Advertisement

Effect of Combat Exposure and Posttraumatic Stress Disorder on Telomere Length and Amygdala Volume

Published:March 31, 2020DOI:https://doi.org/10.1016/j.bpsc.2020.03.007

      Abstract

      Background

      Traumatic stress can adversely affect physical and mental health through neurobiological stress response systems. We examined the effects of trauma exposure and posttraumatic stress disorder (PTSD) on telomere length, a biomarker of cellular aging, and volume of the amygdala, a key structure of stress regulation, in combat-exposed veterans. In addition, the relationships of psychopathological symptoms and autonomic function with telomere length and amygdala volume were examined.

      Methods

      Male combat veterans were categorized as having PTSD diagnosis (n = 102) or no lifetime PTSD diagnosis (n = 111) based on the Clinician-Administered PTSD Scale. Subjects were assessed for stress-related psychopathology, trauma severity, autonomic function, and amygdala volumes by magnetic resonance imaging.

      Results

      A significant interaction was found between trauma severity and PTSD status for telomere length and amygdala volume after adjusting for multiple confounders. Subjects with PTSD showed shorter telomere length and larger amygdala volume than those without PTSD among veterans exposed to high trauma, while there was no significant group difference in these parameters among those exposed to low trauma. Among veterans exposed to high trauma, greater telomere shortening was significantly correlated with greater norepinephrine, and larger amygdala volume was correlated with more severe psychological symptoms and higher heart rates.

