Advertisement

A Novel Biomarker of Neuronal Glutamate Metabolism in Nonhuman Primates Using Localized 1H-Magnetic Resonance Spectroscopy: Development and Effects of BNC375, an α7 Nicotinic Acetylcholine Receptor Positive Allosteric Modulator

Published:September 29, 2020DOI:https://doi.org/10.1016/j.bpsc.2020.09.014

      Abstract

      Background

      The development of treatments for cognitive deficits associated with central nervous system disorders is currently a significant medical need. Despite the great need for such therapeutics, a significant challenge in the drug development process is the paucity of robust biomarkers to assess target modulation and guide clinical decisions. We developed a novel, translatable biomarker of neuronal glutamate metabolism, the 13C-glutamate+glutamine (Glx) H3:H4 labeling ratio, in nonhuman primates using localized 1H-magnetic resonance spectroscopy combined with 13C-glucose infusions.

      Methods

      We began with numerical simulations in an established model of brain glutamate metabolism, showing that the 13C-Glx H3:H4 ratio should be a sensitive biomarker of neuronal tricarboxylic acid cycle activity, a key measure of overall neuronal metabolism. We showed that this biomarker can be measured reliably using a standard 1H-magnetic resonance spectroscopy method (point-resolved spectroscopy sequence/echo time = 20 ms), obviating the need for specialized hardware and pulse sequences typically used with 13C-magnetic resonance spectroscopy, thus improving overall clinical translatability. Finally, we used this biomarker in 8 male rhesus macaques before and after administration of the compound BNC375, a positive allosteric modulator of the α7 nicotinic acetylcholine receptor that enhances glutamate signaling ex vivo and elicits procognitive effects in preclinical species.

      Results

      The 13C-Glx H3:H4 ratios in the monkeys showed that BNC375 increases neuronal metabolism in nonhuman primates in vivo, detectable on an individual basis.

