Advertisement

Acute Posttraumatic Symptoms Are Associated With Multimodal Neuroimaging Structural Covariance Patterns: A Possible Role for the Neural Substrates of Visual Processing in Posttraumatic Stress Disorder

Published:August 06, 2020DOI:https://doi.org/10.1016/j.bpsc.2020.07.019

      Abstract

      Background

      Although aspects of brain morphology have been associated with chronic posttraumatic stress disorder (PTSD), limited work has investigated multimodal patterns in brain morphology that are linked to acute posttraumatic stress severity. In the present study, we utilized multimodal magnetic resonance imaging to investigate if structural covariance networks (SCNs) assessed acutely following trauma were linked to acute posttraumatic stress severity.

      Methods

      Structural magnetic resonance imaging data were collected around 1 month after civilian trauma exposure in 78 participants. Multimodal magnetic resonance imaging data fusion was completed to identify combinations of SCNs, termed structural covariance profiles (SCPs), related to acute posttraumatic stress severity collected at 1 month. Analyses assessed the relationship between participant SCP loadings, acute posttraumatic stress severity, the change in posttraumatic stress severity from 1 to 12 months, and depressive symptoms.

      Results

      We identified an SCP that reflected greater gray matter properties of the anterior temporal lobe, fusiform face area, and visual cortex (i.e., the ventral visual stream) that varied curvilinearly with acute posttraumatic stress severity and the change in PTSD symptom severity from 1 to 12 months. The SCP was not associated with depressive symptoms.

