The Modulation of Neural Noise Underlies the Effectiveness of Methylphenidate Treatment in Attention-Deficit/Hyperactivity Disorder

  • Author Footnotes
    1 MP and AB contributed equally to this work.
    Maik Pertermann
    1 MP and AB contributed equally to this work.
    Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dresden University of Technology, Dresden, Germany
    Search for articles by this author
  • Author Footnotes
    1 MP and AB contributed equally to this work.
    Annet Bluschke
    1 MP and AB contributed equally to this work.
    Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dresden University of Technology, Dresden, Germany
    Search for articles by this author
  • Veit Roessner
    Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dresden University of Technology, Dresden, Germany
    Search for articles by this author
  • Christian Beste
    Address correspondence to Christian Beste, Ph.D., Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, TU Dresden, Schubertstrasse 42, D-01309 Dresden, Germany.
    Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dresden University of Technology, Dresden, Germany
    Search for articles by this author
  • Author Footnotes
    1 MP and AB contributed equally to this work.
Published:April 03, 2019DOI:



      Various lines of research suggest that the stability of neural processes is low in attention-deficit/hyperactivity disorder (ADHD). Considering overarching neural principles, this lack of stability relates to increased levels of neural noise. However, no study has directly examined neural noise in ADHD. Likewise, it is unknown whether the modulation of neural noise reflects a mechanistic link as to why methylphenidate (MPH) is effective in treating impulsivity in ADHD.


      We compared neural noise between 29 juvenile patients with ADHD and 32 healthy control subjects and examined the effects of MPH. We examined 1/f neural noise of electroencephalogram data collected while participants performed a response inhibition (Go/NoGo) task.


      Specific during NoGo trials, children with ADHD showed more neural noise than healthy control subjects. This was especially the case with regard to the theta frequency band, which is very closely related to cognitive control. MPH treatment reduced neural noise in ADHD to the level of healthy control subjects. Correlational analyses showed a direct relationship between decreases in neural noise and increases in behavioral performance. Mechanistically, this can be explained by the MPH-induced increase in dopaminergic neurotransmission that enhances the signal-to-noise ratio in neural networks and thus reduces neural noise.


      This study is the first to demonstrate increased (pink) neural noise in patients with ADHD and its reduction through MPH treatment. The study reveals an important mechanistic link as to why MPH is effective in treating impulsivity in ADHD.


      To read this article in full you will need to make a payment


        • Kieling R.
        • Rohde L.A.
        ADHD in children and adults: Diagnosis and prognosis.
        Curr Top Behav Neurosci. 2012; 9: 1-16
        • Bluschke A.
        • Chmielewski W.X.
        • Mückschel M.
        • Roessner V.
        • Beste C.
        Neuronal intra-individual variability masks response selection differences between ADHD subtypes—A need to change perspectives.
        Front Hum Neurosci. 2017; 11: 329
        • Bluschke A.
        • Gohil K.
        • Petzold M.
        • Roessner V.
        • Beste C.
        Neural mechanisms underlying successful and deficient multi-component behavior in early adolescent ADHD.
        NeuroImage Clin. 2018; 18: 533-542
        • Henríquez-Henríquez M.P.
        • Billeke P.
        • Henríquez H.
        • Zamorano F.J.
        • Rothhammer F.
        • Aboitiz F.
        Intra-individual response variability assessed by ex-Gaussian analysis may be a new endophenotype for attention-deficit/hyperactivity disorder.
        Front Psychiatry. 2014; 5: 197
        • Lin H.-Y.
        • Hwang-Gu S.-L.
        • Gau S.S.-F.
        Intra-individual reaction time variability based on ex-Gaussian distribution as a potential endophenotype for attention-deficit/hyperactivity disorder.
        Acta Psychiatr Scand. 2015; 132: 39-50
        • Saville C.W.N.
        • Feige B.
        • Kluckert C.
        • Bender S.
        • Biscaldi M.
        • Berger A.
        • et al.
        Increased reaction time variability in attention-deficit hyperactivity disorder as a response-related phenomenon: Evidence from single-trial event-related potentials.
        J Child Psychol Psychiatry. 2015; 56: 801-813
        • Gonen-Yaacovi G.
        • Arazi A.
        • Shahar N.
        • Karmon A.
        • Haar S.
        • Meiran N.
        • Dinstein I.
        Increased ongoing neural variability in ADHD.