      Conclusions

      This study demonstrates that the ratio of 13C-Glx H3:H4 labeling is a biomarker that may provide an objective readout of compounds affecting glutamatergic neurotransmission and could improve decision making for the development of therapeutic agents.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Zhou Y.
        • Danbolt N.
        Glutamate as a neurotransmitter in the healthy brain.
        J Neural Trans. 2014; 121: 799-817
        • Platt S.R.
        The role of glutamate in central nervous system health and disease—a review.
        Vet J. 2007; 173: 278-286
        • Lewerenz J.
        • Maher P.
        Chronic glutamate toxicity in neurodegenerative diseases—what is the evidence?.
        Front Neurosci. 2015; 9: 469
        • Mishra P.K.
        • Adusumilli M.
        • Deolal P.
        • Mason G.F.
        • Kumar A.
        • Patel A.B.
        Impaired neuronal and astroglial metabolic activity in chronic unpredictable mild stress model of depression: Reversal of behavioral and metabolic deficit with lanicemine.
        Neurochem Int. 2020; 137: 104750
        • Sanacora G.
        • Treccani G.
        • Popoli M.
        Toward a glutamate hypothesis of depression: An emerging frontier of neuropsychopharmacology for mood disorders.
        Neuropharmacology. 2012; 62: 63-77
        • Chowdhury G.M.
        • Behar K.L.
        • Cho W.
        • Thomas M.A.
        • Rothman D.L.
        • Sanacora G.
        1H-[13C]-Nuclear magnetic resonance spectroscopy measures of ketamine’s effect on amino acid neurotransmitter metabolism.
        Biol Psychiatry. 2012; 71: 1022-1025
        • Abdallah C.G.
        • de Feyter H.M.
        • Averill L.A.
        • Jiang L.
        • Averill C.L.
        • Chowdhury G.M.
        • et al.
        The effects of ketamine on prefrontal glutamate neurotransmission in healthy and depressed subjects.
        Neuropsychopharmacology. 2018; 43: 2154-2160
        • McGirr A.
        • Berlim M.
        • Bond D.J.
        • Fleck M.
        • Yatham L.
        • Lam R.
        A systematic review and meta-analysis of randomized, double-blind, placebo-controlled trials of ketamine in the rapid treatment of major depressive episodes.
        Psychol Med. 2015; 45: 693-704
        • Huang M.
        • Felix A.R.
        • Flood D.G.
        • Bhuvaneswaran C.
        • Hilt D.
        • Koenig G.
        • et al.
        The novel α7 nicotinic acetylcholine receptor agonist EVP-6124 enhances dopamine, acetylcholine, and glutamate efflux in rat cortex and nucleus accumbens.
        Psychopharmacology. 2014; 231: 4541-4551
        • Parikh V.
        • Ji J.
        • Decker M.W.
        • Sarter M.
        Prefrontal β2 subunit–containing and α7 nicotinic acetylcholine receptors differentially control glutamatergic and cholinergic signaling.
        J Neurosci. 2010; 30: 3518-3530
        • Breese C.R.
        • Adams C.
        • Logel J.
        • Drebing C.
        • Rollins Y.
        • Barnhart M.
        • et al.
        Comparison of the regional expression of nicotinic acetylcholine receptor α7 mRNA and [125I]-α-bungarotoxin binding in human postmortem brain.
        J Comp Neurol. 1997; 387: 385-398
        • Hoyle E.
        • Genn R.
        • Fernandes C.
        • Stolerman I.
        Impaired performance of alpha7 nicotinic receptor knockout mice in the five-choice serial reaction time task.
        Psychopharmacology. 2006; 189: 211-223
        • Preskorn S.H.
        • Gawryl M.
        • Dgetluck N.
        • Palfreyman M.
        • Bauer L.O.
        • Hilt D.C.
        Normalizing effects of EVP-6124, an alpha-7 nicotinic partial agonist, on event-related potentials and cognition: A proof of concept, randomized trial in patients with schizophrenia.
        J Psychiatr Pract. 2014; 20: 12-24
        • Kantrowitz J.T.
        • Javitt D.C.
        • Freedman R.
        • Sehatpour P.
        • Kegeles L.S.
        • Carlson M.
        • et al.
        Double blind, two dose, randomized, placebo-controlled, cross-over clinical trial of the positive allosteric modulator at the alpha7 nicotinic cholinergic receptor AVL-3288 in schizophrenia patients.
        Neuropsychopharmacology. 2020; 45: 1339-1345
        • Harvey A.J.
        • Avery T.D.
        • Schaeffer L.
        • Joseph C.
        • Huff B.C.
        • Singh R.
        • et al.
        Discovery of BNC375, a potent, selective, and orally available type I positive allosteric modulator of α7 nAChRs.
        ACS Med Chem Lett. 2019; 10: 754-760
        • Wang X.
        • Daley C.
        • Gakhar V.
        • Lange H.S.
        • Vardigan J.D.
        • Pearson M.
        • et al.
        Pharmacological characterization of the novel and selective α7 nicotinic acetylcholine receptor–positive allosteric modulator BNC375.
        J Pharmacol Exp Ther. 2020; 373: 311-324
        • Milak M.S.
        • Proper C.J.
        • Mulhern S.T.
        • Parter A.L.
        • Kegeles L.S.
        • Ogden R.T.
        • et al.
        A pilot in vivo proton magnetic resonance spectroscopy study of amino acid neurotransmitter response to ketamine treatment of major depressive disorder.
        Mol Psychiatry. 2016; 21: 320-327
        • Maddock R.J.