      Conclusions

      We identified combinations of multimodal SCNs that are related to variability in PTSD symptoms in the early aftermath of trauma. The identified SCNs may reflect patterns of neuroanatomical organization that provide unique insight into acute posttraumatic stress. Furthermore, these multimodal SCNs may be potential candidates for neural markers of susceptibility to both acute posttraumatic stress and the future development of PTSD.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Kleim B.
        • Ehlers A.
        • Glucksman E.
        Early predictors of chronic post-traumatic stress disorder in assault survivors.
        Psychol Med. 2007; 37: 1457-1467
        • McLean S.A.
        • Ressler K.
        • Koenen K.C.
        • Neylan T.
        • Germine L.
        • Jovanovic T.
        • et al.
        The AURORA study: A longitudinal, multimodal library of brain biology and function after traumatic stress exposure.
        Mol Psychiatry. 2019; 25: 283-296
        • Bonanno G.A.
        • Mancini A.D.
        Beyond resilience and PTSD: Mapping the heterogeneity of responses to potential trauma.
        Psychol Trauma. 2012; 4: 74-83
        • Fani N.
        • King T.Z.
        • Shin J.
        • Srivastava A.
        • Brewster R.C.
        • Jovanovic T.
        • et al.
        Structural and functional connectivity in posttraumatic stress disorder: Associations with FKBP5.
        Depress Anxiety. 2016; 33: 300-307
        • Bremner J.D.
        • Randall P.
        • Scott T.M.
        • Bronen R.A.
        • Seibyl J.P.
        • Southwick S.M.
        • et al.
        MRI-based measurement of hippocampal volume in patients with combat- related posttraumatic stress disorder.
        Am J Psychiatry. 1995; 152: 973-981
        • Villarreal G.
        • Hamilton D.A.
        • Petropoulos H.
        • Driscoll I.
        • Rowland L.M.
        • Griego J.A.
        • et al.
        Reduced hippocampal volume and total white matter volume in posttraumatic stress disorder.
        Biol Psychiatry. 2002; 52: 119-125
        • Wrocklage K.M.
        • Averill L.A.
        • Scott J.C.
        • Averill C.L.
        • Schweinsburg B.
        • Trejo M.
        • et al.
        Cortical thickness reduction in combat exposed U.S. veterans with and without PTSD.
        Eur Neuropsychopharmacol. 2017; 27: 515-525
        • Rauch S.L.
        • Shin L.M.
        • Segal E.
        • Pitman R.K.
        • Carson M.A.
        • McMullin K.
        • et al.
        Selectively reduced regional cortical volumes in post-traumatic stress disorder.
        Neuroreport. 2003; 14: 913-916
        • Chao L.L.
        • Yaffe K.
        • Samuelson K.
        • Neylan T.C.
        Hippocampal volume is inversely related to PTSD duration.
        Psychiatry Res Neuroimaging. 2014; 222: 119-123
        • Felmingham K.
        • Williams L.M.
        • Whitford T.J.
        • Falconer E.
        • Kemp A.H.
        • Peduto A.
        • Bryant R.A.
        Duration of posttraumatic stress disorder predicts hippocampal grey matter loss.
        Neuroreport. 2009; 20: 1402-1406
        • Bremner J.D.
        • Randall P.
        • Vermetten E.
        • Staib L.
        • Bronen R.A.
        • Mazure C.
        • et al.
        Magnetic resonance imaging-based measurement of hippocampal volume in posttraumatic stress disorder related to childhood physical and sexual abuse—A preliminary report.
        Biol Psychiatry. 1997; 41: 23-32
        • Logue M.W.
        • van Rooij S.J.H.
        • Dennis E.L.
        • Davis S.L.
        • Hayes J.P.
        • Stevens J.S.
        • et al.
        Smaller hippocampal volume in posttraumatic stress disorder: A multisite ENIGMA-PGC study: Subcortical volumetry results from posttraumatic stress disorder consortia.
        Biol Psychiatry. 2018; 83: 244-253
        • Yamasue H.
        • Kasai K.
        • Iwanami A.
        • Ohtani T.
        • Yamada H.
        • Abe O.
        • et al.
        Voxel-based analysis of MRI reveals anterior cingulate gray-matter volume reduction in posttraumatic stress disorder due to terrorism.
        Proc Natl Acad Sci U S A. 2003; 100: 9039-9043
        • Bing X.
        • Qiu M.G.
        • Ye Z.
        • Zhang J.N.
        • Min L.
        • Han C.
        • et al.
        Alterations in the cortical thickness and the amplitude of low-frequency fluctuation in patients with post-traumatic stress disorder.
        Brain Res. 2013; 1490: 225-232
        • Rogers M.A.
        • Yamasue H.
        • Abe O.
        • Yamada H.
        • Ohtani T.
        • Iwanami A.
        • et al.
        Smaller amygdala volume and reduced anterior cingulate gray matter density associated with history of post-traumatic stress disorder.
        Psychiatry Res Neuroimaging. 2009; 174: 210-216
        • Sanjuan P.M.
        • Thoma R.
        • Claus E.D.
        • Mays N.
        • Caprihan A.
