Dynamic Causal Modeling of Insular, Striatal, and Prefrontal Cortex Activities During a Food-Specific Go/NoGo Task

  • Qinghua He
    Address correspondence to Qinghua He, Ph.D., Faculty of Psychology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China.
    Faculty of Psychology, Southwest University, Collaborative Innovation Center of Assessment toward Basic Education Quality, Beibei, Chongqing

    Chongqing Collaborative Innovation Center for Brain Science, Collaborative Innovation Center of Assessment toward Basic Education Quality, Beibei, Chongqing

    Southwest University Branch, Collaborative Innovation Center of Assessment toward Basic Education Quality, Beibei, Chongqing
    Search for articles by this author
  • Xiaolu Huang
    Faculty of Psychology, Southwest University, Collaborative Innovation Center of Assessment toward Basic Education Quality, Beibei, Chongqing
    Search for articles by this author
  • Shuyue Zhang
    Faculty of Education, Guangxi Normal University, Guangxi Colleges and Universities Key Laboratory of Cognitive Neuroscience and Applied Psychology, Guilin, Guangxi, China
    Search for articles by this author
  • Ofir Turel
    Information Systems and Decision Sciences, California State University, Fullerton, California

    Brain and Creativity Institute, University of Southern California, Los Angeles, California

    Department of Psychology, University of Southern California, Los Angeles, California
    Search for articles by this author
  • Liangsuo Ma
    Department of Radiology, Virginia Commonwealth University, Richmond, Virginia

    Institute for Drug and Alcohol Studies, Richmond, Virginia
    Search for articles by this author
  • Antoine Bechara
    Brain and Creativity Institute, University of Southern California, Los Angeles, California

    Department of Psychology, University of Southern California, Los Angeles, California
    Search for articles by this author
Published:December 12, 2018DOI:



      This study aimed to investigate the dynamic interactions among three neural systems that are implicated in substance and behavioral addictions in response to food cues in young adults. These include an impulsive system involving the striatum, a reflective system involving the prefrontal cortex, and a homeostasis sensing system involving the insular cortex.


      College students (N = 45) with various levels of body mass index were recruited. Functional magnetic resonance imaging data were acquired while participants performed food-related Go/NoGo tasks, with low-calorie and high-calorie food cues. Participants were scanned under both food satiety and deprivation conditions. Dynamic causal modeling was applied to the data to examine the causal architecture of coupled or distributed dynamics among the aforementioned systems.


      Participants showed difficulty inhibiting responses to high-calorie foods as suggested by higher false alarm rate and decision bias for low-calorie food Go task. This difficulty was enhanced during the food deprivation condition. Deprivation increased neural activity of both the insula and the striatum bilaterally in response to high-calorie foods during Go trials and anterior cingulate cortex and dorsolateral prefrontal cortex activity during NoGo trials. Dynamic causal modeling analysis revealed that food deprivation modulated the communications between the insula, striatum, and dorsolateral prefrontal cortex, and the modulations were positively associated with body mass index.


      The results support tripartite views of decision making. Deprivation states, such as hunger, trigger insular activity, which modulates the balance between impulsive and reflective systems when facing tempting food cues.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