        • Buonocore M.H.
        MR spectroscopic studies of the brain in psychiatric disorders.
        in: Carter C.S. Dalley J.W. Brain Imaging in Behavioral Neuroscience. Springer, 2011: 199-251
        • Ramadan S.
        • Lin A.
        • Stanwell P.
        Glutamate and glutamine: A review of in vivo MRS in the human brain.
        NMR Biomed. 2013; 26: 1630-1646
        • Sanacora G.
        • Rothman D.
        • Mason G.
        • Krystal J.
        Clinical studies implementing glutamate neurotransmission in mood disorders.
        Ann N Y Acad Sci. 2003; 1003: 292-308
        • Rothman D.L.
        • de Graaf R.A.
        • Hyder F.
        • Mason G.F.
        • Behar K.L.
        • de Feyter H.M.
        In vivo 13C and 1H-[13C] MRS studies of neuroenergetics and neurotransmitter cycling, applications to neurological and psychiatric disease and brain cancer.
        NMR Biomed. 2019; 32e4172
        • Boumezbeur F.
        • Besret L.
        • Valette J.
        • Vaufrey F.
        • Henry P.G.
        • Slavov V.
        • et al.
        NMR measurement of brain oxidative metabolism in monkeys using 13C-labeled glucose without a 13C radiofrequency channel.
        Magn Reson Med. 2004; 52: 33-40
        • Dehghani M.
        • Zhang S.
        • Kumaragamage C.
        • Rosa-Neto P.
        • Near J.
        Dynamic 1H-MRS for detection of 13C-labeled glucose metabolism in the human brain at 3T.
        Magn Reson Med. 2020; 84: 1140-1151
        • Gruetter R.
        • Novotny E.J.
        • Boulware S.D.
        • Mason G.F.
        • Rothman D.L.
        • Shulman G.I.
        • et al.
        Localized 13C NMR spectroscopy in the human brain of amino acid labeling from d-[1-13C] glucose.
        J Neurochem. 1994; 63: 1377-1385
        • Shen J.
        • Petersen K.F.
        • Behar K.L.
        • Brown P.
        • Nixon T.W.
        • Mason G.F.
        • et al.
        Determination of the rate of the glutamate/glutamine cycle in the human brain by in vivo 13C NMR.
        Proc Natl Acad Sci U S A. 1999; 96: 8235-8240
        • Mason G.F.
        • Petersen K.F.
        • de Graaf R.A.
        • Shulman G.I.
        • Rothman D.L.
        Measurements of the anaplerotic rate in the human cerebral cortex using 13C magnetic resonance spectroscopy and [1-13C] and [2-13C] glucose.
        J Neurochem. 2007; 100: 73-86
        • de Graaf R.A.
        • Pan J.W.
        • Telang F.
        • Lee J.-H.
        • Brown P.
        • Novotny E.J.
        • et al.
        Differentiation of glucose transport in human brain gray and white matter.
        J Cereb Blood Flow Metab. 2001; 21: 483-492
        • Gruetter R.
        • Ugurbil K.
        • Seaquist E.R.
        Steady-state cerebral glucose concentrations and transport in the human brain.
        J Neurochem. 1998; 70: 397-408
        • Mason G.F.
        • Rothman D.L.
        • Behar K.L.
        • Shulman R.G.
        NMR determination of the TCA cycle rate and α-ketoglutarate/glutamate exchange rate in rat brain.
        J Cereb Blood Flow Metab. 1992; 12: 434-447
        • Mason G.F.
        • Gruetter R.
        • Rothman D.L.
        • Behar K.L.
        • Shulman R.G.
        • Novotny E.J.
        Simultaneous determination of the rates of the TCA cycle, glucose utilization, α-ketoglutarate/glutamate exchange, and glutamine synthesis in human brain by NMR.
        J Cereb Blood Flow Metab. 1995; 15: 12-25
        • Yang J.
        • Xu S.
        • Shen J.
        Fast isotopic exchange between mitochondria and cytosol in brain revealed by relayed 13C magnetization transfer spectroscopy.
        J Cereb Blood Flow Metab. 2009; 29: 661-669
        • Hawkins R.A.
        • Mans A.M.
        Intermediary metabolism of carbohydrates and other fuels.
        in: Lajtha A. Metabolism in the Nervous System. Springer, 1983: 259-294
        • Rothman D.L.
        • Dienel G.A.
        Development of a model to test whether glycogenolysis can support astrocytic energy demands of Na+,K+-ATPase and glutamate-glutamine cycling, sparing an equivalent amount of glucose for neurons.
        in: DiNuzzo M. Schousboe A. Brain Glycogen Metabolism. Springer, 2019: 385-433
        • Hawkins R.A.
        • DeJoseph M.R.
        • Hawkins P.A.
        Regional brain glutamate transport in rats at normal and raised concentrations of circulating glutamate.
        Cell Tissue Res. 1995; 281: 207-214
        • Oldendorf W.H.
        • Szabo J.
        Amino acid assignment to one of three blood-brain barrier amino acid carriers.
        Am J Physiol. 1976; 230: 94-98
        • Pardridge W.M.
        • Oldendorf W.H.
        Kinetic analysis of blood-brain barrier transport of amino acids.
        Biochim Biophys Acta Biomembr. 1975; 401: 128-136
        • Rothman D.L.
        • de Feyter H.M.
        • de Graaf R.A.
        • Mason G.F.
        • Behar K.L.
        13C MRS studies of neuroenergetics and neurotransmitter cycling in humans.
        NMR Biomed. 2011; 24: 943-957
        • Kaiser L.G.
        • Schuff N.
        • Cashdollar N.
        • Weiner M.W.
        Age-related glutamate and glutamine concentration changes in normal human brain: 1H MR spectroscopy study at 4 T.
        Neurobiol Aging. 2005; 26: 665-672
        • Schubert F.