        Cortex. 2016; 81: 50-63
        • Sjöwall D.
        • Thorell L.B.
        Functional impairments in attention deficit hyperactivity disorder: The mediating role of neuropsychological functioning.
        Dev Neuropsychol. 2014; 39: 187-204
        • Van Lieshout M.
        • Luman M.
        • Twisk J.W.R.
        • Faraone S.V.
        • Heslenfeld D.J.
        • Hartman C.A.
        • et al.
        Neurocognitive predictors of ADHD outcome: A 6-year follow-up study.
        J Abnorm Child Psychol. 2017; 45: 261-272
        • Garrett D.D.
        • Samanez-Larkin G.R.
        • MacDonald S.W.S.
        • Lindenberger U.
        • McIntosh A.R.
        • Grady C.L.
        Moment-to-moment brain signal variability: A next frontier in human brain mapping?.
        Neurosci Biobehav Rev. 2013; 37: 610-624
        • Li S.C.
        • Lindenberger U.
        • Sikström S.
        Aging cognition: From neuromodulation to representation.
        Trends Cogn Sci. 2001; 5: 479-486
        • Hong S.L.
        • Rebec G.V.
        A new perspective on behavioral inconsistency and neural noise in aging: Compensatory speeding of neural communication.
        Front Aging Neurosci. 2012; 4: 27
        • Hancock R.
        • Pugh K.R.
        • Hoeft F.
        Neural noise hypothesis of developmental dyslexia.
        Trends Cogn Sci. 2017; 21: 434-448
        • Dave S.
        • Brothers T.A.
        • Swaab T.Y.
        1/f neural noise and electrophysiological indices of contextual prediction in aging.
        Brain Res. 2018; 1691: 34-43
        • Voytek B.
        • Kramer M.A.
        • Case J.
        • Lepage K.Q.
        • Tempesta Z.R.
        • Knight R.T.
        • Gazzaley A.
        Age-related changes in 1/f neural electrophysiological noise.
        J Neurosci. 2015; 35: 13257-13265
        • Voytek B.
        • Knight R.T.
        Dynamic network communication as a unifying neural basis for cognition, development, aging, and disease.
        Biol Psychiatry. 2015; 77: 1089-1097
        • Buzsáki G.
        Rhythms of the Brain.
        Oxford University Press, Oxford, UK2006
        • Freeman W.J.
        • Rogers L.J.
        • Holmes M.D.
        • Silbergeld D.L.
        Spatial spectral analysis of human electrocorticograms including the alpha and gamma bands.
        J Neurosci Methods. 2000; 95: 111-121
        • He B.J.
        Scale-free brain activity: Past, present, and future.
        Trends Cogn Sci. 2014; 18: 480-487
        • Miller K.J.
        Broadband spectral change: Evidence for a macroscale correlate of population firing rate?.
        J Neurosci. 2010; 30: 6477-6479
        • Musall S.
        • von Pföstl V.
        • Rauch A.
        • Logothetis N.K.
        • Whittingstall K.
        Effects of neural synchrony on surface EEG.
        Cereb Cortex. 2014; 24: 1045-1053
        • Katzner S.
        • Nauhaus I.
        • Benucci A.
        • Bonin V.
        • Ringach D.L.
        • Carandini M.
        Local origin of field potentials in visual cortex.
        Neuron. 2009; 61: 35-41
        • Podvalny E.
        • Noy N.
        • Harel M.
        • Bickel S.
        • Chechik G.
        • Schroeder C.E.
        • et al.
        A unifying principle underlying the extracellular field potential spectral responses in the human cortex.
        J Neurophysiol. 2015; 114: 505-519
        • Paul-Jordanov I.
        • Bechtold M.
        • Gawrilow C.
        Methylphenidate and if-then plans are comparable in modulating the P300 and increasing response inhibition in children with ADHD.
        Atten Deficit Hyperact Disord. 2010; 2: 115-126
        • Pliszka S.R.
        • Liotti M.
        • Bailey B.Y.
        • Perez 3rd, R.
        • Glahn D.
        • Semrud-Clikeman M.
        Electrophysiological effects of stimulant treatment on inhibitory control in children with attention-deficit/hyperactivity disorder.
        J Child Adolesc Psychopharmacol. 2007; 17: 356-366
        • Bluschke A.
        • Roessner V.
        • Beste C.
        Specific cognitive-neurophysiological processes predict impulsivity in the childhood attention-deficit/hyperactivity disorder combined subtype.
