Advertisement

Alcohol Use Disorder and Its Comorbidity With HIV Infection Disrupts Anterior Cingulate Cortex Functional Connectivity

Published:November 28, 2020DOI:https://doi.org/10.1016/j.bpsc.2020.11.012

      Abstract

      Background

      Individuals with alcohol use disorder (AUD) have a heightened risk of contracting HIV infection. The effects of these two diseases and their comorbidity on brain structure have been well described, but their effects on brain function have never been investigated at the scale of whole-brain connectomes.

      Methods

      In contrast with prior studies that restricted analyses to specific brain networks or examined relatively small groups of participants, our analyses are based on whole-brain functional connectomes of 292 participants.

      Results

      Relative to participants without AUD, the functional connectivity between the anterior cingulate cortex and orbitofrontal cortex was lower for participants with AUD. Compared with participants without AUD+HIV comorbidity, the functional connectivity between the anterior cingulate cortex and hippocampus was lower for the AUD+HIV participants. Compromised connectivity between these pairs was significantly correlated with greater total lifetime alcohol consumption; the effects of total lifetime alcohol consumption on executive functioning were significantly mediated by the functional connectivity between the pairs.

      Conclusions

      Taken together, our results suggest that the functional connectivity of the anterior cingulate cortex is disrupted in individuals with AUD alone and AUD with HIV infection comorbidity. Moreover, the affected connections are associated with deficits in executive functioning, including heightened impulsiveness.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Bose J.
        • Hedden S.L.
        • Lipari R.N.
        • Park-Lee E.
        Key substance use and mental health indicators in the United States: Results from the 2017 National Survey on Drug Use and Health. HHS Publication No. SMA 18-5068, NSDUH Series H-53.
        Center for Behavioral Health Statistics and Quality, Substance Abuse and Mental Health Services Administration, Department of Health and Human Services, Rockville, MD2018
        • Pfefferbaum A.
        • Zahr N.
        • Sassoon S.
        • Kwon D.
        • Pohl K.
        • Sullivan E.
        Accelerating and premature aging characterizing regional cortical volume loss in human immunodeficiency virus infection: Contributions from alcohol, substance use, and hepatitis C coinfection.
        Biol Psychiatry Cogn Neurosci Neuroimaging3. 2018; : 844-859
        • Williams E.
        • Hahn J.
        • Saitz R.
        • Bryant K.
        • Lira M.
        • Samet J.
        Alcohol use and human immunodeficiency virus (HIV) infection: Current knowledge, implications, and future directions.
        Alcohol Clin Exp Res. 2016; 40: 2056-2072
        • Zahr N.
        The aging brain with HIV infection: Effects of alcoholism or hepatitis C comorbidity.
        Front Aging Neurosci. 2018; 10: 56
        • Bühler M.
        • Mann K.
        Alcohol and the human brain: A systematic review of different neuroimaging methods.
        Alcohol Clin Exp Res. 2011; 35: 1771-1793
        • Kopelman M.
        • Thomson A.
        • Guerrini I.
        • Marshall E.
        The Korsakoff syndrome: Clinical aspects, psychology and treatment.
        Alcohol Alcohol. 2009; 44: 148-154
        • Pitel A.
        • Segobin S.
        • Ritz L.
        • Eustache F.
        • Beaunieux H.
        Thalamic abnormalities are a cardinal feature of alcohol-related brain dysfunction.
        Neurosci Biobehav Rev. 2015; 54: 38-45
        • Sutherland G.
        • Sheedy D.
        • Kril J.
        Neuropathology of alcoholism.
        Handb Clin Neurol. 2014; : 125603-125615
        • Hakkers C.
        • Arends J.
        • Barth R.
        • Du Plessis S.
        • Hoepelman A.
        • Vink M.
        Review of functional MRI in HIV: Effects of aging and medication.
        J Neurovirol. 2017; 23: 20-32