        • Gallinat J.
        • Seifert F.
        • Rinneberg H.
        Glutamate concentrations in human brain using single voxel proton magnetic resonance spectroscopy at 3 Tesla.
        Neuroimage. 2004; 21: 1762-1771
        • Rothman D.
        • Hanstock C.
        • Petroff O.
        • Novotny E.
        • Prichard J.
        • Shulman R.
        Localized 1H NMR spectra of glutamate in the human brain.
        Magn Res Med. 1992; 25: 94-106
        • Hädel S.
        • Wirth C.
        • Rapp M.
        • Gallinat J.
        • Schubert F.
        Effects of age and sex on the concentrations of glutamate and glutamine in the human brain.
        J Magn Reson Imaging. 2013; 38: 1480-1487
        • Bottomley P.A.
        • inventor
        Selective volume method for performing localized NMR spectroscopy.
        US Patent. 1984; 4 (228. Oct 30): 480
        • Fitzpatrick S.M.
        • Hetherington H.P.
        • Behar K.L.
        • Shulman R.G.
        The flux from glucose to glutamate in the rat brain in vivo as determined by 1H-observed, 13C-edited NMR spectroscopy.
        J Cereb Blood Flow Metab. 1990; 10: 170-179
        • Gjedde A.
        • Christensen O.
        Estimates of Michaelis-Menten constants for the two membranes of the brain endothelium.
        J Cereb Blood Flow Metab. 1984; 4: 241-249
        • Gruetter R.
        • Novotny E.J.
        • Boulware S.D.
        • Rothman D.L.
        • Mason G.F.
        • Shulman G.I.
        • et al.
        Direct measurement of brain glucose concentrations in humans by 13C NMR spectroscopy.
        Proc Natl Acad Sci U S A. 1992; 89: 1109-1112
        • Mason G.F.
        • Behar K.L.
        • Rothman D.L.
        • Shulman R.G.
        NMR determination of intracerebral glucose concentration and transport kinetics in rat brain.
        J Cereb Blood Flow Metab. 1992; 12: 448-455
        • Balazs R.
        • Haslam R.
        Exchange transamination and the metabolism of glutamate in brain.
        Biochem J. 1965; 94: 131
        • Balazs R.
        Carbohydrate metabolism.
        in: Handbook of Neurochemistry. vol. 3.. Plenum Press, New York1970: 1-36
        • Hawkins R.A.
        • Mans A.M.
        • Davis D.W.
        • Vina J.
        • Hibbard L.
        Cerebral glucose use measured with [14C]glucose labeled in the 1, 2, or 6 position.
        Am J Physiol Cell Physiol. 1985; 248: C170-C176
        • Provencher S.W.
        Estimation of metabolite concentrations from localized in vivo proton NMR spectra.
        Magn Res Med. 1993; 30: 672-679
        • Rothman D.
        • Behar K.
        • Hetherington H.
        • den Hollander J.
        • Bendall M.
        • Petroff O.
        • et al.
        1H-Observe/13C-decouple spectroscopic measurements of lactate and glutamate in the rat brain in vivo.
        Proc Natl Acad Sci U S A. 1985; 82: 1633-1637
        • Chen W.
        • Adriany G.
        • Zhu X.H.
        • Gruetter R.
        • Ugurbil K.
        Detecting natural abundance carbon signal of NAA metabolite within 12-cm3 localized volume of human brain using 1H-[13C] NMR spectroscopy.
        Magn Res Med. 1998; 40: 180-184
        • Xin L.
        • Mlynárik V.
        • Lanz B.
        • Frenkel H.
        • Gruetter R.
        1H-[13C] NMR spectroscopy of the rat brain during infusion of [2-13C] acetate at 14.1 T.
        Magn Res Med. 2010; 64: 334-340
        • Rothman D.
        • Novotny E.
        • Shulman G.
        • Howseman A.
        • Petroff O.
        • Mason G.
        • et al.
        1H-[13C] NMR measurements of [4-13C]glutamate turnover in human brain.
        Proc Natl Acad Sci U S A. 1992; 89: 9603-9606
        • De Graaf R.A.
        • Mason G.F.
        • Patel A.B.
        • Rothman D.L.
        • Behar K.L.
        Regional glucose metabolism and glutamatergic neurotransmission in rat brain in vivo.
        Proc Natl Acad Sci U S A. 2004; 101: 12700-12705
        • Kanamatsu T.
        • Otsuki T.
        • Tokuno H.
        • Nambu A.
        • Takada M.
        • Okamoto K.
        • et al.
        Changes in the rates of the tricarboxylic acid (TCA) cycle and glutamine synthesis in the monkey brain with hemiparkinsonism induced by intracarotid infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): Studies by noninvasive 13C-magnetic resonance spectroscopy.
        Brain Res. 2007; 1181: 142-148
        • Mason G.F.
        • Pan J.W.
        • Chu W.-J.
        • Newcomer B.R.
        • Zhang Y.
        • Orr R.
        • et al.
        Measurement of the tricarboxylic acid cycle rate in human grey and white matter in vivo by 1H-[13C] magnetic resonance spectroscopy at 4.1 T.
        J Cereb Blood Flow Metab. 1999; 19: 1179-1188
        • Gruetter R.
        • Seaquist E.R.
        • Kim S.
        • Ugurbil K.
        Localized in vivo 13C-NMR of glutamate metabolism in the human brain: Initial results at 4 Tesla.
        Dev Neurosci. 1998; 20: 380-388
        • Chen W.
        • Zhu X.H.
        • Gruetter R.
        • Seaquist E.R.
        • Adriany G.
        • Ugurbil K.
        Study of tricarboxylic acid cycle flux changes in human visual cortex during hemifield visual stimulation using 1H-[13C] MRS and fMRI.
        Magn Reson Med. 2001; 45: 349-355