Advertisement

Neuroimaging Markers of Risk and Pathways to Resilience in Autism Spectrum Disorder

      Abstract

      Autism spectrum disorder is a complex, heterogeneous neurodevelopmental condition of largely unknown etiology. This heterogeneity of symptom presentation, combined with high rates of comorbidity with other developmental disorders and a lack of reliable biomarkers, makes diagnosing and evaluating life outcomes for individuals with autism spectrum disorder a challenge. We review the growing literature on neuroimaging-based biomarkers of risk for the development of autism and explore evidence for resilience in some autistic individuals. The current literature suggests that neuroimaging during early infancy, in combination with prebirth and early genetic studies, is a promising tool for identifying biomarkers of risk, while studies of gene expression and DNA methylation have provided some key insights into mechanisms of resilience. With genetics and the environment contributing to both risk for the development of autism spectrum disorder and conditions for resilience, additional studies are needed to understand how risk and resilience interact mechanistically, whereby factors of risk may engender conditions for adaptation. Future studies should prioritize longitudinal designs in global cohorts, with the involvement of the autism community as partners in research to help identify domains of functioning that hold value and importance to the community.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • American Psychiatric Association
        Diagnostic and Statistical Manual of Mental Disorders (DSM-5).
        American Psychiatric Publishing, Washington, DC2013
        • Lord C.
        • Brugha T.S.
        • Charman T.
        • Cusack J.
        • Dumas G.
        • Frazier T.
        • et al.
        Autism spectrum disorder.
        Nat Rev Dis Primers. 2020; 6: 5
        • Hawks Z.W.
        • Constantino J.N.
        Neuropsychiatric “comorbidity” as causal influence in autism.
        J Am Acad Child Adolesc Psychiatry. 2020; 59: 229-235
        • Masi A.
        • DeMayo M.M.
        • Glozier N.
        • Guastella A.J.
        An overview of autism spectrum disorder, heterogeneity and treatment options.
        Neurosci Bull. 2017; 33: 183-193
        • Georgiades S.
        • Szatmari P.
        • Zwaigenbaum L.
        • Duku E.
        • Bryson S.
        • Roberts W.
        • et al.
        Structure of the autism symptom phenotype: A proposed multidimensional model.
        J Am Acad Child Adolesc Psychiatry. 2007; 46: 188-196
        • Volkmar F.R.
        • State M.
        • Klin A.
        Autism and autism spectrum disorders: Diagnostic issues for the coming decade.
        J Child Psychol Psychiatry. 2009; 50: 108-115
        • de Zeeuw E.L.
        • van Beijsterveldt C.E.M.
        • Hoekstra R.A.
        • Bartels M.
        • Boomsma D.I.
        The etiology of autistic traits in preschoolers: A population-based twin study.
        J Child Psychol Psychiatry. 2017; 58: 893-901
        • Abrahams B.S.
        • Geschwind D.H.
        Advances in autism genetics: On the threshold of a new neurobiology.
        Nat Rev Genet. 2008; 9: 341-355
        • Jeste S.S.
        • Geschwind D.H.
        Disentangling the heterogeneity of autism spectrum disorder through genetic findings.
        Nat Rev Neurol. 2014; 10: 74-81
        • Muhle R.A.
        • Reed H.E.
        • Stratigos K.A.
        • Veenstra-VanderWeele J.
        The emerging clinical neuroscience of autism spectrum disorder: A review.
        JAMA Psychiatry. 2018; 75: 514-523
        • Bai D.
        • Yip B.H.K.
        • Windham G.C.
        • Sourander A.
        • Francis R.
        • Yoffe R.
        • et al.
        Association of Genetic and Environmental Factors With Autism in a 5-Country Cohort.
        JAMA Psychiatry. 2019; 76: 1035-1043
        • Modabbernia A.
        • Velthorst E.
        • Reichenberg A.
        Environmental risk factors for autism: An evidence-based review of systematic reviews and meta-analyses.
        Mol Autism. 2017; 8: 13
        • Courchesne E.
        • Gazestani V.H.
        • Lewis N.E.
        Prenatal origins of ASD: The when, what, and how of ASD development.
        Trends in Neurosci. 2020; 43: 326-342
        • Sinclair J.
        Don’t mourn for us. Our Voice 1(3). (Syracuse, NY: Autism Network International)..