        Reduced white matter integrity in the cingulum and anterior corona radiata in posttraumatic stress disorder in male combat veterans: A diffusion tensor imaging study.
        Psychiatry Res Neuroimaging. 2013; 214: 260-268
        • Koch S.B.J.
        • van Zuiden M.
        • Nawijn L.
        • Frijling J.L.
        • Veltman D.J.
        • Olff M.
        Decreased uncinate fasciculus tract integrity in male and female patients with PTSD: A diffusion tensor imaging study.
        J Psychiatry Neurosci. 2017; 42: 331-342
        • Olson E.A.
        • Cui J.
        • Fukunaga R.
        • Nickerson L.D.
        • Rauch S.L.
        • Rosso I.M.
        Disruption of white matter structural integrity and connectivity in posttraumatic stress disorder: A TBSS and tractography study.
        Depress Anxiety. 2017; 34: 437-445
        • VanElzakker M.B.
        • Kathryn Dahlgren M.
        • Caroline Davis F.
        • Dubois S.
        • Shin L.M.
        From Pavlov to PTSD: The extinction of conditioned fear in rodents, humans, and anxiety disorders.
        Neurobiol Learn Mem. 2014; 113: 3-18
        • Harnett N.G.
        • Goodman A.M.
        • Knight D.C.
        PTSD-related neuroimaging abnormalities in brain function, structure, and biochemistry.
        Exp Neurol. 2020; 330: 113331
        • van Rooij S.J.H.
        • Kennis M.
        • Sjouwerman R.
        • van den Heuvel M.P.
        • Kahn R.S.
        • Geuze E.
        Smaller hippocampal volume as a vulnerability factor for the persistence of post-traumatic stress disorder.
        Psychol Med. 2015; 45: 2737-2746
        • Gilbertson M.W.
        • Shenton M.E.
        • Ciszewski A.
        • Kasai K.
        • Lasko N.B.
        • Orr S.P.
        • Pitman R.K.
        Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma.
        Nat Neurosci. 2002; 5: 1242-1247
        • Rubin M.
        • Shvil E.
        • Papini S.
        • Chhetry B.T.
        • Helpman L.
        • Markowitz J.C.
        • et al.
        Greater hippocampal volume is associated with PTSD treatment response.
        Psychiatry Res Neuroimaging. 2016; 252: 36-39
        • Bonne O.
        • Brandes D.
        • Gilboa A.
        • Gomori J.M.
        • Shenton M.E.
        • Pitman R.K.
        • Shalev A.Y.
        Longitudinal MRI study of hippocampal volume in trauma survivors with PTSD.
        Am J Psychiatry. 2001; 158: 1248-1251
        • Cwik J.C.
        • Vahle N.
        • Woud M.L.
        • Potthoff D.
        • Kessler H.
        • Sartory G.
        • Seitz R.J.
        Reduced gray matter volume in the left prefrontal, occipital, and temporal regions as predictors for posttraumatic stress disorder: A voxel-based morphometric study.
        Eur Arch Psychiatry Clin Neurosci. 2019; 270: 577-588
        • Hu H.
        • Sun Y.
        • Su S.
        • Wang Y.
        • Qiu Y.
        • Yang X.
        • et al.
        Cortical surface area reduction in identification of subjects at high risk for post-traumatic stress disorder: A pilot study.
        Aust N Z J Psychiatry. 2018; 52: 1084-1091
        • Harnett N.G.
        • Ference E.W.
        • Knight A.J.
        • Knight D.C.
        White matter microstructure varies with post-traumatic stress severity following medical trauma.
        Brain Imaging Behav. 2018; 14: 1012-1024
        • Fani N.
        • Michopoulos V.
        • van Rooij S.J.H.
        • Clendinen C.
        • Hardy R.A.
        • Jovanovic T.
        • et al.
        Structural connectivity and risk for anhedonia after trauma: A prospective study and replication.
        J Psychiatr Res. 2019; 116: 34-41
        • Hu H.
        • Zhou Y.
        • Wang Q.
        • Su S.
        • Qiu Y.
        • Ge J.
        • et al.
        Association of abnormal white matter integrity in the acute phase of motor vehicle accidents with post-traumatic stress disorder.
        J Affect Disord. 2016; 190: 714-722
        • Smid G.E.
        • van der Velden P.G.
        • Lensvelt-Mulders G.J.L.M.
        • Knipscheer J.W.
        • Gersons B.P.R.
        • Kleber R.J.
        Stress sensitization following a disaster: A prospective study.
        Psychol Med. 2012; 42: 1675-1686
        • Breslau N.
        • Chilcoat H.D.
        • Kessler R.C.
        • Davis G.C.
        Previous exposure to trauma and PTSD effects of subsequent trauma: Results from the detroit area survey of trauma.
        Am J Psychiatry. 1999; 156: 902-907
        • Pareek V.
        • Rallabandi V.S.
        • Roy P.K.
        A correlational study between microstructural white matter properties and macrostructural gray matter volume across normal ageing: Conjoint DTI and VBM analysis.
        Magn Reson Insights. 2018; 11 (1178623X1879992)
        • Mechelli A.
        • Friston K.J.
        • Frackowiak R.S.
        • Price C.J.
        Structural covariance in the human cortex.
        J Neurosci. 2005; 25: 8303-8310
        • Alexander-Bloch A.
        • Giedd J.N.
        • Bullmore E.
        Imaging structural co-variance between human brain regions.
