Advertisement

Increasing Deactivation of Limbic Structures Over Psychosocial Stress Exposure Time

Published:April 13, 2020DOI:https://doi.org/10.1016/j.bpsc.2020.04.002

      Abstract

      Background

      Understanding the interplay between central nervous system and hypothalamic-pituitary-adrenal axis responses to stress in humans is assumed to be essential to contribute to the central question of stress research, namely how stress can increase disease risk. Therefore, the present study used a neuroimaging stress paradigm to investigate the interplay of 3 stress response domains. Furthermore, we asked if the brain’s stress response changes over exposure time.

      Methods

      In a functional magnetic resonance imaging study, changes in brain activation, cortisol levels, affect, and heart rate in response to an improved ScanSTRESS protocol were assessed in 67 young, healthy participants (31 females).

      Results

      Stress exposure led to significant increases in cortisol levels, heart rate, and negative affect ratings as well as to activations and deactivations in (pre)limbic regions. When cortisol increase was used as a covariate, stronger responses in the hippocampus, amygdala, medial prefrontal cortex, and cingulate gyrus were observed. Responses within the same regions predicted negative affect ratings. Remarkably, an increasing deactivation over the two ScanSTRESS runs was found, again, in the same structures. A reanalysis of an independent sample confirmed this finding.