        (Available at:) (Accessed March 15, 2020)
        • National Autistic Society (n.d.)
        How to talk about autism..
        (Available at:)
        • Baron-Cohen S.
        Editorial perspective: Neurodiversity—A revolutionary concept for autism and psychiatry.
        J Child Psychol Psychiatry. 2017; 58: 744-747
        • Georgiades S.
        • Kasari C.
        Reframing optimal outcomes in autism.
        JAMA Pediatr. 2018; 172: 716-717
        • Uddin L.Q.
        • Dajani D.R.
        • Voorhies W.
        • Bednarz H.
        • Kana R.K.
        Progress and roadblocks in the search for brain-based biomarkers of autism and attention-deficit/hyperactivity disorder.
        Transl Psychiatry. 2017; 7: e1218
        • Herrman H.
        • Stewart D.E.
        • Diaz-Granados N.
        • Berger E.L.
        • Jackson B.
        • Yuen T.
        What is resilience?.
        Can J Psychiatry. 2011; 56: 258-265
        • McConachie H.
        • Mason D.
        • Parr J.R.
        • Garland D.
        • Wilson C.
        • Rodgers J.
        Enhancing the validity of a quality of life measure for autistic people.
        J Autism Dev Disord. 2018; 48: 1596-1611
        • Masten A.S.
        Ordinary magic: Resilience processes in development.
        Am Psychol. 2001; 56: 227-238
        • Rutter M.
        Annual research review: Resilience—Clinical implications.
        J Child Psychol Psychiatry. 2013; 54: 474-487
        • Werner E.E.
        • Smith R.S.
        Overcoming the Odds: High Risk Children From Birth to Adulthood.
        Cornell University Press, Ithaca, NY1992
        • Luthar S.S.
        • Cicchetti D.
        • Becker B.
        The construct of resilience: A critical evaluation and guidelines for future work.
        Child Dev. 2000; 71: 543-562
        • Bourgeron T.
        Explaining “resilience” in autism may seed new therapies..
        (Available at:) (Accessed March 10, 2020)
        • Kaboski J.
        • McDonnell C.G.
        • Valentino K.
        Resilience and autism spectrum disorder: Applying developmental psychopathology to optimal outcome.
        Rev J Autism Dev Disord. 2017; 4: 175-189
        • Szatmari P.
        Risk and resilience in autism spectrum disorder: A missed translational opportunity?.
        Dev Med Child Neurol. 2018; 60: 225-229
        • Lai M.-C.
        • Szatmari P.
        Resilience in autism: Research and practice prospects.
        Autism. 2019; 23: 539-541
        • Robinson E.B.
        • Lichtenstein P.
        • Anckarsater H.
        • Happe F.
        • Ronald A.
        Examining and interpreting the female protective effect against autistic behavior.
        Proc Natl Acad Sci U S A. 2013; 110: 5258-5262
        • Ben-Itzchak E.
        • Zachor D.A.
        Toddlers to teenagers: Long-term follow-up study of outcomes in autism spectrum disorder.
        Autism. 2020; 24: 41-50
        • Interagency Autism Coordinating Committee
        IACC Strategic Plan for Autism Spectrum Disorder: 2016-2017 Update.
        (Available at:)
        https://iacc.hhs.gov/publications/strategic-plan/2017/
        Date: 2017
        Date accessed: March 20, 2020
        • Dean 3rd, D.C.
        • Freeman A.
        • Lainhart J.
        The development of the social brain in baby siblings of children with autism.
        Curr Opin Psychiatry. 2020; 33: 110-116
        • Gordon-Lipkin E.
        • Foster J.
        • Peacock G.
        Whittling down the wait time: Exploring models to minimize the delay from initial concern to diagnosis and treatment of autism spectrum disorder.
        Pediatr Clin North Am. 2016; 63: 851-859
        • Antezana L.
        • Scarpa A.
        • Valdespino A.
        • Albright J.
        • Richey J.A.
        Rural trends in diagnosis and services for autism spectrum disorder.
        Front Psychol. 2017; 8: 590
        • Elsabbagh M.
        • Mercure E.
        • Hudry K.
        • Chandler S.
        • Pasco G.
        • Charman T.
        • et al.
        Infant neural sensitivity to dynamic eye gaze is associated with later emerging autism.