        • Rosenbloom M.
        • Sullivan E.
        • Pfefferbaum A.
        Focus on the brain: HIV infection and alcoholism: Comorbidity effects on brain structure and function.
        Alcohol Res Health. 2010; 33: 247-257
        • Meyerhoff D.J.
        • MacKay S.
        • Sappey-Marinier D.
        • Deicken R.
        • Calabrese G.
        • Dillon W.P.
        • et al.
        Effects of chronic alcohol abuse and HIV infection on brain phosphorus metabolites.
        Alcohol Clin Exp Res. 1995; 19: 685-692
        • Pfefferbaum A.
        • Adalsteinsson E.
        • Sullivan E.V.
        Cortical NAA deficits in HIV infection without dementia: Influence of alcoholism comorbidity.
        Neuropsychopharmacology. 2005; 30: 1392-1399
        • Zahr N.M.
        • Mayer D.
        • Rohlfing T.
        • Sullivan E.V.
        • Pfefferbaum A.
        Imaging neuroinflammation? A perspective from MR spectroscopy.
        Brain Pathol. 2014; 24: 654-664
        • Bryant V.E.
        • Gullett J.M.
        • Porges E.C.
        • Cook R.L.
        • Bryant K.J.
        • Woods A.J.
        • et al.
        History of alcohol consumption and HIV status related to functional connectivity differences in the brain during working memory performance.
        Curr HIV Res. 2020; 18: 181-193
        • Fox M.
        • Raichle M.
        Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging.
        Nat Rev Neurosci. 2007; 8: 700-711
        • Chanraud S.
        • Pitel A.
        • Pfefferbaum A.
        • Sullivan E.
        Disruption of functional connectivity of the default-mode network in alcoholism.
        Cereb Cortex. 2011; 21: 2272-2281
        • Müller-Oehring E.
        • Jung Y.
        • Pfefferbaum A.
        • Sullivan E.
        • Schulte T.
        The resting brain of alcoholics.
        Cereb Cortex. 2015; 25: 4155-4168
        • Sullivan E.
        • Müller-Oehring E.
        • Pitel A.
        • Chanraud S.
        • Shankaranarayanan A.
        • Alsop D.
        • et al.
        A selective insular perfusion deficit contributes to compromised salience network connectivity in recovering alcoholic men.
        Biol Psychiatry. 2013; 74: 547-555
        • Park S.
        • Kahnt T.
        • Beck A.
        • Cohen M.
        • Dolan R.
        • Wrase J.
        • Heinz A.
        Prefrontal cortex fails to learn from reward prediction errors in alcohol dependence.
        J Neurosci. 2010; 30: 7749-7753
        • Koob G.
        The dark side of emotion: The addiction perspective.
        Eur J Pharmacol. 2015; 753: 73-87
        • Mac Lean P.
        Psychosomatic disease and the visceral brain; recent developments bearing on the Papez theory of emotion.
        Psychosom Med. 1949; 11: 338-353
        • Papez J.
        A proposed mechanism of emotion. 1937.
        J Neuropsychiatry Clin Neurosci. 1995; 7: 103-112
        • Rogers B.
        • Parks M.
        • Nickel M.
        • Katwal S.
        • Martin P.
        Reduced fronto-cerebellar functional connectivity in chronic alcoholic patients.
        Alcohol Clin Exp Res. 2012; 36: 294-301
        • LeDoux J.
        The amygdala.
        Curr Biol. 2007; 17: R868-R874
        • Gasquoine P.
        Localization of function in anterior cingulate cortex: From psychosurgery to functional neuroimaging.
        Neurosci Biobehav Rev. 2013; 37: 340-348
        • Stevens F.
        • Hurley R.
        • Taber K.
        Anterior cingulate cortex: Unique role in cognition and emotion.
        J Neuropsychiatry Clin Neurosci. 2011; 23: 121-125
        • Thayer R.E.
        • Montanaro E.
        • Weiland B.J.
        • Callahan T.J.
        • Bryan A.D.
        Exploring the relationship of functional network connectivity to latent trajectories of alcohol use and risky sex.
        Curr HIV Res. 2014; 12: 293-300
        • Cole J.H.
        • Caan M.
        • Underwood J.
        • De Francesco D.
        • van Zoest R.A.
        • Wit F.
        • et al.
        No evidence for accelerated aging-related brain pathology in treated human immunodeficiency virus: Longitudinal neuroimaging results from the Comorbidity in Relation to AIDS (COBRA) Project.