      Conclusions

      For the first time, reactions in a cluster of (pre)limbic structures was consistently found to be associated with changes in cortisol and negative affect. The same neural structures showed increasing deactivations over stress exposure time. We speculate that investigating possible associations between exposure-time effects in neural stress responses and stress-related interindividual differences (e.g., chronic stress) might be a promising new avenue in stress research.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Herman J.P.
        • Ostrander M.M.
        • Mueller N.K.
        • Figueiredo H.
        Limbic system mechanisms of stress regulation: Hypothalamo-pituitary-adrenocortical axis.
        Prog Neuropsychopharmacol Biol Psychiatry. 2005; 29: 1201-1213
        • Dedovic K.
        • Renwick R.
        • Mahani N.K.
        • Engert V.
        • Lupien S.J.
        • Pruessner J.C.
        The Montreal Imaging Stress Task: Using functional imaging to investigate the effects of perceiving and processing psychosocial stress in the human brain.
        J Psychiatry Neurosci. 2005; 30: 319-325
        • Streit F.
        • Haddad L.
        • Paul T.
        • Frank J.
        • Schafer A.
        • Nikitopoulos J.
        • et al.
        A functional variant in the neuropeptide S receptor 1 gene moderates the influence of urban upbringing on stress processing in the amygdala.
        Stress. 2014; 17: 352-361
        • Dickerson S.S.
        • Kemeny M.E.
        Acute stressors and cortisol responses: A theoretical integration and synthesis of laboratory research.
        Psychol Bull. 2004; 130: 355-391
        • Kirschbaum C.
        • Pirke K.M.
        • Hellhammer D.H.
        The ‘Trier Social Stress Test'--a tool for investigating psychobiological stress responses in a laboratory setting.
        Neuropsychobiology. 1993; 28: 76-81
        • Noack H.
        • Nolte L.
        • Nieratschker V.
        • Habel U.
        • Derntl B.
        Imaging stress: An overview of stress induction methods in the MR scanner.
        J Neural Transm. 2019; 126: 1187-1202
        • Kogler L.
        • Seidel E.M.
        • Metzler H.
        • Thaler H.
        • Boubela R.N.
        • Pruessner J.C.
        • et al.
        Impact of self-esteem and sex on stress reactions.
        Sci Rep. 2017; 7: 17210
        • Kogler L.
        • Gur R.C.
        • Derntl B.
        Sex differences in cognitive regulation of psychosocial achievement stress: Brain and behavior.
        Hum Brain Mapp. 2015; 36: 1028-1042
        • Chung K.C.
        • Springer I.
        • Kogler L.
        • Turetsky B.
        • Freiherr J.
        • Derntl B.
        The influence of androstadienone during psychosocial stress is modulated by gender, trait anxiety and subjective stress: An fMRI study.
        Psychoneuroendocrinology. 2016; 68: 126-139
        • Chung K.C.
        • Peisen F.
        • Kogler L.
        • Radke S.
        • Turetsky B.
        • Freiherr J.
        • et al.
        The influence of menstrual cycle and androstadienone on female stress reactions: An fMRI study.
        Front Hum Neurosci. 2016; 10: 44
        • Gossett E.W.
        • Wheelock M.D.
        • Goodman A.M.
        • Orem T.R.
        • Harnett N.G.
        • Wood K.H.
        • et al.
        Anticipatory stress associated with functional magnetic resonance imaging: Implications for psychosocial stress research.
        Int J Psychophysiol. 2018; 125: 35-41
        • Lederbogen F.
        • Kirsch P.
        • Haddad L.
        • Streit F.
        • Tost H.
        • Schuch P.
        • et al.
        City living and urban upbringing affect neural social stress processing in humans.
        Nature. 2011; 474: 498-501
        • Shermohammed M.
        • Mehta P.H.
        • Zhang J.
        • Brandes C.M.
        • Chang L.J.
        • Somerville L.H.
        Does psychosocial stress impact cognitive reappraisal? Behavioral and neural evidence.
        J Cogn Neurosci. 2017; 29: 1803-1816
        • Wheelock M.D.
        • Harnett N.G.
        • Wood K.H.
        • Orem T.R.
        • Granger D.A.
        • Mrug S.
        • et al.
        Prefrontal cortex activity is associated with biobehavioral components of the stress response.
        Front Hum Neurosci. 2016; 10: 583
        • Akdeniz C.
        • Tost H.
        • Streit F.
        • Haddad L.
        • Wüst S.
        • Schafer A.
        • et al.
        Neuroimaging evidence for a role of neural social stress processing in ethnic minority-associated environmental risk.
        JAMA Psychiatry. 2014; 71: 672-680
        • Orem T.R.
        • Wheelock M.D.
        • Goodman A.M.
        • Harnett N.G.
        • Wood K.H.
        • Gossett E.W.
        • et al.
        Amygdala and prefrontal cortex activity varies with individual differences in the emotional response to psychosocial stress.
        Behav Neurosci. 2019; 133: 203-211