        Curr Biol. 2012; 22: 338-342
        • McCleery J.P.
        • Akshoomoff N.
        • Dobkins K.R.
        • Carver L.J.
        Atypical face versus object processing and hemispheric asymmetries in 10-month-old infants at risk for autism.
        Biol Psychiatry. 2009; 66: 950-957
        • Jack A.
        • Sullivan C.A.W.
        • Aylward E.
        • Bookheimer S.Y.
        • Dapretto M.
        • Gaab N.
        • et al.
        Neurogenetic profiles of risk and resilience in female autism. SSRN.
        (Available at:) (Accessed May 16, 2020)
        • Tierney A.L.
        • Gabard-Durnam L.
        • Vogel-Farley V.
        • Tager-Flusberg H.
        • Nelson C.A.
        Developmental trajectories of resting EEG power: An endophenotype of autism spectrum disorder.
        PLoS One. 2012; 7e39127
        • Levin A.R.
        • Varcin K.J.
        • O’Leary H.M.
        • Tager-Flusberg H.
        • Nelson C.A.
        EEG power at 3 months in infants at high familial risk for autism.
        J Neurodev Disord. 2017; 9: 34
        • Kolesnik A.
        • Ali J.B.
        • Gliga T.
        • Guiraud J.
        • Charman T.
        • et al.
        • the BASIS Team
        Increased cortical reactivity to repeated tones at 8 months in infants with later ASD.
        Transl Psychiatry. 2019; 9: e46
        • Jones E.J.H.
        • Venema K.
        • Earl R.
        • Lowy R.
        • Barnes K.
        • Estes A.
        • et al.
        Reduced engagement with social stimuli in 6-month-old infants with later autism spectrum disorder: A longitudinal prospective study of infants at high familial risk.
        J Neurodev Disord. 2016; 8: 7
        • Fingher N.
        • Dinstein I.
        • Ben-Shachar M.
        • Haar S.
        • Dale A.M.
        • Eyler L.
        • et al.
        Toddlers later diagnosed with autism exhibit multiple structural abnormalities in temporal corpus callosum fibers.
        Cortex. 2017; 97: 291-305
        • Ciarrusta J.
        • O’Muircheartaigh J.
        • Dimitrova R.
        • Batalle D.
        • Cordero-Grande L.
        • Price A.
        • et al.
        Social brain functional maturation in newborn infants with and without a family history of autism spectrum disorder.
        JAMA Netw Open. 2019; 2e191868
        • Elison J.T.
        • Paterson S.J.
        • Wolff J.J.
        • Reznick J.S.
        • Sasson N.J.
        • Gu H.
        • et al.
        White matter microstructure and atypical visual orienting in 7-month-olds at risk for autism.
        Am J Psychiatry. 2013; 170: 899-908
        • Brito N.H.
        • Elliott A.J.
        • Isler J.R.
        • Rodriguez C.
        • Friedrich C.
        • Shuffrey L.C.
        • Fifer W.P.
        Neonatal EEG linked to individual differences in socioemotional outcomes and autism risk in toddlers.
        Dev Psychobiol. 2019; 61: 1110-1119
        • Bosl W.
        • Tierney A.
        • Tager-Flusberg H.
        • Nelson C.
        EEG complexity as a biomarker for autism spectrum disorder risk.
        BMC Med. 2011; 9: 18
        • Elsabbagh M.
        • Holmboe K.
        • Gliga T.
        • Mercure E.
        • Hudry K.
        • Charman T.
        • et al.
        Social and attention factors during infancy and the later emergence of autism characteristics.
        Prog Brain Res. 2011; 189: 195-207
        • Hazlett H.C.
        • Poe M.D.
        • Gerig G.
        • Styner M.
        • Chappell C.
        • Smith R.G.
        • et al.
        Early brain overgrowth in autism associated with an increase in cortical surface area before age 2 years.
        Arch Gen Psychiatry. 2011; 68: 467-476
        • Lewis J.D.
        • Evans A.C.
        • Pruett J.R.
        • Botteron K.
        • Zwaigenbaum L.
        • et al.
        • for the IBIS network
        Network inefficiencies in autism spectrum disorder at 24 months.
        Transl Psychiatry. 2014; 4: e388
        • Seery A.M.