        Nat Rev Neurosci. 2013; 14: 322-336
        • Stout D.M.
        • Buchsbaum M.S.
        • Spadoni A.D.
        • Risbrough V.B.
        • Strigo I.A.
        • Matthews S.C.
        • Simmons A.N.
        Multimodal canonical correlation reveals converging neural circuitry across trauma-related disorders of affect and cognition.
        Neurobiol Stress. 2018; 9: 241-250
        • Rangaprakash D.
        • Deshpande G.
        • Daniel T.A.
        • Goodman A.M.
        • Robinson J.L.
        • Salibi N.
        • et al.
        Compromised hippocampus-striatum pathway as a potential imaging biomarker of mild-traumatic brain injury and posttraumatic stress disorder.
        Hum Brain Mapp. 2017; 38: 2843-2864
        • Groves A.R.
        • Smith S.M.
        • Fjell A.M.
        • Tamnes C.K.
        • Walhovd K.B.
        • Douaud G.
        • et al.
        Benefits of multi-modal fusion analysis on a large-scale dataset: Life-span patterns of inter-subject variability in cortical morphometry and white matter microstructure.
        Neuroimage. 2012; 63: 365-380
        • Douaud G.
        • Groves A.R.
        • Tamnes C.K.
        • Westlye L.T.
        • Duff E.P.
        • Engvig A.
        • et al.
        A common brain network links development, aging, and vulnerability to disease.
        Proc Natl Acad Sci U S A. 2014; 111: 17648-17653
        • Groves A.R.
        • Beckmann C.F.
        • Smith S.M.
        • Woolrich M.W.
        Linked independent component analysis for multimodal data fusion.
        Neuroimage. 2011; 54: 2198-2217
        • Sun D.
        • Haswell C.C.
        • Morey R.A.
        • De Bellis M.D.
        Brain structural covariance network centrality in maltreated youth with PTSD and in maltreated youth resilient to PTSD.
        Dev Psychopathol. 2019; 31: 557-571
        • Itahashi T.
        • Yamada T.
        • Nakamura M.
        • Watanabe H.
        • Yamagata B.
        • Jimbo D.
        • et al.
        Linked alterations in gray and white matter morphology in adults with high-functioning autism spectrum disorder: A multimodal brain imaging study.
        NeuroImage Clin. 2015; 7: 155-169
        • van Rooij S.J.H.
        • Stevens J.S.
        • Ely T.D.
        • Hinrichs R.
        • Michopoulos V.
        • Winters S.J.
        • et al.
        The role of the hippocampus in predicting future posttraumatic stress disorder symptoms in recently traumatized civilians.
        Biol Psychiatry. 2018; 84: 106-115
        • Stevens J.S.
        • Kim Y.J.
        • Galatzer-Levy I.R.
        • Reddy R.
        • Ely T.D.
        • Nemeroff C.B.
        • et al.
        Amygdala reactivity and anterior cingulate habituation predict posttraumatic stress disorder symptom maintenance after acute civilian trauma.
        Biol Psychiatry. 2017; 81: 1023-1029
        • Foa E.B.
        The Posttraumatic Diagnostic Scale (PDS) Manual.
        National Computer Systems, Minneapolis, MN1996
        • Foa E.B.
        • Cashman L.
        • Jaycox L.
        • Perry K.
        The validation of a self-report measure of posttraumatic stress disorder: The Posttraumatic Diagnostic Scale.
        Psychol Assess. 1997; 9: 445-451
        • Foa E.B.
        • Tolin D.F.
        Comparison of the PTSD Symptom Scale–Interview Version and the Clinician-Administered PTSD Scale.
        J Trauma Stress. 2000; 13: 181-191
        • Pinninti N.R.
        • Madison H.
        • Musser E.
        • Rissmiller D.
        MINI International Neuropsychiatric Schedule: Clinical utility and patient acceptance.
        Eur Psychiatry. 2003; 18: 361-364
        • Smith S.M.
        • Jenkinson M.
        • Woolrich M.W.
        • Beckmann C.F.
        • Behrens T.E.J.
        • Johansen-Berg H.
        • et al.
        Advances in functional and structural MR image analysis and implementation as FSL.
        Neuroimage. 2004; 23: S208-S219
        • Wang S.
        • Peterson D.J.
        • Gatenby J.C.
        • Li W.
        • Grabowski T.J.
        • Madhyastha T.M.
        Evaluation of field map and nonlinear registration methods for correction of susceptibility artifacts in diffusion MRI.
        Front Neuroinform. 2017; 11: 17
        • Smith S.M.
        • Jenkinson M.
        • Johansen-Berg H.
        • Rueckert D.
        • Nichols T.E.
        • Mackay C.E.
        • et al.
        Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data.
        Neuroimage. 2006; 31: 1487-1505
        • Jahanshad N.
        • Kochunov P.V.
        • Sprooten E.
        • Mandl R.C.
        • Nichols T.E.
        • Almasy L.
        • et al.
        Multi-site genetic analysis of diffusion images and voxelwise heritability analysis: A pilot project of the ENIGMA-DTI Working Group.
        Neuroimage. 2013; 81: 455-469
        • Good C.D.
        • Johnsrude I.S.
        • Ashburner J.
        • Henson R.N.A.
        • Friston K.J.
        • Frackowiak R.S.J.
        A voxel-based morphometric study of ageing in 465 normal adult human brains.