        Psychol Med. 2016; 46: 1277-1287
        • Bluschke A.
        • Friedrich J.
        • Schreiter M.L.
        • Roessner V.
        • Beste C.
        A comparative study on the neurophysiological mechanisms underlying effects of methylphenidate and neurofeedback on inhibitory control in attention deficit hyperactivity disorder.
        NeuroImage Clin. 2018; 20: 1191-1203
        • Boonstra M.
        • Kooij S.
        • Oosterlaan J.
        • Sergeant J.
        • Buitelaar J.
        Does methylphenidate improve inhibition and other cognitive abilities in adults with childhood-onset ADHD?.
        J Clin Exp Neuropsychol. 2005; 27: 278-298
        • Broyd S.J.
        • Johnstone S.J.
        • Barry R.J.
        • Clarke A.R.
        • McCarthy R.
        • Selikowitz M.
        • Lawrence C.A.
        The effect of methylphenidate on response inhibition and the event-related potential of children with attention deficit/hyperactivity disorder.
        Int J Psychophysiol. 2005; 58: 47-58
        • Cubillo A.
        • Smith A.B.
        • Barrett N.
        • Giampietro V.
        • Brammer M.J.
        • Simmons A.
        • Rubia K.
        Shared and drug-specific effects of atomoxetine and methylphenidate on inhibitory brain dysfunction in medication-naive ADHD boys.
        Cereb Cortex. 2014; 24: 174-185
        • Konrad K.
        • Neufang S.
        • Fink G.R.
        • Herpertz-Dahlmann B.
        Long-term effects of methylphenidate on neural networks associated with executive attention in children with ADHD: Results from a longitudinal functional MRI study.
        J Am Acad Child Adolesc Psychiatry. 2007; 46: 1633-1641
        • Nandam L.S.
        • Hester R.
        • Wagner J.
        • Cummins T.D.R.
        • Garner K.
        • Dean A.J.
        • et al.
        Methylphenidate but not atomoxetine or citalopram modulates inhibitory control and response time variability.
        Biol Psychiatry. 2011; 69: 902-904
        • Pauls A.M.
        • O’Daly O.G.
        • Rubia K.
        • Riedel W.J.
        • Williams S.C.R.
        • Mehta M.A.
        Methylphenidate effects on prefrontal functioning during attentional-capture and response inhibition.
        Biol Psychiatry. 2012; 72: 142-149
        • Tannock R.
        • Schachar R.J.
        • Carr R.P.
        • Chajczyk D.
        • Logan G.D.
        Effects of methylphenidate on inhibitory control in hyperactive children.
        J Abnorm Child Psychol. 1989; 17: 473-491
        • Mattingly G.W.
        • Wilson J.
        • Rostain A.L.
        A clinician’s guide to ADHD treatment options.
        Postgrad Med. 2017; 129: 657-666
        • American Academy of Pediatrics
        ADHD: Clinical practice guideline for the diagnosis, evaluation, and treatment of attention-deficit/hyperactivity disorder in children and adolescents.
        Pediatrics. 2011; 128: 1007-1022
        • Faraone S.V.
        The pharmacology of amphetamine and methylphenidate: Relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities.
        Neurosci Biobehav Rev. 2018; 87: 255-270
        • Kroener S.
        • Chandler L.J.
        • Phillips P.E.M.
        • Seamans J.K.
        Dopamine modulates persistent synaptic activity and enhances the signal-to-noise ratio in the prefrontal cortex.
        PLoS One. 2009; 4: e6507
        • Servan-Schreiber D.
        • Printz H.
        • Cohen J.D.
        A network model of catecholamine effects: Gain, signal-to-noise ratio, and behavior.
        Science. 1990; 249: 892-895
        • Yousif N.
        • Fu R.Z.
        • Abou-El-Ela Bourquin B.
        • Bhrugubanda V.
        • Schultz S.R.
        • Seemungal B.M.
        Dopamine activation preserves visual motion perception despite noise interference of human V5/MT.
        J Neurosci. 2016; 36: 9303-9312
        • Ziegler S.
        • Pedersen M.L.
        • Mowinckel A.M.
        • Biele G.
        Modelling ADHD: A review of ADHD theories through their predictions for computational models of decision-making and reinforcement learning.
        Neurosci Biobehav Rev. 2016; 71: 633-656
        • Beste C.
        • Mückschel M.