        • Vogel-Farley V.
        • Tager-Flusberg H.
        • Nelson C.A.
        Atypical lateralization of ERP response to native and non-native speech in infants at risk for autism spectrum disorder.
        Dev Cogn Neurosci. 2013; 5: 10-24
        • Wilkinson C.L.
        • Levin A.R.
        • Gabard-Durnam L.J.
        • Tager-Flusberg H.
        • Nelson C.A.
        Reduced frontal gamma power at 24 months is associated with better expressive language in toddlers at risk for autism.
        Autism Res. 2019; 12: 1211-1224
        • Seery A.
        • Tager-Flusberg H.
        • Nelson C.A.
        Event-related potentials to repeated speech in 9-month-old infants at risk for autism spectrum disorder.
        J Neurodev Disord. 2014; 6: 43
        • Wolff J.J.
        • Gerig G.
        • Lewis J.D.
        • Soda T.
        • Styner M.A.
        • Vachet C.
        • et al.
        Altered corpus callosum morphology associated with autism over the first 2 years of life.
        Brain. 2015; 138: 2046-2058
        • Gabard-Durnam L.
        • Tierney A.L.
        • Vogel-Farley V.
        • Tager-Flusberg H.
        • Nelson C.A.
        Alpha asymmetry in infants at risk for autism spectrum disorders.
        J Autism Dev Disord. 2015; 45: 473-480
        • Gabard-Durnam L.J.
        • Wilkinson C.
        • Kapur K.
        • Tager-Flusberg H.
        • Levin A.R.
        • Nelson C.A.
        Longitudinal EEG power in the first postnatal year differentiates autism outcomes.
        Nat Commun. 2019; 10: 4188
        • Orekhova E.V.
        • Elsabbagh M.
        • Jones E.J.
        • Dawson G.
        • Charman T.
        • Johnson M.H.
        • BASIS Team
        EEG hyper-connectivity in high-risk infants is associated with later autism.
        J Neurodev Disord. 2014; 6: 40
        • Righi G.
        • Tierney A.L.
        • Tager-Flusberg H.
        • Nelson C.A.
        Functional connectivity in the first year of life in infants at risk for autism spectrum disorder: An EEG study.
        PLoS One. 2014; 9e105176
        • Schumann C.M.
        • Bloss C.S.
        • Barnes C.C.
        • Wideman G.M.
        • Carper R.A.
        • Akshoomoff N.
        • et al.
        Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism.
        J Neurosci. 2010; 30: 4419-4427
        • Shephard E.
        • Milosavljevic B.
        • Mason L.
        • Elsabbagh M.
        • Tye C.
        • Gliga T.
        • et al.
        Neural and behavioural indices of face processing in siblings of children with autism spectrum disorder (ASD): A longitudinal study from infancy to mid-childhood.
        Cortex. 2020; 127: 162-179
        • Swanson M.R.
        • Shen M.D.
        • Wolff J.J.
        • Elison J.T.
        • Emerson R.W.
        • Styner M.A.
        • et al.
        Subcortical brain and behavior phenotypes differentiate infants with autism versus language delay.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2017; 2: 664-672
        • Ciarrusta J.
        • Dimitrova R.
        • Batalle D.
        • O’Muircheartaigh J.
        • Cordero-Grande L.
        • Price A.
        • et al.
        Emerging functional connectivity differences in newborn infants vulnerable to autism spectrum disorders.
        Transl Psychiatry. 2020; 10: e131
        • Blasi A.
        • Lloyd-Fox S.
        • Sethna V.
        • Brammer M.J.
        • Mercure E.
        • Murray L.
        • et al.
        Atypical processing of voice sounds in infants at risk for autism spectrum disorder.
        Cortex. 2015; 71: 122-133
        • Elsabbagh M.
        • Gliga T.
        • Pickles A.
        • Hudry K.
        • Charman T.
        • Johnson M.H.
        • Basis Team
        The development of face orienting mechanisms in infants at-risk for autism.
        Behav Brain Res. 2013; 251: 147-154
        • Hazlett H.C.
        • Gu H.
        • McKinstry R.C.
        • Shaw D.W.W.
        • Botteron K.N.
        • Dager S.R.
        • et al.
        Brain volume findings in 6-month-old infants at high familial risk for autism.