        • Hermans E.J.
        • Henckens M.J.
        • Joels M.
        • Fernandez G.
        Dynamic adaptation of large-scale brain networks in response to acute stressors.
        Trends Neurosci. 2014; 37: 304-314
        • Jankord R.
        • Herman J.P.
        Limbic regulation of hypothalamo-pituitary-adrenocortical function during acute and chronic stress.
        Ann N Y Acad Sci. 2008; 1148: 64-73
        • Henckens M.J.
        • Pu Z.
        • Hermans E.J.
        • van Wingen G.A.
        • Joels M.
        • Fernandez G.
        Dynamically changing effects of corticosteroids on human hippocampal and prefrontal processing.
        Hum Brain Mapp. 2012; 33: 2885-2897
        • Khalili-Mahani N.
        • Dedovic K.
        • Engert V.
        • Pruessner M.
        • Pruessner J.C.
        Hippocampal activation during a cognitive task is associated with subsequent neuroendocrine and cognitive responses to psychological stress.
        Hippocampus. 2010; 20: 323-334
        • Pruessner J.C.
        • Dedovic K.
        • Khalili-Mahani N.
        • Engert V.
        • Pruessner M.
        • Buss C.
        • et al.
        Deactivation of the limbic system during acute psychosocial stress: Evidence from positron emission tomography and functional magnetic resonance imaging studies.
        Biol Psychiatry. 2008; 63: 234-240
        • Boehringer A.
        • Tost H.
        • Haddad L.
        • Lederbogen F.
        • Wüst S.
        • Schwarz E.
        • et al.
        Neural correlates of the cortisol awakening response in humans.
        Neuropsychopharmacology. 2015; 40: 2278-2285
        • Lord C.
        • Steiner M.
        • Soares C.N.
        • Carew C.L.
        • Hall G.B.
        Stress response in postpartum women with and without obsessive-compulsive symptoms: An fMRI study.
        J Psychiatry Neurosci. 2012; 37: 78-86
        • Van Oort J.
        • Tendolkar I.
        • Hermans E.J.
        • Mulders P.C.
        • Beckmann C.F.
        • Schene A.H.
        • et al.
        How the brain connects in response to acute stress: A review at the human brain systems level.
        Neurosci Biobehav Rev. 2017; 83: 281-297
        • Vaisvaser S.
        • Lin T.
        • Admon R.
        • Podlipsky I.
        • Greenman Y.
        • Stern N.
        • et al.
        Neural traces of stress: Cortisol related sustained enhancement of amygdala-hippocampal functional connectivity.
        Front Hum Neurosci. 2013; 7: 313
        • Quaedflieg C.W.
        • van de Ven V.
        • Meyer T.
        • Siep N.
        • Merckelbach H.
        • Smeets T.
        Temporal dynamics of stress-induced alternations of intrinsic amygdala connectivity and neuroendocrine levels.
        PLoS One. 2015; 10e0124141
        • Veer I.M.
        • Oei N.Y.
        • Spinhoven P.
        • van Buchem M.A.
        • Elzinga B.M.
        • Rombouts S.A.
        Endogenous cortisol is associated with functional connectivity between the amygdala and medial prefrontal cortex.
        Psychoneuroendocrinology. 2012; 37: 1039-1047
        • Vaisvaser S.
        • Modai S.
        • Farberov L.
        • Lin T.
        • Sharon H.
        • Gilam A.
        • et al.
        Neuro-epigenetic indications of acute stress response in humans: The case of microRNA-29c.
        PLoS One. 2016; 11e0146236
        • Dedovic K.
        • Rexroth M.
        • Wolff E.
        • Duchesne A.
        • Scherling C.
        • Beaudry T.
        • et al.
        Neural correlates of processing stressful information: An event-related fMRI study.
        Brain Res. 2009; 1293: 49-60
        • Zschucke E.
        • Renneberg B.
        • Dimeo F.
        • Wustenberg T.
        • Strohle A.
        The stress-buffering effect of acute exercise: Evidence for HPA axis negative feedback.
        Psychoneuroendocrinology. 2015; 51: 414-425
        • Inagaki T.K.
        • Bryne Haltom K.E.
        • Suzuki S.
        • Jevtic I.
        • Hornstein E.
        • Bower J.E.
        • et al.
        The neurobiology of giving versus receiving support: The role of stress-related and social reward-related neural activity.
        Psychosom Med. 2016; 78: 443-453
        • Dahm A.S.
        • Schmierer P.
        • Veer I.M.
        • Streit F.
        • Gorgen A.
        • Kruschwitz J.
        • et al.
        The burden of conscientiousness? Examining brain activation and cortisol response during social evaluative stress.
        Psychoneuroendocrinology. 2017; 78: 48-56
        • Dedovic K.
        • Duchesne A.
        • Engert V.
        • Lue S.D.
        • Andrews J.
        • Efanov S.I.
        • et al.
        Psychological, endocrine and neural responses to social evaluation in subclinical depression.
        Soc Cogn Affect Neurosci. 2014; 9: 1632-1644
        • Sinha R.
        • Lacadie C.M.
        • Constable R.T.
        • Seo D.
        Dynamic neural activity during stress signals resilient coping.