        Clin Infect Dis. 2018; 66: 1899-1909
        • Perry J.
        • Carroll M.
        The role of impulsive behavior in drug abuse.
        Psychopharmacology (Berl). 2008; 200: 1-26
        • Rubinov M.
        • Sporns O.
        Complex network measures of brain connectivity: Uses and interpretations.
        Neuroimage. 2010; 52: 1059-1069
        • Hollingshead A.
        • Redlich F.
        Social Class and Mental Illness.
        Wiley, New York1958
        • American Psychiatric Association
        Diagnostic and Statistical Manual of Mental Disorders.
        4th ed rev. American Psychiatric Press, Washington, DC2000
        • Karnofsky D.
        • Burchenal J.
        The clinical evaluation of chemotherapeutic agents in cancer.
        in: MacLeod C. Evaluation of Chemotherapeutic Agents. Columbia University Press, New York1949: 191-205
        • Zahr N.
        • Sullivan E.
        • Pohl K.
        • Pfefferbaum A.
        • Saranathan M.
        Sensitivity of ventrolateral posterior thalamic nucleus to back pain in alcoholism and CD4 nadir in HIV.
        Hum Brain Mapp. 2020; 41: 1351-1361
        • Golden C.
        Stroop Color and Word Test: A Manual for Clinical and Experimental Uses.
        Stoelting, Chicago1978
        • Stroop J.
        Studies of interference in serial verbal reactions.
        J Exp Psychol. 1935; 18: 643-662
        • Patton J.
        • Stanford M.
        • Barratt E.
        Factor structure of the Barratt impulsiveness scale.
        J Clin Psychol. 1995; 51: 768-774
        • Reise S.
        • Moore T.
        • Brown A.
        • London E.
        The Barratt impulsiveness scale - 11: Reassessment of its structure in a community sample.
        Psychol Assess. 2013; 25: 631-642
        • Coupe P.
        • Yger P.
        • Prima S.
        • Hellier P.
        • Kervrann C.
        • Barillot C.
        An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images.
        IEEE Trans Med Imaging. 2008; 27: 425-441
        • Rohlfing T.
        • Russakoff D.
        • Maurer C.
        Performance-based classifier combination in atlas-based image segmentation using expectation–maximization parameter estimation.
        IEEE Trans Med Imaging. 2004; 23: 983-994
        • Smith S.
        Fast robust automated brain extraction.
        Hum Brain Mapp. 2002; 17: 143-155
        • Cox R.
        AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages.
        Comput Biomed Res. 1996; 29: 162-173
        • Iglesias J.
        • Liu C.
        • Thompson P.
        • Tu Z.
        Robust brain extraction across datasets and comparison with publicly available methods.
        IEEE Trans Med Imaging. 2011; 30: 1617-1634
        • Avants B.
        • Tustison N.
        • Stauffer M.
        • Song G.
        • Wu B.
        • Gee J.
        The insight toolkit image registration framework.
        Front Neuroinform. 2014; 8: 44
        • Tustison N.
        • Avants B.
        • Cook P.
        • Zheng Y.
        • Egan A.
        • Yushkevich P.
        • Gee J.
        N4ITK: Improved N3 bias correction.
        IEEE Trans Med Imaging. 2010; 29: 1310-1320
        • Sadananthan S.A.
        • Zheng W.
        • Chee M.W.L.
        • Zagorodnov V.
        Skull stripping using graph cuts.
        Neuroimage. 2010; 49: 225-239
        • Avants B.
        • Tustison N.
        • Wu J.
        • Cook P.
        • Gee J.
        An open source multivariate framework for n-tissue segmentation with evaluation on public data.
        Neuroinformatics. 2011; 9: 381-400
        • Yushkevich P.
        • Piven J.
        • Hazlett H.
        • Smith R.
        • Ho S.
        • Gee J.
        • Gerig G.
        User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability.
        Neuroimage. 2006; 31: 1116-1128
        • Jenkinson M.
        • Bannister P.
        • Brady J.
        • Smith S.
        Improved optimization for the robust and accurate linear registration and motion correction of brain images.