        Am J Psychiatry. 2012; 169: 601-608
        • Hazlett H.C.
        • Gu H.
        • Munsell B.C.
        • Kim S.H.
        • Styner M.
        • Wolff J.J.
        • et al.
        Early brain development in infants at high risk for autism spectrum disorder.
        Nature. 2017; 542: 348-351
        • Lewis J.D.
        • Evans A.C.
        • Pruett Jr., J.R.
        • Botteron K.N.
        • McKinstry R.C.
        • Zwaigenbaum L.
        • et al.
        The emergence of network inefficiencies in infants with autism spectrum disorder.
        Biol Psychiatry. 2017; 82: 176-185
        • Liu J.
        • Tsang T.
        • Jackson L.
        • Ponting C.
        • Jeste S.S.
        • Bookheimer S.Y.
        • Dapretto M.
        Altered lateralization of dorsal language tracts in 6-week-old infants at risk for autism.
        Dev Sci. 2019; 22e12768
        • Lombardo M.V.
        • Pierce K.
        • Eyler L.T.
        • Carter Barnes C.
        • Ahrens-Barbeau C.
        • Solso S.
        • et al.
        Different functional neural substrates for good and poor language outcome in autism.
        Neuron. 2015; 86: 567-577
        • McKinnon C.J.
        • Eggebrecht A.T.
        • Todorov A.
        • Wolff J.J.
        • Elison J.T.
        • Adams C.M.
        • et al.
        Restricted and repetitive behavior and brain functional connectivity in infants at risk for developing autism spectrum disorder.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2019; 4: 50-61
        • Pote I.
        • Wang S.
        • Sethna V.
        • Blasi A.
        • Daly E.
        • Kuklisova-Murgasova M.
        • et al.
        Familial risk of autism alters subcortical and cerebellar brain anatomy in infants and predicts the emergence of repetitive behaviors in early childhood.
        Autism Res. 2019; 12: 614-627
        • Shen M.D.
        • Nordahl C.W.
        • Young G.S.
        • Wootton-Gorges S.L.
        • Lee A.
        • Liston S.E.
        • et al.
        Early brain enlargement and elevated extra-axial fluid in infants who develop autism spectrum disorder.
        Brain. 2013; 136: 2825-2835
        • Shen M.D.
        • Kim S.H.
        • McKinstry R.C.
        • Gu H.
        • Hazlett H.C.
        • Nordahl C.W.
        • et al.
        Increased extra-axial cerebrospinal fluid in high-risk infants who later develop autism.
        Biol Psychiatry. 2017; 82: 186-193
        • Shen M.D.
        • Nordahl C.W.
        • Li D.D.
        • Lee A.
        • Angkustsiri K.
        • Emerson R.W.
        • et al.
        Extra-axial cerebrospinal fluid in high-risk and normal-risk children with autism aged 2-4 years: A case-control study.
        Lancet Psychiatry. 2018; 5: 895-904
        • Wolff J.J.
        • Gu H.
        • Gerig G.
        • Elison J.T.
        • Styner M.
        • Gouttard S.
        • et al.
        Differences in white matter fiber tract development present from 6 to 24 months in infants with autism.
        Am J Psychiatry. 2012; 169: 589-600
        • Wolff J.J.
        • Swanson M.R.
        • Elison J.T.
        • Gerig G.
        • Pruett Jr., J.R.
        • Styner M.A.
        • et al.
        Neural circuitry at age 6 months associated with later repetitive behavior and sensory responsiveness in autism.
        Mol Autism. 2017; 8: 8
        • Eyler L.T.
        • Pierce K.
        • Courchesne E.
        A failure of left temporal cortex to specialize for language is an early emerging and fundamental property of autism.
        Brain. 2012; 135: 949-960
        • Pierce K.
        Early functional brain development in autism and the promise of sleep fMRI.
        Brain Res. 2011; 1380: 162-174
        • Dinstein I.
        • Pierce K.
        • Eyler L.
        • Solso S.
        • Malach R.
        • Behrmann M.
        • Courchesne E.
        Disrupted neural synchronization in toddlers with autism.
        Neuron. 2011; 70: 1218-1225
        • Redcay E.
        • Courchesne E.
        Deviant functional magnetic resonance imaging patterns of brain activity to speech in 2-3-year-old children with autism spectrum disorder.
