Advertisement

Increased Alpha-Band Connectivity During Tic Suppression in Children With Tourette Syndrome Revealed by Source Electroencephalography Analyses

      Abstract

      Background

      Tourette syndrome (TS) is a neurodevelopmental disorder involving chronic motor and phonic tics. Most individuals with TS can suppress their tics for at least a short period of time. Yet, the brain correlates of tic suppression are still poorly understood.

      Methods

      In the current study, high-density electroencephalography was recorded during a resting-state and a tic suppression session in 72 children with TS. Functional connectivity between cortical regions was assessed in the alpha band (8–13 Hz) using an electroencephalography source connectivity method. Graph theory and network-based statistics were used to assess the global network topology and to identify brain regions showing increased connectivity during tic suppression.

      Results

      Graph theoretical analyses revealed distinctive global network topology during tic suppression, relative to rest. Using network-based statistics, we found a subnetwork of increased connectivity during tic suppression (p < .001). That subnetwork encompassed many cortical areas, including the right superior frontal gyrus and the left precuneus, which are involved in the default mode network. We also found a condition-by-age interaction, suggesting age-mediated increases in connectivity during tic suppression.

      Conclusions

      These results suggest that children with TS suppress their tics through a brain circuit involving distributed cortical regions, many of which are part of the default mode network. Brain connectivity during tic suppression also increases as youths with TS mature. These results highlight a mechanism by which children with TS may control their tics, which could be relevant for future treatment studies.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • American Psychiatric Association
        Diagnostic and Statistical Manual of Mental Disorders.
        5th ed. American Psychiatric Press, Arlington, VA2013
        • Sambrani T.
        • Jakubovski E.
        • Müller-Vahl K.R.
        New insights into clinical characteristics of Gilles de la Tourette syndrome: Findings in 1032 patients from a single German center.
        Front Neurosci. 2016; 10: 415
        • Specht M.W.
        • Woods D.W.
        • Nicotra C.M.
        • Kelly L.M.
        • Ricketts E.J.
        • Conelea C.A.
        • et al.
        Effects of tic suppression: Ability to suppress, rebound, negative reinforcement, and habituation to the premonitory urge.
        Behav Res Ther. 2013; 51: 24-30
        • Conelea C.A.
        • Wellen B.
        • Woods D.W.
        • Greene D.J.
        • Black K.J.
        • Specht M.
        • et al.
        Patterns and predictors of tic suppressibility in youth with tic disorders.
        Front Psychiatry. 2018; 9 (188–188)
        • Ganos C.
        • Bongert J.
        • Asmuss L.
        • Martino D.
        • Haggard P.
        • Münchau A.
        The somatotopy of tic inhibition: Where and how much?.
        Movement Disorders. 2015; 30: 1184-1189
        • Peterson B.S.
        • Skudlarski P.
        • Anderson A.W.
        • et al.
        A functional magnetic resonance imaging study of tic suppression in Tourette syndrome.
        Arch Gen Psychiatry. 1998; 55: 326-333
        • Ganos C.
        • Kahl U.
        • Brandt V.
        • Schunke O.
        • Baumer T.
        • Thomalla G.
        • et al.
        The neural correlates of tic inhibition in Gilles de la Tourette syndrome.
        Neuropsychologia. 2014; 65: 297-301
        • van der Salm S.M.A.
        • van der Meer J.N.
        • Cath D.C.
        • Groot P.F.C.
        • van der Werf Y.D.
        • Brouwers E.
        • et al.
        Distinctive tics suppression network in Gilles de la Tourette syndrome distinguished from suppression of natural urges using multimodal imaging.
        NeuroImage Clin. 2018; 20: 783-792
        • Serrien D.J.
        • Orth M.
        • Evans A.H.
        • Lees A.J.
        • Brown P.
        Motor inhibition in patients with Gilles de la Tourette syndrome: Functional activation patterns as revealed by EEG coherence.
        Brain. 2005; 128: 116-125
        • Aron A.R.
        • Behrens T.E.
        • Smith S.
        • Frank M.J.
        • Poldrack R.A.
        Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI.
        J Neurosci. 2007; 27: 3743-3752
        • Andrews-Hanna J.R.
        • Smallwood J.
        • Spreng R.N.
        The default network and self-generated thought: Component processes, dynamic control, and clinical relevance.
        Ann N Y Acad Sci. 2014; 1316: 29-52
        • Gusnard D.A.
        • Akbudak E.
        • Shulman G.L.
        • Raichle M.E.
        Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function.
        Proc Natl Acad Sci U S A. 2001; 98: 4259
        • Ashwal S.
        Disorders of consciousness in children.
        in: Swaiman K.F. Ashwal S. Ferriero D.M. Schor N.F. Finkel R.S. Gropman A.L. Swaiman’s Pediatric Neurology. 6th ed. Elsevier, New York2017: 767-780
        • Mulders P.C.
        • van Eijndhoven P.F.
        • Beckmann C.F.