      Conclusions

      These data suggest that the intensity of the index trauma event plays an important role in interacting with PTSD symptomatology and autonomic activity in predicting telomere length and amygdala volume. These results highlight the importance of trauma severity and PTSD status in predicting certain biological outcomes.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • American Psychiatric Association
        Diagnostic and Statistical Manual of Mental Disorders.
        5th ed. American Psychiatric Association, Arlington, VA2013
        • McFarlane A.C.
        The long-term costs of traumatic stress: Intertwined physical and psychological consequences.
        World Psychiatry. 2010; 9: 3-10
        • Ahmadi N.
        • Hajsadeghi F.
        • Mirshkarlo H.B.
        • Budoff M.
        • Yehuda R.
        • Ebrahimi R.
        Post-traumatic stress disorder, coronary atherosclerosis, and mortality.
        Am J Cardiol. 2011; 108: 29-33
        • Levine A.B.
        • Levine L.M.
        • Levine T.B.
        Posttraumatic stress disorder and cardiometabolic disease.
        Cardiology. 2014; 127: 1-19
        • Brewin C.R.
        • Andrews B.
        • Valentine J.D.
        Meta-analysis of risk factors for posttraumatic stress disorder in trauma-exposed adults.
        J Consult Clin Psychol. 2000; 68: 748-766
        • Wisco B.E.
        • Marx B.P.
        • Wolf E.J.
        • Miller M.W.
        • Southwick S.M.
        • Pietrzak R.H.
        Posttraumatic stress disorder in the US veteran population: Results from the National Health and Resilience in Veterans Study.
        J Clin Psychiatry. 2014; 75: 1338-1346
        • Schnurr P.P.
        • Green B.L.
        Trauma and Health: Physical Health Consequences of Exposure to Extreme Stress.
        American Psychological Association, Washington, DC2004
        • Irish L.A.
        • Gabert-Quillen C.A.
        • Ciesla J.A.
        • Pacella M.L.
        • Sledjeski E.M.
        • Delahanty D.L.
        An examination of PTSD symptoms as a mediator of the relationship between trauma history characteristics and physical health following a motor vehicle accident.
        Depress Anxiety. 2013; 30: 475-482
        • Sledjeski E.M.
        • Speisman B.
        • Dierker L.C.
        Does number of lifetime traumas explain the relationship between PTSD and chronic medical conditions? Answers from the National Comorbidity Survey-Replication (NCS-R).
        J Behav Med. 2008; 31: 341-349
        • McTeague L.M.
        • Lang P.J.
        • Laplante M.C.
        • Cuthbert B.N.
        • Shumen J.R.
        • Bradley M.M.
        Aversive imagery in posttraumatic stress disorder: Trauma recurrence, comorbidity, and physiological reactivity.
        Biol Psychiatry. 2010; 67: 346-356
        • De Bellis M.D.
        • Zisk A.
        The biological effects of childhood trauma.
        Child Adolesc Psychiatr Clin N Am. 2014; 23: 185-222
        • Pizarro J.
        • Silver R.C.
        • Prause J.
        Physical and mental health costs of traumatic war experiences among Civil War veterans.
        Arch Gen Psychiatry. 2006; 63: 193-200
        • McEwen B.S.
        Neurobiological and systemic effects of chronic stress.
        Chronic Stress. 2017; 1
        • Williamson J.B.
        • Porges E.C.
        • Lamb D.G.
        • Porges S.W.
        Maladaptive autonomic regulation in PTSD accelerates physiological aging.
        Front Psychol. 2014; 5: 1571
        • Sherin J.E.
        • Nemeroff C.B.
        Post-traumatic stress disorder: The neurobiological impact of psychological trauma.
        Dialogues Clin Neurosci. 2011; 13: 263-278
        • Epel E.S.
        • Lin J.
        • Wilhelm F.H.
        • Wolkowitz O.M.
        • Cawthon R.
        • Adler N.E.
        • et al.
        Cell aging in relation to stress arousal and cardiovascular disease risk factors.
        Psychoneuroendocrinology. 2006; 31: 277-287
        • Epel E.S.
        • Prather A.A.
        Stress, telomeres, and psychopathology: Toward a deeper understanding of a triad of early aging.
        Annu Rev Clin Psychol. 2018; 14: 371-397
        • Tilan J.
        • Kitlinska J.
        Sympathetic neurotransmitters and tumor angiogenesis—Link between stress and cancer progression.
        J Oncol. 2010; 2010: 539706
        • Roberts A.L.
        • Koenen K.C.
        • Chen Q.
        • Gilsanz P.
        • Mason S.M.
        • Prescott J.
        • et al.
        Posttraumatic stress disorder and accelerated aging: PTSD and leukocyte telomere length in a sample of civilian women.
        Depress Anxiety. 2017; 34: 391-400
        • Lohr J.B.
        • Palmer B.W.
        • Eidt C.A.
        • Aailaboyina S.
        • Mausbach B.T.
        • Wolkowitz O.M.
        • et al.