        Biol Psychiatry. 2008; 64: 589-598
        • Eigsti I.-M.
        • Stevens M.C.
        • Schultz R.T.
        • Barton M.
        • Kelley E.
        • Naigles L.
        • et al.
        Language comprehension and brain function in individuals with an optimal outcome from autism.
        NeuroImage Clin. 2016; 10: 182-191
        • Elsabbagh M.
        The emerging autistic brain: Processes of risk and resilience.
        Neuropsychiatry. 2012; 2: 181-183
        • Dawson G.
        • Jones E.J.H.
        • Merkle K.
        • Venema K.
        • Lowy R.
        • Faja S.
        • et al.
        Early behavioral intervention is associated with normalized brain activity in young children with autism.
        J Am Acad Child Adolesc Psychiatry. 2012; 51: 1150-1159
        • Dawson G.
        • Rogers S.
        • Munson J.
        • Smith M.
        • Winter J.
        • Greenson J.
        • et al.
        Randomized, controlled trial of an intervention for toddlers with autism: The Early Start Denver Model.
        Pediatrics. 2010; 125: e17-e23
        • Piven J.
        • Arndt S.
        • Bailey J.
        • Havercamp S.
        • Andreasen N.C.
        • Palmer P.
        An MRI study of brain size in autism.
        Am J Psychiatry. 1995; 152: 1145-1149
        • Courchesne E.
        • Karns C.M.
        • Davis H.R.
        • Ziccardi R.
        • Carper R.A.
        • Tigue Z.D.
        • et al.
        Unusual brain growth patterns in early life in patients with autistic disorder: An MRI study.
        Neurology. 2001; 57: 245-254
        • Sparks B.F.
        • Friedman S.D.
        • Shaw D.W.
        • Aylward E.H.
        • Echelard D.
        • Artru A.A.
        • et al.
        Brain structural abnormalities in young children with autism spectrum disorder.
        Neurology. 2002; 59: 184-192
        • Nordahl C.W.
        • Lange N.
        • Li D.D.
        • Barnett L.A.
        • Lee A.
        • Buonocore M.H.
        • et al.
        Brain enlargement is associated with regression in preschool-age boys with autism spectrum disorders.
        Proc Natl Acad Sci U S A. 2011; 108: 20195-20200
        • Amaral D.G.
        • Li D.
        • Libero L.
        • Solomon M.
        • Van de Water J.
        • Mastergeorge A.
        • et al.
        In pursuit of neurophenotypes: The consequences of having autism and a big brain.
        Autism Res. 2017; 10: 711-722
        • Courchesne E.
        • Campbell K.
        • Solso S.
        Brain growth across the life span in autism: Age-specific changes in anatomical pathology.
        Brain Res. 2011; 1380: 138-145
        • Basser P.J.
        • Pierpaoli C.
        Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI.
        J Magn Reson B. 1996; 111: 209-219
        • Emerson R.W.
        • Adams C.
        • Nishino T.
        • Hazlett H.C.
        • Wolff J.J.
        • Zwaigenbaum L.
        • et al.
        Functional neuroimaging of high-risk 6-month-old infants predicts a diagnosis of autism at 24 months of age.
        Sci Transl Med. 2017; 9eaag2882
        • Dajani D.R.
        • Uddin L.Q.
        Local brain connectivity across development in autism spectrum disorder: A cross-sectional investigation.
        Autism Res. 2016; 9: 43-54
        • Hernandez L.M.
        • Krasileva K.
        • Green S.A.
        • Sherman L.E.
        • Ponting C.
        • McCarron R.
        • et al.
        Additive effects of oxytocin receptor gene polymorphisms on reward circuitry in youth with autism.
        Mol Psychiatry. 2017; 22: 1134-1139
        • Gunnar M.R.
        • Fisher P.A.
        • Early Experience, Stress, and Prevention Network
        Bringing basic research on early experience and stress neurobiology to bear on preventive interventions for neglected and maltreated children.
        Dev Psychopathol. 2006; 18: 651-677
        • Shamay-Tsoory S.G.
        • Abu-Akel A.
        The social salience hypothesis of oxytocin.
        Biol Psychiatry. 2016; 79: 194-202
        • Gunnar M.
        • Quevedo K.
        The neurobiology of stress and development.