        Neuroimage. 2002; 17: 825-841
        • Jenkinson M.
        • Beckmann C.F.
        • Behrens T.E.
        • Woolrich M.W.
        • Smith S.
        FSL. Neuroimage. 2012; 62: 782-790
        • Kruskal W.H.
        • Wallis W.A.
        Use of ranks in one-criterion variance analysis.
        J Am Stat Assoc. 1952; 47: 583-621
        • Calhoun V.D.
        • Wager T.D.
        • Krishnan A.
        • Rosch K.
        • Seymour K.
        • Nebel M.
        • Kiehl K.
        The impact of the T1 versus epi spatial normalization templates for fMRI data analyses.
        Hum Brain Mapp. 2017; 38: 5331-5342
        • Dohmatob E.
        • Varoquaux G.
        • Thirion B.
        Inter-subject registration of functional images: Do we need anatomical images?.
        Neuroscience. 2018; 12: 64
        • Rohlfing T.
        • Zahr N.
        • Sullivan E.
        • Pfefferbaum A.
        The SRI24 multichannel atlas of normal adult human brain structure.
        Hum Brain Mapp. 2014; 31: 798-819
        • Avants B.
        • Epstein C.
        • Grossman M.
        • Gee J.
        Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain.
        Med Image Anal. 2008; 12: 26-41
      1. Neuroimaging in Python Team (2009–2020): Nipype: Neuroimaging in Python pipelines and interfaces.
        (Available at:)
        • Gorgolewski K.
        • Burns C.
        • Madison C.
        • Clark D.
        • Halchenko Y.
        • Waskom M.
        • Ghosh S.
        Nipype: A flexible, lightweight and extensible neuroimaging data processing framework in python.
        Front Neuroinform. 2011; 5: 1-15
        • Behzadi Y.
        • Restom K.
        • Liau J.
        • Liu T.
        A component-based noise correction method (compcor) for bold and perfusion-based fMRI.
        Neuroimage. 2007; 37: 90-101
        • Mikl M.
        • Marecek R.
        • Hlustik P.
        • Pavlicova M.
        • Drastich A.
        • Chlebus P.
        • et al.
        Effects of spatial smoothing on fMRI group inferences.
        Magn Reson Imaging. 2008; 26: 490-503
        • Chen Y.
        • Wiesel A.
        • Eldar Y.C.
        • Hero A.O.
        Shrinkage algorithms for MMSE covariance estimation.
        IEEE Trans Signal Process. 2010; 58: 5016-5029
        • Fisher R.
        Frequency distribution of the values of the correlation coefficient in samples of an indefinitely large population.
        Biometrika. 1915; 10: 507-521
        • Blondel V.D.
        • Guillaume J.L.
        • Lambiotte R.
        • Lefebvre E.
        Fast unfolding of communities in large networks.
        J Stat Mech. 2008; 2008: P10008
        • Yeo B.
        • Krienen F.
        • Sepulcre J.
        • Sabuncu R.
        • Lashkari D.
        • Hollinshead M.
        • et al.
        The organization of the human cerebral cortex estimated by intrinsic functional connectivity.
        J Neurophysiol. 2011; 106: 1125-1165
        • Benjamini Y.
        • Hochberg Y.
        Controlling the false discovery rate: A practical and powerful approach to multiple testing.
        J R Stat Soc Series B Stat Methodol. 1995; 57: 289-300
        • Seabold S.
        • Perktold J.
        Statsmodels: Econometric and Statistical Modeling with Python.
        in: van der Walt S. Millman J. Proceedings of the 9th Python in Science Conference (SciPy 2010). SciPy Organizers, Austin, TX2010: 92-96
        • R Core Team
        R: A Language and Environment for Statistical Computing.
        R Foundation for Statistical Computing, Vienna, Austria2013
        • Hampel F.
        • Ronchetti E.
        • Rousseeuw P.
        • Stahel W.
        Robust Statistics: The Approach Based on Influence Functions.
        Wiley, New York1986
        • Spearman C.
        The proof and measurement of association between two things.
        Am J Psychol. 1904; 15: 72-101
        • Tofighi D.
        • MacKinnon D.
        Rmediation: An R package for mediation analysis confidence intervals.
        Behav Res Methods. 2011; 43: 692-700
        • Baron R.
        • Kenny D.