        Is post-traumatic stress disorder associated with premature senescence? A review of the literature.
        Am J Geriatr Psychiatry. 2015; 23: 709-725
        • Kuffer A.L.
        • O’Donovan A.
        • Burri A.
        • Maercker A.
        Posttraumatic stress disorder, adverse childhood events, and buccal cell telomere length in elderly Swiss former indentured child laborers.
        Front Psychiatry. 2016; 7: 147
        • Verhoeven J.E.
        • Yang R.
        • Wolkowitz O.M.
        • Bersani F.S.
        • Lindqvist D.
        • Mellon S.H.
        • et al.
        Epigenetic age in male combat-exposed war veterans: Associations with posttraumatic stress disorder status.
        Mol Neuropsychiatry. 2018; 4: 102-111
        • Kim T.Y.
        • Kim S.J.
        • Choi J.R.
        • Lee S.T.
        • Kim J.
        • Hwang I.S.
        • et al.
        The effect of trauma and PTSD on telomere length: An exploratory study in people exposed to combat trauma.
        Sci Rep. 2017; 7: 4375
        • Roozendaal B.
        • McEwen B.S.
        • Chattarji S.
        Stress, memory and the amygdala.
        Nat Rev Neurosci. 2009; 10: 423-433
        • Mahan A.L.
        • Ressler K.J.
        Fear conditioning, synaptic plasticity and the amygdala: Implications for posttraumatic stress disorder.
        Trends Neurosci. 2012; 35: 24-35
        • Ressler K.J.
        Amygdala activity, fear, and anxiety: Modulation by stress.
        Biol Psychiatry. 2010; 67: 1117-1119
        • Duvarci S.
        • Pare D.
        Amygdala microcircuits controlling learned fear.
        Neuron. 2014; 82: 966-980
        • King K.S.
        • Kozlitina J.
        • Rosenberg R.N.
        • Peshock R.M.
        • McColl R.W.
        • Garcia C.K.
        Effect of leukocyte telomere length on total and regional brain volumes in a large population-based cohort.
        JAMA Neurol. 2014; 71: 1247-1254
        • O’Doherty D.C.
        • Chitty K.M.
        • Saddiqui S.
        • Bennett M.R.
        • Lagopoulos J.
        A systematic review and meta-analysis of magnetic resonance imaging measurement of structural volumes in posttraumatic stress disorder.
        Psychiatry Res. 2015; 232: 1-33
        • Ahmed-Leitao F.
        • Spies G.
        • van den Heuvel L.
        • Seedat S.
        Hippocampal and amygdala volumes in adults with posttraumatic stress disorder secondary to childhood abuse or maltreatment: A systematic review.
        Psychiatry Res Neuroimaging. 2016; 256: 33-43
        • Hammamieh R.
        • Chakraborty N.
        • Gautam A.
        • Muhie S.
        • Yang R.
        • Donohue D.
        • et al.
        Whole-genome DNA methylation status associated with clinical PTSD measures of OIF/OEF veterans.
        Transl Psychiatry. 2017; 7: e1169
        • Blake D.D.
        • Weathers F.W.
        • Nagy L.M.
        • Kaloupek D.G.
        • Gusman F.D.
        • Charney D.S.
        • et al.
        The development of a Clinician-Administered PTSD Scale.
        J Trauma Stress. 1995; 8: 75-90
        • Weathers F.W.
        • Keane T.M.
        • Davidson J.R.
        Clinician-Administered PTSD Scale: A review of the first ten years of research.
        Depress Anxiety. 2001; 13: 132-156
        • First M.B.
        Structured Clinical Interview for DSM-IV Axis I Disorders.
        American Psychiatric Press, Washington, DC1997
        • Blake D.D.
        • Weathers F.W.
        • Nagy L.M.
        • Kaloupek D.G.
        • Klauminzer G.
        • Charney D.S.
        • et al.
        A clinician rating scale for assessing current and lifetime PTSD: The CAPS-1.
        Behav Ther. 1990; 13: 187-188
        • Cohen S.
        • Kamarck T.
        • Mermelstein R.
        A global measure of perceived stress.
        J Health Soc Behav. 1983; 24: 385-396
        • Watson D.
        • Clark L.A.
        • Tellegen A.
        Development and validation of brief measures of positive and negative affect: The PANAS scales.
        J Pers Soc Psychol. 1988; 54: 1063-1070
        • Beck A.T.
        • Steer R.A.
        • Brown G.K.
        Manual for the Beck Depression Inventory-II.
        Psychological Corporation, San Antonio, TX1996
        • Babor T.F.
        • Higgins-Biddle J.C.
        • Saunders J.B.
        • Monteiro M.G.
        The Alcohol Use Disorders Identification Test: Guidelines for Use in Primary Care.
        World Health Organization, Geneva2001
        • Ehlert U.
        Enduring psychobiological effects of childhood adversity.
        Psychoneuroendocrinology. 2013; 38: 1850-1857
        • Bremner J.D.
        • Bolus R.
        • Mayer E.A.
        Psychometric properties of the Early Trauma Inventory–Self Report.
        J Nerv Ment Dis. 2007; 195: 211-218
        • Vogt D.
        • Smith B.N.