        Annu Rev Psychol. 2007; 58: 145-173
        • Carter C.S.
        The chemistry of child neglect: Do oxytocin and vasopressin mediate the effects of early experience?.
        Proc Natl Acad Sci U S A. 2005; 102: 18247-18248
        • Meyer-Lindenberg A.
        • Domes G.
        • Kirsch P.
        • Heinrichs M.
        Oxytocin and vasopressin in the human brain: Social neuropeptides for translational medicine.
        Nat Rev Neurosci. 2011; 12: 524-538
        • Nomi J.S.
        • Molnar-Szakacs I.
        • Uddin L.Q.
        Insular function in autism: Update and future directions in neuroimaging and interventions.
        Prog Neuropsychopharmacol Biol Psychiatry. 2019; 89: 412-426
        • Aoki Y.
        • Watanabe T.
        • Abe O.
        • Kuwabara H.
        • Yahata N.
        • Takano Y.
        • et al.
        Oxytocin’s neurochemical effects in the medial prefrontal cortex underlie recovery of task-specific brain activity in autism: A randomized controlled trial.
        Mol Psychiatry. 2015; 20: 447-453
        • Aoki Y.
        • Yahata N.
        • Watanabe T.
        • Takano Y.
        • Kawakubo Y.
        • Kuwabara H.
        • et al.
        Oxytocin improves behavioural and neural deficits in inferring others’ social emotions in autism.
        Brain. 2014; 137: 3073-3086
        • Domes G.
        • Heinrichs M.
        • Kumbier E.
        • Grossmann A.
        • Hauenstein K.
        • Herpertz S.C.
        Effects of intranasal oxytocin on the neural basis of face processing in autism spectrum disorder.
        Biol Psychiatry. 2013; 74: 164-171
        • Gordon I.
        • Vander Wyk B.C.
        • Bennett R.H.
        • Cordeaux C.
        • Lucas M.V.
        • Eilbott J.A.
        • et al.
        Oxytocin enhances brain function in children with autism.
        Proc Natl Acad Sci U S A. 2013; 110: 20953-20958
        • Watanabe T.
        • Abe O.
        • Kuwabara H.
        • Yahata N.
        • Takano Y.
        • Iwashiro N.
        • et al.
        Mitigation of sociocommunicational deficits of autism through oxytocin-induced recovery of medial prefrontal activity.
        JAMA Psychiatry. 2014; 71: 166-175
        • Wigton R.
        • Radua J.
        • Allen P.
        • Averbeck B.
        • Meyer-Lindenberg A.
        • McGuire P.
        • et al.
        Neurophysiological effects of acute oxytocin administration: Systematic review and meta-analysis of placebo-controlled imaging studies.
        J Psychiatry Neurosci. 2015; 40: E1-E22
        • Johnson Z.V.
        • Young L.J.
        Oxytocin and vasopressin neural networks: Implications for social behavioral diversity and translational neuroscience.
        Neurosci Biobehav Rev. 2017; 76: 87-98
        • Young L.J.
        • Barrett C.E.
        Can oxytocin treat autism?.
        Science. 2015; 347: 825-826
        • Voinsky I.
        • Bennuri S.C.
        • Svigals J.
        • Frye R.E.
        • Rose S.
        • Gurwitz D.
        Peripheral blood mononuclear cell oxytocin and vasopressin receptor expression positively correlates with social and behavioral function in children with autism.
        Sci Rep. 2019; 9: 13443
        • Bick J.
        • Naumova O.
        • Hunter S.
        • Barbot B.
        • Lee M.
        • Luthar S.S.
        • et al.
        Childhood adversity and DNA methylation of genes involved in the hypothalamus-pituitary-adrenal axis and immune system: Whole-genome and candidate-gene associations.
        Dev Psychopathol. 2012; 24: 1417-1425
        • McGowan P.O.
        • Roth T.L.
        Epigenetic pathways through which experiences become linked with biology.
        Dev Psychopathol. 2015; 27: 637-648
        • Jones M.J.
        • Fejes A.P.
        • Kobor M.S.
        DNA methylation, genotype and gene expression: Who is driving and who is along for the ride?.
        Genome Biol. 2013; 14: 126
        • Andari E.
        • Nishitani S.
        • Kaundinya G.
        • Caceres G.A.