        • Stein C.J.
        • Colditz G.A.
        The epidemic of obesity.
        J Clin Endocrinol Metab. 2004; 89: 2522-2525
        • Wang Y.
        • Mi J.
        • Shan X.Y.
        • Wang Q.J.
        • Ge K.Y.
        Is China facing an obesity epidemic and the consequences? The trends in obesity and chronic disease in China.
        Int J Obes (Lond). 2007; 31: 177-188
        • He Q.
        • Chen C.
        • Dong Q.
        • Xue G.
        • Chen C.
        • Lu Z.
        • et al.
        Gray and white matter structures in the midcingulate cortex region contribute to body mass index in Chinese young adults.
        Brain Struct Funct. 2015; 220: 319-329
        • Renehan A.G.
        • Tyson M.
        • Egger M.
        • Heller R.F.
        • Zwahlen M.
        Body-mass index and incidence of cancer: A systematic review and meta-analysis of prospective observational studies.
        Lancet. 2008; 371: 569-578
        • Weiss R.
        • Dziura J.
        • Burgert T.S.
        • Tamborlane W.V.
        • Taksali S.E.
        • Yeckel C.W.
        • et al.
        Obesity and the metabolic syndrome in children and adolescents.
        N Engl J Med. 2004; 350: 2362-2374
        • Volkow N.D.
        • Baler R.D.
        NOW vs LATER brain circuits: Implications for obesity and addiction.
        Trends Neurosci. 2015; 38: 345-352
        • Volkow N.D.
        • Wang G.J.
        • Fowler J.S.
        • Telang F.
        Overlapping neuronal circuits in addiction and obesity: Evidence of systems pathology.
        Philos Trans R Soc Lond B Biol Sci. 2008; 363: 3191-3200
        • Kelley A.E.
        • Berridge K.C.
        The neuroscience of natural rewards: Relevance to addictive drugs.
        J Neurosci. 2002; 22: 3306-3311
        • Rolls E.
        Understanding the mechanisms of food intake and obesity.
        Obes Rev. 2007; 8: 67-72
        • Trinko R.
        • Sears R.M.
        • Guarnieri D.J.
        • DiLeone R.J.
        Neural mechanisms underlying obesity and drug addiction.
        Physiol Behav. 2007; 91: 499-505
        • Volkow N.D.
        • Wise R.A.
        How can drug addiction help us understand obesity?.
        Nat Neurosci. 2005; 8: 555-560
        • Noël X.
        • Brevers D.
        • Bechara A.
        A neurocognitive approach to understanding the neurobiology of addiction.
        Curr Opin Neurobiol. 2013; 23: 632-638
        • He Q.
        • Xiao L.
        • Xue G.
        • wong s
        • Ames S.L.
        • Bechara A.
        Altered dynamics between neural systems sub-serving decisions for unhealthy food.
        Front Neurosci. 2014; 8: 350
        • He Q.
        • Xiao L.
        • Xue G.
        • Wong S.
        • Ames S.L.
        • Schembre S.M.
        • et al.
        Poor ability to resist tempting calorie rich food is linked to altered balance between neural systems involved in urge and self-control.
        Nutr J. 2014; 13: 92
        • Bechara A.
        Decision making, impulse control and loss of willpower to resist drugs: A neurocognitive perspective.
        Nat Neurosci. 2005; 8: 1458-1463
        • Bechara A.
        • Van Der Linden M.
        Decision-making and impulse control after frontal lobe injuries.
        Curr Opin Neurol. 2005; 18: 734-739
        • Crews F.T.
        • Boettiger C.A.
        Impulsivity, frontal lobes and risk for addiction.
        Pharmacol Biochem Behav. 2009; 93: 237-247
        • Cao F.
        • Su L.
        • Liu T.
        • Gao X.
        The relationship between impulsivity and Internet addiction in a sample of Chinese adolescents.
        Eur Psychiatry. 2007; 22: 466-471
        • Kim S.M.
        • Huh H.J.
        • Cho H.
        • Kwon M.
        • Choi J.H.
        • Ahn H.J.
        • et al.
        The effect of depression, impulsivity, and resilience on smartphone addiction in university students.
        J Korean Neuropsychiatr Assoc. 2014; 53: 214-220
        • Kreek M.J.
        • Nielsen D.A.
        • Butelman E.R.
        • LaForge K.S.
        Genetic influences on impulsivity, risk taking, stress responsivity and vulnerability to drug abuse and addiction.