        • King L.A.
        • King D.W.
        • Knight J.
        • Vasterling J.J.
        Deployment Risk and Resilience Inventory-2 (DRRI-2): An updated tool for assessing psychosocial risk and resilience factors among service members and veterans.
        J Trauma Stress. 2013; 26: 710-717
        • Cawthon R.M.
        Telomere measurement by quantitative PCR.
        Nucleic Acids Res. 2002; 30: e47
        • Lin J.
        • Epel E.
        • Cheon J.
        • Kroenke C.
        • Sinclair E.
        • Bigos M.
        • et al.
        Analyses and comparisons of telomerase activity and telomere length in human T and B cells: Insights for epidemiology of telomere maintenance.
        J Immunol Methods. 2010; 352: 71-80
        • Blom G.
        Statistical Estimates and Transformed Beta-Variables.
        Stockholm: Almqvist & Wiksell, New York: John Wiley1958
        • Ahola K.
        • Siren I.
        • Kivimaki M.
        • Ripatti S.
        • Aromaa A.
        • Lonnqvist J.
        • et al.
        Work-related exhaustion and telomere length: A population-based study.
        PLoS One. 2012; 7e40186
        • Savic I.
        Structural changes of the brain in relation to occupational stress.
        Cereb Cortex. 2015; 25: 1554-1564
        • Malan S.
        • Hemmings S.
        • Kidd M.
        • Martin L.
        • Seedat S.
        Investigation of telomere length and psychological stress in rape victims.
        Depress Anxiety. 2011; 28: 1081-1085
        • Hendler T.
        • Admon R.
        Predisposing risk factors for PTSD: Brain biomarkers.
        in: Martin C.R. Preedy V.R. Patel V.B. Comprehensive Guide to Post-Traumatic Stress Disorder. Springer International, Cham, Switzerland2014: 1-12
        • Zhang L.
        • Hu X.Z.
        • Benedek D.M.
        • Fullerton C.S.
        • Forsten R.D.
        • Naifeh J.A.
        • et al.
        The interaction between stressful life events and leukocyte telomere length is associated with PTSD.
        Mol Psychiatry. 2014; 19: 855-856
        • Woon F.L.
        • Hedges D.W.
        Amygdala volume in adults with posttraumatic stress disorder: A meta-analysis.
        J Neuropsychiatry Clin Neurosci. 2009; 21: 5-12
        • Kuo J.R.
        • Kaloupek D.G.
        • Woodward S.H.
        Amygdala volume in combat-exposed veterans with and without posttraumatic stress disorder: A cross-sectional study.
        Arch Gen Psychiatry. 2012; 69: 1080-1086
        • Morey R.A.
        • Gold A.L.
        • LaBar K.S.
        • Beall S.K.
        • Brown V.M.
        • Haswell C.C.
        • et al.
        Amygdala volume changes in posttraumatic stress disorder in a large case-controlled veterans group.
        Arch Gen Psychiatry. 2012; 69: 1169-1178
        • Wilson M.A.
        • Grillo C.A.
        • Fadel J.R.
        • Reagan L.P.
        Stress as a one-armed bandit: Differential effects of stress paradigms on the morphology, neurochemistry and behavior in the rodent amygdala.
        Neurobiol Stress. 2015; 1: 195-208
        • Lau T.
        • Bigio B.
        • Zelli D.
        • McEwen B.S.
        • Nasca C.
        Stress-induced structural plasticity of medial amygdala stellate neurons and rapid prevention by a candidate antidepressant.
        Mol Psychiatry. 2017; 22: 227-234
        • Kroenke C.H.
        • Epel E.
        • Adler N.
        • Bush N.R.
        • Obradovic J.
        • Lin J.
        • et al.
        Autonomic and adrenocortical reactivity and buccal cell telomere length in kindergarten children.
        Psychosom Med. 2011; 73: 533-540
        • Ronzoni G.
        • Del Arco A.
        • Mora F.
        • Segovia G.
        Enhanced noradrenergic activity in the amygdala contributes to hyperarousal in an animal model of PTSD.
        Psychoneuroendocrinology. 2016; 70: 1-9
        • McCall J.G.
        • Siuda E.R.
        • Bhatti D.L.
        • Lawson L.A.
        • McElligott Z.A.
        • Stuber G.D.
        • et al.
        Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior.
        eLife. 2017; 6e18247
        • Gianaros P.J.
        • Hariri A.R.
        • Sheu L.K.
        • Muldoon M.F.
        • Sutton-Tyrrell K.
        • Manuck S.B.
        Preclinical atherosclerosis covaries with individual differences in reactivity and functional connectivity of the amygdala.
        Biol Psychiatry. 2009; 65: 943-950

      Linked Article

      • Erratum
        Biological Psychiatry: Cognitive Neuroscience and NeuroimagingVol. 5Issue 7
        • Preview
          Erratum to: “Effect of Combat Exposure and Posttraumatic Stress Disorder on Telomere Length and Amygdala Volume,” by Kang et al. (Biol Psychiatry Cogn Neurosci Neuroimaging 2020; 5:678–687); https://doi.org/10.1016/j.bpsc.2020.03.007 .
        • Full-Text
        • PDF