        • Morrier M.J.
        • Ousley O.
        • et al.
        Epigenetic modification of the oxytocin receptor gene: Implications for autism symptom severity and brain functional connectivity.
        Neuropsychopharmacology. 2020; 45: 1150-1158
        • LoParo D.
        • Waldman I.D.
        The oxytocin receptor gene (OXTR) is associated with autism spectrum disorder: A meta-analysis.
        Mol Psychiatry. 2015; 20: 640-646
        • Wermter A.-K.
        • Kamp-Becker I.
        • Hesse P.
        • Schulte-Körne G.
        • Strauch K.
        • Remschmidt H.
        Evidence for the involvement of genetic variation in the oxytocin receptor gene (OXTR) in the etiology of autistic disorders on high-functioning level.
        Am J Med Genet B Neuropsychiatr Genet. 2010; 153: 629-639
        • Insel T.
        • Cuthbert B.
        • Garvey M.
        • Heinssen R.
        • Pine D.S.
        • Quinn K.
        • et al.
        Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders.
        Am J Psychiatry. 2010; 167: 748-751
        • Casey B.J.
        • Craddock N.
        • Cuthbert B.N.
        • Hyman S.E.
        • Lee F.S.
        • Ressler K.J.
        DSM-5 and RDoC: Progress in psychiatry research?.
        Nat Rev Neurosci. 2013; 14: 810-814
        • Szatmari P.
        • Chawarska K.
        • Dawson G.
        • Georgiades S.
        • Landa R.
        • Lord C.
        • et al.
        Prospective longitudinal studies of infant siblings of children with autism: Lessons learned and future directions.
        J Am Acad Child Adolesc Psychiatry. 2016; 55: 179-187
        • Loth E.
        • Murphy D.G.
        • Spooren W.
        Defining precision medicine approaches to autism spectrum disorders: Concepts and challenges.
        Front Psychiatry. 2016; 7: 188
        • Uzefovsky F.
        • Bethlehem R.A.I.
        • Shamay-Tsoory S.
        • Ruigrok A.
        • Holt R.
        • Spencer M.
        • et al.
        The oxytocin receptor gene predicts brain activity during an emotion recognition task in autism.
        Mol Autism. 2019; 10: 12
        • Isaksson J.
        • Tammimies K.
        • Neufeld J.
        • Cauvet É
        • Lundin K.
        • Buitelaar J.K.
        • et al.
        EU-AIMS Longitudinal European Autism Project (LEAP): The autism twin cohort.
        Mol Autism. 2018; 9: 26
        • Lawrence K.E.
        • Hernandez L.M.
        • Bookheimer S.Y.
        • Dapretto M.
        Atypical longitudinal development of functional connectivity in adolescents with autism spectrum disorder.
        Autism Res. 2019; 12: 53-65
        • Werner E.E.
        Resilience in development.
        Curr Dir Psychol Sci. 1995; 4: 81-84
        • Pellicano L.
        • Mandy W.
        • Bölte S.
        • Stahmer A.
        • Lounds Taylor J.
        • Mandell D.S.
        A new era for autism research, and for our journal.
        Autism. 2018; 22: 82-83
        • Bagatell N.
        From cure to community: Transforming notions of autism.
        Ethos. 2010; 38: 33-55
        • Fletcher-Watson S.
        • Adams J.
        • Brook K.
        • Charman T.
        • Crane L.
        • Cusack J.
        • et al.
        Making the future together: Shaping autism research through meaningful participation.
        Autism. 2019; 23: 943-953
        • de Leeuw A.
        • Happé F.
        • Hoekstra R.A.
        A Conceptual Framework for Understanding the Cultural and Contextual Factors on Autism Across the Globe.
        Autism Res. 2020; 13: 1029-1050
        • Kang-Yi C.D.
        • Grinker R.R.
        • Beidas R.
        • Agha A.
        • Russell R.
        • Shah S.B.
        • et al.
        Influence of community-level cultural beliefs about autism on families’ and professionals’ care for children.
        Transcult Psychiatry. 2018; 55: 623-647
        • Pickard K.
        • Reyes N.
        • Reaven J.
        Examining the inclusion of diverse participants in cognitive behavior therapy research for youth with autism spectrum disorder and anxiety.
        Autism. 2019; 23: 1057-1064