        Nat Neurosci. 2005; 8: 1450
        • Ghahremani D.G.
        • Lee B.
        • Robertson C.L.
        • Tabibnia G.
        • Morgan A.T.
        • De Shetler N.
        • et al.
        Striatal dopamine D2/D3 receptors mediate response inhibition and related activity in frontostriatal neural circuitry in humans.
        J Neurosci. 2012; 32: 7316-7324
        • Lee B.
        • London E.D.
        • Poldrack R.A.
        • Farahi J.
        • Nacca A.
        • Monterosso J.R.
        • et al.
        Striatal dopamine D2/D3 receptor availability is reduced in methamphetamine dependence and is linked to impulsivity.
        J Neurosci. 2009; 29: 14734-14740
        • Craig A.D.
        How do you feel—now? The anterior insula and human awareness.
        Nat Rev Neurosci. 2009; 10: 59-70
        • Craig A.
        Significance of the insula for the evolution of human awareness of feelings from the body.
        Ann N Y Acad Sci. 2011; 1225: 72-82
        • Craig A.
        Emotional moments across time: A possible neural basis for time perception in the anterior insula.
        Philos Trans R Soc Lond B Biol Sci. 2009; 364: 1933-1942
        • Craig A.
        Interoception: The sense of the physiological condition of the body.
        Curr Opin Neurobiol. 2003; 13: 500-505
        • Droutman V.
        • Read S.J.
        • Bechara A.
        Revisiting the role of the insula in addiction.
        Trends Cogn Sci. 2015; 19: 414-420
        • Friston K.J.
        • Harrison L.
        • Penny W.
        Dynamic causal modelling.
        Neuroimage. 2003; 19: 1273-1302
        • Wechsler D.
        Wechsler Abbreviated Scale of Intelligence.
        The Psychological Corporation, New York, NY1999
        • Cragg L.
        • Nation K.
        Self-ordered pointing as a test of working memory in typically developing children.
        Memory. 2007; 15: 526-535
        • Feskanich D.
        • Sielaff B.H.
        • Chong K.
        • Buzzard I.M.
        Computerized collection and analysis of dietary intake information.
        Comput Methods Programs Biomed. 1989; 30: 47-57
        • Johnson R.K.
        • Driscoll P.
        • Goran M.I.
        Comparison of multiple-pass 24-hour recall estimates of energy intake with total energy expenditure determined by the doubly labeled water method in young children.
        J Am Diet Assoc. 1996; 96: 1140
        • Turel O.
        • He Q.
        • Xue G.
        • Xiao L.
        • Bechara A.
        Examination of neural systems sub-serving Facebook “addiction.”.
        Psychol Rep. 2014; 115: 675-695
        • Simmonds D.J.
        • Pekar J.J.
        • Mostofsky S.H.
        Meta-analysis of Go/No-go tasks demonstrating that fMRI activation associated with response inhibition is task-dependent.
        Neuropsychologia. 2008; 46: 224-232
        • Swick D.
        • Ashley V.
        • Turken U.
        Are the neural correlates of stopping and not going identical? Quantitative meta-analysis of two response inhibition tasks.
        Neuroimage. 2011; 56: 1655-1665
        • Turel O.
        • Bechara A.
        A triadic reflective-impulsive-interoceptive awareness model of general and impulsive information system use: Behavioral tests of neuro-cognitive theory.
        Front Psychol. 2016; 7: 1-11
        • Ma L.
        • Steinberg J.L.
        • Cunningham K.A.
        • Lane S.D.
        • Kramer L.A.
        • Narayana P.A.
        • et al.
        Inhibitory behavioral control: A stochastic dynamic causal modeling study using network discovery analysis.
        Brain Connect. 2015; 5: 177-186
        • Stephan K.E.
        • Penny W.D.
        • Moran R.J.
        • den Ouden H.E.
        • Daunizeau J.
        • Friston K.J.
        Ten simple rules for dynamic causal modeling.
        Neuroimage. 2010; 49: 3099-3109
        • Friston K.J.
        • Li B.
        • Daunizeau J.
        • Stephan K.E.
        Network discovery with DCM.
        Neuroimage. 2011; 56: 1202-1221
        • Sowell E.R.
        • Peterson B.S.
        • Thompson P.M.
        • Welcome S.E.
        • Henkenius A.L.
        • Toga A.W.
        Mapping cortical change across the human life span.