        Neuroimage. 2001; 14: 21-36
        • Douaud G.
        • Smith S.
        • Jenkinson M.
        • Behrens T.
        • Johansen-Berg H.
        • Vickers J.
        • et al.
        Anatomically related grey and white matter abnormalities in adolescent-onset schizophrenia.
        Brain. 2007; 130: 2375-2386
        • Esteban O.
        • Markiewicz C.J.
        • Blair R.W.
        • Moodie C.A.
        • Isik A.I.
        • Erramuzpe A.
        • et al.
        fMRIPrep: A robust preprocessing pipeline for functional MRI.
        Nat Methods. 2019; 16: 111-116
        • Gorgolewski K.
        • Burns C.D.
        • Madison C.
        • Clark D.
        • Halchenko Y.O.
        • Waskom M.L.
        • Ghosh S.S.
        Nipype: A flexible, lightweight and extensible neuroimaging data processing framework in Python.
        Front Neuroinform. 2011; 5: 13
        • Fischl B.
        FreeSurfer.
        Neuroimage. 2012; 62: 774-781
        • Li H.
        • Smith S.M.
        • Gruber S.
        • Lukas S.E.
        • Silveri M.M.
        • Hill K.P.
        • et al.
        Denoising scanner effects from multimodal MRI data using linked independent component analysis.
        Neuroimage. 2020; 208: 116388
        • Abou-Elseoud A.
        • Starck T.
        • Remes J.
        • Nikkinen J.
        • Tervonen O.
        • Kiviniemi V.
        The effect of model order selection in group PICA.
        Hum Brain Mapp. 2010; 31: 1207-1216
        • Harnett N.G.
        • Wheelock M.D.
        • Wood K.H.
        • Ladnier J.C.
        • Mrug S.
        • Knight D.C.
        Affective state and locus of control modulate the neural response to threat.
        Neuroimage. 2015; 121: 217-226
        • Kravitz D.J.
        • Saleem K.S.
        • Baker C.I.
        • Ungerleider L.G.
        • Mishkin M.
        The ventral visual pathway: An expanded neural framework for the processing of object quality.
        Trends Cogn Sci. 2013; 17: 26-49
        • Stevens J.S.
        • Jovanovic T.
        • Fani N.
        • Ely T.D.
        • Glover E.M.
        • Bradley B.
        • Ressler K.J.
        Disrupted amygdala-prefrontal functional connectivity in civilian women with posttraumatic stress disorder.
        J Psychiatr Res. 2013; 47: 1469-1478
        • Mueller-Pfeiffer C.
        • Schick M.
        • Schulte-Vels T.
        • O’Gorman R.
        • Michels L.
        • Martin-Soelch C.
        • et al.
        Atypical visual processing in posttraumatic stress disorder.
        NeuroImage Clin. 2013; 3: 531-538
        • Fani N.
        • Jovanovic T.
        • Ely T.D.
        • Bradley B.
        • Gutman D.
        • Tone E.B.
        • Ressler K.J.
        Neural correlates of attention bias to threat in post-traumatic stress disorder.
        Biol Psychol. 2012; 90: 134-142
        • Fani N.
        • Tone E.B.
        • Phifer J.
        • Norrholm S.D.
        • Bradley B.
        • Ressler K.J.
        • et al.
        Attention bias toward threat is associated with exaggerated fear expression and impaired extinction in PTSD.
        Psychol Med. 2012; 42: 533-543
        • Kleim B.
        • Ehring T.
        • Ehlers A.
        Perceptual processing advantages for trauma-related visual cues in post-traumatic stress disorder.
        Psychol Med. 2012; 42: 173-181
        • Misaki M.
        • Phillips R.
        • Zotev V.
        • Wong C.K.
        • Wurfel B.E.
        • Krueger F.
        • et al.
        Connectome-wide investigation of altered resting-state functional connectivity in war veterans with and without posttraumatic stress disorder.
        NeuroImage Clin. 2018; 17: 285-296
        • Badura-Brack A.
        • McDermott T.J.
        • Becker K.M.
        • Ryan T.J.
        • Khanna M.M.
        • Pine D.S.
        • et al.
        Attention training modulates resting-state neurophysiological abnormalities in posttraumatic stress disorder.
        Psychiatry Res Neuroimaging. 2018; 271: 135-141
        • Silverstein D.N.
        • Ingvar M.
        A multi-pathway hypothesis for human visual fear signaling.
        Front Syst Neurosci. 2015; 9: 101
        • Ousdal O.T.
        • Andreassen O.A.
        • Server A.
        • Jensen J.
        Increased amygdala and visual cortex activity and functional connectivity toward stimulus novelty is associated with state anxiety.
        PLoS One. 2014; 9e96146
        • Amaral D.G.
        • Behniea H.
        • Kelly J.L.
        Topographic organization of projections from the amygdala to the visual cortex in the macaque monkey.
        Neuroscience. 2003; 118: 1099-1120
        • Weston C.S.E.
        Posttraumatic stress disorder: A theoretical model of the hyperarousal subtype.
        Front Psychiatry. 2014; 5: 37
        • Beckmann C.F.
        • DeLuca M.
        • Devlin J.T.
        • Smith S.M.
        Investigations into resting-state connectivity using independent component analysis.
        Philos Trans R Soc B Biol Sci. 2005; 360: 1001-1013