698-3708
        • Mrejeru A.
        • Marti-Prats L.
        • Avegno E.M.
        • Harrison N.L.
        • Sulzer D.
        A subset of ventral tegmental area dopamine neurons responds to acute ethanol.
        Neuroscience. 2015; 290: 649-658
        • Avegno E.M.
        • Salling M.C.
        • Borgkvist A.
        • Mrejeru A.
        • Whitebirch A.C.
        • Margolis E.B.
        • et al.
        Voluntary adolescent drinking enhances excitation by low levels of alcohol in a subset of dopaminergic neurons in the ventral tegmental area.
        Neuropharmacology. 2016; 110: 386-395
        • Russell V.A.
        • Lamm M.C.
        • Taljaard J.J.
        Effect of ethanol on [3H]dopamine release in rat nucleus accumbens and striatal slices.
        Neurochem Res. 1988; 13: 487-492
        • Wozniak K.M.
        • Pert A.
        • Mele A.
        • Linnoila M.
        Focal application of alcohols elevates extracellular dopamine in rat brain: a microdialysis study.
        Brain Res. 1991; 540: 31-40
        • Doyon W.M.
        • Anders S.K.
        • Ramachandra V.S.
        • Czachowski C.L.
        • Gonzales R.A.
        Effect of operant self-administration of 10% ethanol plus 10% sucrose on dopamine and ethanol concentrations in the nucleus accumbens.
        J Neurochem. 2005; 93: 1469-1481
        • Howard E.C.
        • Schier C.J.
        • Wetzel J.S.
        • Duvauchelle C.L.
        • Gonzales R.A.
        The shell of the nucleus accumbens has a higher dopamine response compared with the core after non-contingent intravenous ethanol administration.
        Neuroscience. 2008; 154: 1042-1053
        • Volkow N.D.
        • Wang G.J.
        • Begleiter H.
        • Porjesz B.
        • Fowler J.S.
        • Telang F.
        • et al.
        High levels of dopamine D2 receptors in unaffected members of alcoholic families: Possible protective factors.
        Arch Gen Psychiatry. 2006; 63: 999-1008
        • Munro C.A.
        • McCaul M.E.
        • Oswald L.M.
        • Wong D.F.
        • Zhou Y.
        • Brasic J.
        • et al.
        Striatal dopamine release and family history of alcoholism.
        Alcohol Clin Exp Res. 2006; 30: 1143-1151
        • Laruelle M.
        Imaging synaptic neurotransmission with in vivo binding competition techniques: A critical review.
        J Cereb Blood Flow Metab. 2000; 20: 423-451
        • Gonzales R.A.
        • Weiss F.
        Suppression of ethanol-reinforced behavior by naltrexone is associated with attenuation of the ethanol-induced increase in dialysate dopamine levels in the nucleus accumbens.
        J Neurosci. 1998; 18: 10663-10671
        • Doyon W.M.
        • York J.L.
        • Diaz L.M.
        • Samson H.H.
        • Czachowski C.L.
        • Gonzales R.A.
        Dopamine activity in the nucleus accumbens during consummatory phases of oral ethanol self-administration.
        Alcohol Clin Exp Res. 2003; 27: 1573-1582
        • Carter B.L.
        • Tiffany S.T.
        Meta-analysis of cue-reactivity in addiction research.
        Addiction. 1999; 94: 327-340
        • Litt M.D.
        • Cooney N.L.
        • Morse P.
        Reactivity to alcohol-related stimuli in the laboratory and in the field: Predictors of craving in treated alcoholics.
        Addiction. 2000; 95: 889-900
        • Bartra O.
        • McGuire J.T.
        • Kable J.W.
        The valuation system: A coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value.
        Neuroimage. 2013; 76: 412-427

      Linked Article

      • Erratum
        Biological Psychiatry: Cognitive Neuroscience and NeuroimagingVol. 5Issue 1
        • Preview
          Erratum to: “Enhanced Striatal Dopamine Release to Expectation of Alcohol: A Potential Risk Factor for Alcohol Use Disorder,” by Kegeles et al. (Biol Psychiatry Cogn Neurosci Neuroimaging 2018; 3:591–598); https://doi.org/10.1016/j.bpsc.2018.03.018 .
        • Full-Text
        • PDF