        Nat Neurosci. 2003; 6: 309-315
        • Wise R.A.
        Brain reward circuitry: Insights from unsensed incentives.
        Neuron. 2002; 36: 229-240
        • Siep N.
        • Roefs A.
        • Roebroeck A.
        • Havermans R.
        • Bonte M.L.
        • Jansen A.
        Hunger is the best spice: An fMRI study of the effects of attention, hunger and calorie content on food reward processing in the amygdala and orbitofrontal cortex.
        Behav Brain Res. 2009; 198: 149-158
        • Ng J.
        • Stice E.
        • Yokum S.
        • Bohon C.
        An fMRI study of obesity, food reward, and perceived caloric density. Does a low-fat label make food less appealing?.
        Appetite. 2011; 57: 65-72
        • Grill H.J.
        • Skibicka K.P.
        • Hayes M.R.
        Imaging obesity: fMRI, food reward, and feeding.
        Cell Metab. 2007; 6: 423-425
        • Gottfried J.A.
        • O’Doherty J.
        • Dolan R.J.
        Encoding predictive reward value in human amygdala and orbitofrontal cortex.
        Science. 2003; 301: 1104-1107
        • Morris J.
        • Dolan R.
        Involvement of human amygdala and orbitofrontal cortex in hunger-enhanced memory for food stimuli.
        J Neurosci. 2001; 21: 5304-5310
        • Pelchat M.L.
        • Johnson A.
        • Chan R.
        • Valdez J.
        • Ragland J.D.
        Images of desire: Food-craving activation during fMRI.
        Neuroimage. 2004; 23: 1486-1493
        • Rothemund Y.
        • Preuschhof C.
        • Bohner G.
        • Bauknecht H.C.
        • Klingebiel R.
        • Flor H.
        • et al.
        Differential activation of the dorsal striatum by high-calorie visual food stimuli in obese individuals.
        Neuroimage. 2007; 37: 410-421
        • Volkow N.D.
        • Wang G.J.
        • Telang F.
        • Fowler J.S.
        • Logan J.
        • Childress A.R.
        • et al.
        Cocaine cues and dopamine in dorsal striatum: Mechanism of craving in cocaine addiction.
        J Neurosci. 2006; 26: 6583-6588
        • McClernon F.J.
        • Kozink R.V.
        • Lutz A.M.
        • Rose J.E.
        24-h smoking abstinence potentiates fMRI-BOLD activation to smoking cues in cerebral cortex and dorsal striatum.
        Psychopharmacology. 2009; 204: 25-35
        • Temple J.L.
        • Legierski C.M.
        • Giacomelli A.M.
        • Salvy S.J.
        • Epstein L.H.
        Overweight children find food more reinforcing and consume more energy than do nonoverweight children.
        Am J Clin Nutr. 2008; 87: 1121-1127
        • Bechara A.
        • Tranel D.
        • Damasio H.
        • Damasio A.R.
        Failure to respond autonomically to anticipated future outcomes following damage to prefrontal cortex.
        Cereb Cortex. 1996; 6: 215-225
        • Bechara A.
        • Damasio H.
        • Tranel D.
        • Damasio A.R.
        Deciding advantageously before knowing the advantageous strategy.
        Science. 1997; 275: 1293-1295
        • Bechara A.
        • Damasio H.
        • Tranel D.
        • Anderson S.W.
        Dissociation of working memory from decision making within the human prefrontal cortex.
        J Neurosci. 1998; 18: 428-437
        • Aron A.R.
        • Fletcher P.C.
        • Bullmore E.T.
        • Sahakian B.J.
        • Robbins T.W.
        Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans.
        Nat Neurosci. 2003; 6: 115-116
        • Aron A.
        • Robbins T.
        • Poldrack R.
        Inhibition and the right inferior frontal cortex.
        Trends Cogn Sci. 2004; 8: 170-177
        • Nederkoorn C.
        • Braet C.
        • Van Eijs Y.
        • Tanghe A.
        • Jansen A.
        Why obese children cannot resist food: The role of impulsivity.
        Eat Behav. 2006; 7: 315-322
        • Loeber S.
        • Grosshans M.
        • Korucuoglu O.
        • Vollmert C.
        • Vollstädt-Klein S.
        • Schneider S.
        • et al.
        Impairment of inhibitory control in response to food-associated cues and attentional bias of obese participants and normal-weight controls.