        Proc Natl Acad Sci U S A. 2016; 113: 8837-8842
        • Kudielka B.M.
        • Kirschbaum C.
        Sex differences in HPA axis responses to stress: A review.
        Biol Psychol. 2005; 69: 113-132
        • Zänkert S.
        • Bellingrath S.
        • Wüst S.
        • Kudielka B.M.
        HPA axis responses to psychological challenge linking stress and disease: What do we know on sources of intra- and interindividual variability?.
        Psychoneuroendocrinology. 2019; 105: 86-97
        • Gonzalez-Bono E.
        • Rohleder N.
        • Hellhammer D.H.
        • Salvador A.
        • Kirschbaum C.
        Glucose but not protein or fat load amplifies the cortisol response to psychosocial stress.
        Horm Behav. 2002; 41: 328-333
        • Kirschbaum C.
        • Gonzalez Bono E.
        • Rohleder N.
        • Gessner C.
        • Pirke K.M.
        • Salvador A.
        • et al.
        Effects of fasting and glucose load on free cortisol responses to stress and nicotine.
        J Clin Endocrinol Metab. 1997; 82: 1101-1105
        • Zänkert S.
        • Kudielka B.
        • Wüst S.
        Effect of sugar administration on cortisol responses to acute psychosocial stress.
        Psychoneuroendocrinology. 2020; 115: 104607
        • Watson D.
        • Clark L.A.
        • Tellegen A.
        Development and validation of brief measures of positive and negative affect: The PANAS scales.
        J Pers Soc Psychol. 1988; 54: 1063-1070
        • Dressendörfer R.A.
        • Kirschbaum C.
        • Rohde W.
        • Stahl F.
        • Strasburger C.J.
        Synthesis of a cortisol-biotin conjugate and evaluation as a tracer in an immunoassay for salivary cortisol measurement.
        J Steroid Biochem Mol Biol. 1992; 43: 683-692
        • Miller R.
        • Plessow F.
        • Kirschbaum C.
        • Stalder T.
        Classification criteria for distinguishing cortisol responders from nonresponders to psychosocial stress: Evaluation of salivary cortisol pulse detection in panel designs.
        Psychosom Med. 2013; 75: 832-840
        • Nichols T.E.
        • Das S.
        • Eickhoff S.B.
        • Evans A.C.
        • Glatard T.
        • Hanke M.
        • et al.
        Best practices in data analysis and sharing in neuroimaging using MRI.
        Nat Neurosci. 2017; 20: 299-303
        • Streit F.
        • Akdeniz C.
        • Haddad L.
        • Kumsta R.
        • Entringer S.
        • Frank J.
        • et al.
        Sex-specific association between functional neuropeptide S receptor gene (NPSR1) variants and cortisol and central stress responses.
        Psychoneuroendocrinology. 2017; 76: 49-56
        • Wang J.
        • Rao H.
        • Wetmore G.S.
        • Furlan P.M.
        • Korczykowski M.
        • Dinges D.F.
        • et al.
        Perfusion functional MRI reveals cerebral blood flow pattern under psychological stress.
        Proc Natl Acad Sci U S A. 2005; 102: 17804-17809
        • Quaedflieg C.W.
        • Meyer T.
        • Smeets T.
        The imaging Maastricht Acute Stress Test (iMAST): A neuroimaging compatible psychophysiological stressor.
        Psychophysiology. 2013; 50: 758-766
        • Levine S.
        • Ursin H.
        What is stress.
        in: Brown M.R. Koob G.F. Stress Neurobiology and Neuroendocrinology. Marcel Dekker, New York1991: 3-21
        • McKlveen J.M.
        • Myers B.
        • Herman J.P.
        The medial prefrontal cortex: Coordinator of autonomic, neuroendocrine and behavioural responses to stress.
        J Neuroendocrinol. 2015; 27: 446-456
        • McGonigle D.J.
        • Howseman A.M.
        • Athwal B.S.
        • Friston K.J.
        • Frackowiak R.S.
        • Holmes A.P.
        Variability in fMRI: An examination of intersession differences.
        Neuroimage. 2000; 11: 708-734
        • Smith S.M.
        • Beckmann C.F.
        • Ramnani N.
        • Woolrich M.W.
        • Bannister P.R.
        • Jenkinson M.
        • et al.
        Variability in fMRI: A re-examination of inter-session differences.
        Hum Brain Mapp. 2005; 24: 248-257
        • Jovanovic H.
        • Perski A.
        • Berglund H.
        • Savic I.
        Chronic stress is linked to 5-HT(1A) receptor changes and functional disintegration of the limbic networks.
        Neuroimage. 2011; 55: 1178-1188
        • van der Werff S.J.
        • van den Berg S.M.
        • Pannekoek J.N.
        • Elzinga B.M.
        • van der Wee N.J.
        Neuroimaging resilience to stress: A review.
        Front Behav Neurosci. 2013; 7: 1-14
        • Fehlner P.
        • Bilek E.
        • Harneit A.
        • Böhringer A.
        • Moessnang C.
        • Meyer-Lindenberg A.
        • Tost H.
        Neural responses to social evaluative threat in the absence of negative investigator feedback and provoked performance failures.
        Hum Brain Mapp. 2020; 41: 2092-2103