        • Rosales R.
        • Domingo A.
        • Lee L.
        • Ng A.
        • et al.
        Striosomal dysfunction affects behavioral adaptation but not impulsivity—Evidence from X-linked dystonia-parkinsonism.
        Mov Disord. 2017; 32: 576-584
        • Beste C.
        • Ness V.
        • Falkenstein M.
        • Saft C.
        On the role of fronto-striatal neural synchronization processes for response inhibition—Evidence from ERP phase-synchronization analyses in pre-manifest Huntington’s disease gene mutation carriers.
        Neuropsychologia. 2011; 49: 3484-3493
        • Dippel G.
        • Chmielewski W.
        • Mückschel M.
        • Beste C.
        Response mode-dependent differences in neurofunctional networks during response inhibition: An EEG-beamforming study.
        Brain Struct Funct. 2016; 221: 4091-4101
        • Huster R.J.
        • Enriquez-Geppert S.
        • Lavallee C.F.
        • Falkenstein M.
        • Herrmann C.S.
        Electroencephalography of response inhibition tasks: Functional networks and cognitive contributions.
        Int J Psychophysiol. 2013; 87: 217-233
        • Ocklenburg S.
        • Güntürkün O.
        • Beste C.
        Lateralized neural mechanisms underlying the modulation of response inhibition processes.
        NeuroImage. 2011; 55: 1771-1778
        • Quetscher C.
        • Yildiz A.
        • Dharmadhikari S.
        • Glaubitz B.
        • Schmidt-Wilcke T.
        • Dydak U.
        • Beste C.
        Striatal GABA-MRS predicts response inhibition performance and its cortical electrophysiological correlates.
        Brain Struct Funct. 2015; 220: 3555-3564
        • Vahid A.
        • Mückschel M.
        • Neuhaus A.
        • Stock A.-K.
        • Beste C.
        Machine learning provides novel neurophysiological features that predict performance to inhibit automated responses.
        Sci Rep. 2018; 8: 16235
        • Cavanagh J.F.
        • Zambrano-Vazquez L.
        • Allen J.J.B.
        Theta lingua franca: A common mid-frontal substrate for action monitoring processes.
        Psychophysiology. 2012; 49: 220-238
        • Cavanagh J.F.
        • Frank M.J.
        Frontal theta as a mechanism for cognitive control.
        Trends Cogn Sci. 2014; 18: 414-421
        • Cohen M.X.
        A neural microcircuit for cognitive conflict detection and signaling.
        Trends Neurosci. 2014; 37: 480-490
        • De Blasio F.M.
        • Barry R.J.
        Prestimulus delta and theta determinants of ERP responses in the Go/NoGo task.
        Int J Psychophysiol. 2013; 87: 279-288
        • Harper J.
        • Malone S.M.
        • Bernat E.M.
        Theta and delta band activity explain N2 and P3 ERP component activity in a go/no-go task.
        Clin Neurophysiol. 2014; 125: 124-132
        • Swann N.
        • Poizner H.
        • Houser M.
        • Gould S.
        • Greenhouse I.
        • Cai W.
        • et al.
        Deep brain stimulation of the subthalamic nucleus alters the cortical profile of response inhibition in the beta frequency band: A scalp EEG study in Parkinson’s disease.
        J Neurosci. 2011; 31: 5721-5729
        • McLoughlin G.
        • Palmer J.A.
        • Rijsdijk F.
        • Makeig S.
        Genetic overlap between evoked frontocentral theta-band phase variability, reaction time variability, and attention-deficit/hyperactivity disorder symptoms in a twin study.
        Biol Psychiatry. 2014; 75: 238-247
        • Döpfner M.
        • Görtz-Dorten A.
        • Lehmkuhl G.
        Diagnostik-System für Psychische Störungen im Kindes- und Jugendalter nach ICD-10 und DSM-IV, DISYPS-II.
        Huber, Bern, Switzerland2008
        • Voytek B.
        • Secundo L.
        • Bidet-Caulet A.
        • Scabini D.
        • Stiver S.I.
        • Gean A.D.
        • et al.
        Hemicraniectomy: A new model for human electrophysiology with high spatio-temporal resolution.
        J Cogn Neurosci. 2010; 22: 2491-2502
        • Nunez P.L.
        • Pilgreen K.L.
        The spline-Laplacian in clinical neurophysiology: A method to improve EEG spatial resolution.