        Int J Obes. 2012; 36: 1334-1339
        • Le D.S.N.
        • Pannacciulli N.
        • Chen K.
        • Del Parigi A.
        • Salbe A.D.
        • Reiman E.M.
        • et al.
        Less activation of the left dorsolateral prefrontal cortex in response to a meal: A feature of obesity.
        Am J Clin Nutr. 2006; 84: 725-731
        • Naqvi N.H.
        • Rudrauf D.
        • Damasio H.
        • Bechara A.
        Damage to the insula disrupts addiction to cigarette smoking.
        Science. 2007; 315: 531-534
        • Naqvi N.H.
        • Bechara A.
        The hidden island of addiction: The insula.
        Trends Neurosci. 2009; 32: 56-67
        • Frank S.
        • Laharnar N.
        • Kullmann S.
        • Veit R.
        • Canova C.
        • Hegner Y.L.
        • et al.
        Processing of food pictures: Influence of hunger, gender and calorie content.
        Brain Res. 2010; 1350: 159-166
        • Simmons W.K.
        • Martin A.
        • Barsalou L.W.
        Pictures of appetizing foods activate gustatory cortices for taste and reward.
        Cerebral Cortex. 2005; 15: 1602-1608
        • Schienle A.
        • Schäfer A.
        • Hermann A.
        • Vaitl D.
        Binge-eating disorder: Reward sensitivity and brain activation to images of food.
        Biol Psychiatry. 2009; 65: 654-661
        • Small D.M.
        • Zatorre R.J.
        • Dagher A.
        • Evans A.C.
        • Jones-Gotman M.
        Changes in brain activity related to eating chocolate.
        Brain. 2001; 124: 1720-1733
        • Avery J.A.
        • Powell J.N.
        • Breslin F.J.
        • Lepping R.J.
        • Martin L.E.
        • Patrician T.M.
        • et al.
        Obesity is associated with altered mid-insula functional connectivity to limbic regions underlying appetitive responses to foods.
        J Psychopharmacol. 2017; 31: 1475-1484
        • Berns G.S.
        • McClure S.M.
        • Pagnoni G.
        • Montague P.R.
        Predictability modulates human brain response to reward.
        J Neurosci. 2001; 21: 2793-2798
        • Dreher J.C.
        • Schmidt P.J.
        • Kohn P.
        • Furman D.
        • Rubinow D.
        • Berman K.F.
        Menstrual cycle phase modulates reward-related neural function in women.
        Proc Natl Acad Sci U S A. 2007; 104: 2465-2470
        • Van Vugt D.A.
        Brain imaging studies of appetite in the context of obesity and the menstrual cycle.
        Hum Reprod Update. 2009; 16: 276-292
        • Frank T.C.
        • Kim G.L.
        • Krzemien A.
        • Van Vugt D.A.
        Effect of menstrual cycle phase on corticolimbic brain activation by visual food cues.
        Brain Res. 2010; 1363: 81-92
        • De Silva A.
        • Salem V.
        • Long C.J.
        • Makwana A.
        • Newbould R.D.
        • Rabiner E.A.
        • et al.
        The gut hormones PYY3-36 and GLP-17-36 amide reduce food intake and modulate brain activity in appetite centers in humans.
        Cell Metab. 2011; 14: 700-706
        • Ramsey J.D.
        • Hanson S.J.
        • Hanson C.
        • Halchenko Y.O.
        • Poldrack R.A.
        • Glymour C.
        Six problems for causal inference from fMRI.
        Neuroimage. 2010; 49: 1545-1558
        • Smith S.M.
        The future of FMRI connectivity.
        Neuroimage. 2012; 62: 1257-1266
        • Wang G.J.
        • Volkow N.D.
        • Telang F.
        • Jayne M.
        • Ma J.
        • Rao M.
        • et al.
        Exposure to appetitive food stimuli markedly activates the human brain.
        Neuroimage. 2004; 21: 1790-1797
        • Giedd J.
        • Blumenthal J.
        • Jeffries N.
        • Castellanos F.
        • Liu H.
        • Zijdenbos A.
        • et al.
        Brain development during childhood and adolescence: A longitudinal MRI study.
        Nature Neurosci. 1999; 2: 861-862
        • Xia M.
        • Wang J.
        • He Y.
        BrainNet Viewer: A network visualization tool for human brain connectomics.
        PLoS One. 2013; 8: e68910
        • Seghier M.L.
        • Friston K.J.
        Network discovery with large DCMs.
        Neuroimage. 2013; 68: 181-191