        The moderator-mediator variable distinction in social psychological research—conceptual, strategic, and statistical considerations.
        J Pers Soc Psychol. 1986; 51: 1173-1182
        • MacKinnon D.
        • Fritz M.
        • Williams J.
        • Lockwood C.
        Distribution of the product confidence limits for the indirect effect: Program PRODCLIN.
        Behav Res Methods. 2007; 39: 384-389
        • Daniel W.W.
        Spearman rank correlation coefficient.
        in: Applied Nonparametric Statistics. 2nd ed. PWS-Kent, Boston1990: 358-365
        • Towgood K.J.
        • Pitkanen M.
        • Kulasegaram R.
        • Fradera A.
        • Soni S.
        • Sibtain N.
        • et al.
        Regional cerebral blood flow and FDG uptake in asymptomatic HIV-1 men.
        Hum Brain Mapp. 2013; 34: 2484-2493
        • Blair K.
        • Smith B.
        • Mitchell D.
        • Morton J.
        • Vythilingam M.
        • Pessoa L.
        • et al.
        Modulation of emotion by cognition and cognition by emotion.
        Neuroimage. 2007; 35: 430-440
        • Etkin A.
        • Egner T.
        • Kalisch R.
        Emotional processing in anterior cingulate and medial prefrontal cortex.
        Trends Cogn Sci. 2011; 15: 85-93
        • Phan K.
        • Wager T.
        • Taylor S.
        • Liberzon I.
        Functional neuroanatomy of emotion: A meta-analysis of emotion activation studies in pet and fMRI.
        Neuroimage. 2002; 16: 331-348
        • Grabenhorst F.
        • Rolls E.
        Value, pleasure and choice in the ventral prefrontal cortex.
        Trends Cogn Sci. 2011; 15: 56-67
        • Margulies D.
        • Kelly A.
        • Uddin L.
        • Biswal B.
        • Castellanos F.
        • Milham M.
        Mapping the functional connectivity of anterior cingulate cortex.
        Neuroimage. 2007; 37: 579-588
        • Kamarajan C.
        • Ardekani B.
        • Pandey A.
        • Kinreich S.
        • Pandey G.
        • Chorlian D.
        • et al.
        Random Forest classification of alcohol use disorder using fMRI functional connectivity, neuropsychological functioning, and impulsivity measures.
        Brain Sci. 2020; 10: 115
        • De Wit H.
        Impulsivity as a determinant and consequence of drug use: A review of underlying processes.
        Addict Biol. 2009; 14: 22-31
        • Kraemer H.
        • Kiernan M.
        • Essex M.
        • Kupfer D.
        How and why criteria defining moderators and mediators differ between the Baron and Kenny and MacArthur approaches.
        Health Psychol. 2008; 27: S101-S108
        • Müller-Oehring E.
        • Kwon D.
        • Nagel B.
        • Sullivan E.
        • Chu W.
        • Rohlfing T.
        • Pohl K.
        Influences of age, sex, and moderate alcohol drinking on the intrinsic functional architecture of adolescent brains.
        Cereb Cortex. 2018; 28: 1049-1063
        • Camchong J.
        • Stenger A.
        • Fein G.
        Resting-state synchrony during early alcohol abstinence can predict subsequent relapse.
        Cereb Cortex. 2013; 23: 2086-2099
        • Chanraud S.
        • Pitel A.
        • Müller-Oehring E.
        • Pfefferbaum A.
        • Sullivan E.
        Remapping the brain to compensate for impairment in recovering alcoholics.
        Cereb Cortex. 2013; 23: 97-104
        • Power J.
        • Plitt M.
        • Gotts S.
        • Kundu P.
        • Voon V.
        • Bandettini P.
        • Martin A.
        Ridding fMRI data of motion-related influences: Removal of signals with distinct spatial and physical bases in multi-echo data.
        Proc Natl Acad Sci U S A. 2018; 115: E2105-E2114
        • Gonzalez-Castillo J.
        • Handwerker D.A.
        • Robinson M.E.
        • Hoy C.W.
        • Buchanan L.C.
        • Saad Z.S.
        • Bandettini P.A.
        The spatial structure of resting state connectivity stability on the scale of minutes.
        Front Neurosci. 2014; 8: 138
        • National Institute on Alcohol Abuse and Alcoholism
        Drinking levels defined.
        (Available at:) (Accessed January 12, 2021)