        J Clin Neurophysiol. 1991; 8: 397-413
        • Pertermann M.
        • Mückschel M.
        • Adelhöfer N.
        • Ziemssen T.
        • Beste C.
        On the interrelation of 1/f neural noise and norepinephrine system activity during motor response inhibition.
        J Neurophysiol. 2019; 121: 1633-1643
        • Welch P.D.
        The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms.
        IEEE Trans Audio Electroacoust. 1967; 15: 70-73
        • Miller K.J.
        • Sorensen L.B.
        • Ojemann J.G.
        • Nijs M den
        Power-law scaling in the brain surface electric potential.
        PLoS Comput Biol. 2009; 5: e1000609
        • Manning J.R.
        • Jacobs J.
        • Fried I.
        • Kahana M.J.
        Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans.
        J Neurosci. 2009; 29: 13613-13620
        • Masson M.E.J.
        A tutorial on a practical Bayesian alternative to null-hypothesis significance testing.
        Behav Res Methods. 2011; 43: 679-690
        • Raftery A.E.
        Bayesian model selection in social research.
        Sociol Methodol. 1995; 25: 111-163
        • Helton W.S.
        Impulsive responding and the sustained attention to response task.
        J Clin Exp Neuropsychol. 2009; 31: 39-47
        • McVay J.C.
        • Kane M.J.
        Conducting the train of thought: Working memory capacity, goal neglect, and mind wandering in an executive-control task.
        J Exp Psychol Learn Mem Cogn. 2009; 35: 196-204
        • Stevenson H.
        • Russell P.N.
        • Helton W.S.
        Search asymmetry, sustained attention, and response inhibition.
        Brain Cogn. 2011; 77: 215-222
        • Dippel G.
        • Mückschel M.
        • Ziemssen T.
        • Beste C.
        Demands on response inhibition processes determine modulations of theta band activity in superior frontal areas and correlations with pupillometry—Implications for the norepinephrine system during inhibitory control.
        NeuroImage. 2017; 157: 575-585
        • Dockree P.M.
        • Bellgrove M.A.
        • O’Keeffe F.M.
        • Moloney P.
        • Aimola L.
        • Carton S.
        • Robertson I.H.
        Sustained attention in traumatic brain injury (TBI) and healthy controls: Enhanced sensitivity with dual-task load.
        Exp Brain Res. 2006; 168: 218-229
        • Dockree P.M.
        • Kelly S.P.
        • Roche R.A.P.
        • Hogan M.J.
        • Reilly R.B.
        • Robertson I.H.
        Behavioural and physiological impairments of sustained attention after traumatic brain injury.
        Brain Res Cogn Brain Res. 2004; 20: 403-414
        • Arnsten A.F.T.
        • Pliszka S.R.
        Catecholamine influences on prefrontal cortical function: Relevance to treatment of attention deficit/hyperactivity disorder and related disorders.
        Pharmacol Biochem Behav. 2011; 99: 211-216
        • Gamo N.J.
        • Wang M.
        • Arnsten A.F.T.
        Methylphenidate and atomoxetine enhance prefrontal function through α2-adrenergic and dopamine D1 receptors.
        J Am Acad Child Adolesc Psychiatry. 2010; 49: 1011-1023
        • Bushe C.J.
        • Savill N.C.
        Systematic review of atomoxetine data in childhood and adolescent attention-deficit hyperactivity disorder 2009-2011: Focus on clinical efficacy and safety.
        J Psychopharmacol. 2014; 28: 204-211
        • Clemow D.B.
        • Bushe C.
        • Mancini M.
        • Ossipov M.H.
        • Upadhyaya H.
        A review of the efficacy of atomoxetine in the treatment of attention-deficit hyperactivity disorder in children and adult patients with common comorbidities.
        Neuropsychiatr Dis Treat. 2017; 13: 357-371
        • Davis G.
        • Plaisted-Grant K.
        Low endogenous neural noise in autism.
        Autism. 2015; 19: 351-362
        • Holtmann M.
        • Sonuga-Barke E.
        • Cortese S.
        • Brandeis D.
        Neurofeedback for ADHD: A review of current evidence.
        Child Adolesc Psychiatr Clin N Am. 2014; 23: 789-806
        • Bluschke A.
        • Roessner V.
        • Beste C.
        Editorial perspective: How to optimise frequency band neurofeedback for ADHD.
        J Child Psychol Psychiatry. 2016; 57: 457-461