        Identifying large-scale neural networks using fMRI.
        in: Frodl T. Systems Neuroscience in Depression. Academic Press, San Diego2016: 209-237
        • Buckner R.L.
        • Andrews-Hanna J.R.
        • Schacter D.L.
        The brain’s default network.
        Ann N Y Acad Sci. 2008; 1124: 1-38
        • Fan S.
        • van den Heuvel O.A.
        • Cath D.C.
        • de Wit S.J.
        • Vriend C.
        • Veltman D.J.
        • et al.
        Altered functional connectivity in resting state networks in Tourette’s disorder.
        Front Hum Neurosci. 2018; 12 (363–363)
        • Miyakoshi M.
        • Jurgiel J.
        • Dillon A.
        • Chang S.
        • Piacentini J.
        • Makeig S.
        • et al.
        Modulation of frontal oscillatory power during blink suppression in children: Effects of premonitory urge and reward.
        Cereb Cortex Commun. 2020; 1: tgaa046
        • Loo S.K.
        • Miyakoshi M.
        • Tung K.
        • Lloyd E.
        • Salgari G.
        • Dillon A.
        • et al.
        Neural activation and connectivity during cued eye blinks in chronic tic disorders.
        NeuroImage Clin. 2019; 24: 101956
        • Hong H.J.
        • Sohn H.
        • Cha M.
        • Kim S.
        • Oh J.
        • Chu M.K.
        • et al.
        Increased frontomotor oscillations during tic suppression in children with Tourette syndrome.
        J Child Neurol. 2013; 28: 615-624
        • Brunner C.
        • Billinger M.
        • Seeber M.
        • Mullen T.R.
        • Makeig S.
        Volume conduction influences scalp-based connectivity estimates.
        Front Comput Neurosci. 2016; 10: 121
        • Van de Steen F.
        • Faes L.
        • Karahan E.
        • Songsiri J.
        • Valdes-Sosa P.A.
        • Marinazzo D.
        Critical comments on EEG sensor space dynamical connectivity analysis.
        Brain Topogr. 2019; 32: 643-654
        • Hassan M.
        • Dufor O.
        • Merlet I.
        • Berrou C.
        • Wendling F.
        EEG source connectivity analysis: From dense array recordings to brain networks.
        PLoS One. 2014; 9e105041
        • Rubinov M.
        • Sporns O.
        Complex network measures of brain connectivity: Uses and interpretations.
        NeuroImage. 2010; 52: 1059-1069
        • Bullmore E.
        • Sporns O.
        Complex brain networks: Graph theoretical analysis of structural and functional systems.
        Nat Rev Neurosci. 2009; 10: 186-198
        • Rangaprakash D.
        • Dretsch M.N.
        • Katz J.S.
        • Denney Jr., T.S.
        • Deshpande G.
        Dynamics of segregation and integration in directional brain networks: Illustration in soldiers with PTSD and neurotrauma.
        Front Neurosci. 2019; 13: 803
        • Wen H.
        • Liu Y.
        • Rekik I.
        • Wang S.
        • Chen Z.
        • Zhang J.
        • et al.
        Combining disrupted and discriminative topological properties of functional connectivity networks as neuroimaging biomarkers for accurate diagnosis of early Tourette syndrome children.
        Mol Neurobiol. 2018; 55: 3251-3269
        • Openneer T.J.C.
        • Marsman J.-B.C.
        • van der Meer D.
        • Forde N.J.
        • Akkermans S.E.A.
        • Naaijen J.
        • et al.
        A graph theory study of resting-state functional connectivity in children with Tourette syndrome.
        Cortex. 2020; 126: 63-72
        • Nunez P.L.
        • Wingeier B.M.
        • Silberstein R.B.
        Spatial-temporal structures of human alpha rhythms: Theory, microcurrent sources, multiscale measurements, and global binding of local networks.
        Hum Brain Mapp. 2001; 13: 125-164
        • Morand-Beaulieu S.
        • Grot S.
        • Lavoie J.
        • Leclerc J.B.
        • Luck D.
        • Lavoie M.E.
        The puzzling question of inhibitory control in Tourette syndrome: A meta-analysis.
        Neurosci Biobehav Rev. 2017; 80: 240-262
        • Kaufman J.
        • Birmaher B.
        • Brent D.
        • Rao U.
        • Flynn C.
        • Moreci P.
        • et al.
        Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version (K-SADS-PL): Initial reliability and validity data.
        J Am Acad Child Adolesc Psychiatry. 1997; 36: 980-988
        • Leckman J.F.
        • Riddle M.A.
        • Hardin M.T.
        • Ort S.I.
        • Swartz K.L.
        • Stevenson J.
        • et al.
        The Yale Global Tic Severity Scale: Initial testing of a clinician-rated scale of tic severity.
        J Am Acad Child Adolesc Psychiatry. 1989; 28: 566-573
        • Swanson J.M.
        • Kraemer H.C.
        • Hinshaw S.P.
        • Arnold L.E.
        • Conners C.K.
        • Abikoff H.B.
        • et al.
        Clinical relevance of the primary findings of the MTA: Success rates based on severity of ADHD and ODD symptoms at the end of treatment.
        J Am Acad Child Adolesc Psychiatry. 2001; 40: 168-179
        • Birmaher B.
        • Brent D.A.
        • Chiappetta L.
        • Bridge J.
        • Monga S.
        • Baugher M.
        Psychometric properties of the Screen for Child Anxiety Related Emotional Disorders (SCARED): A replication study.
        J Am Acad Child Adolesc Psychiatry. 1999; 38: 1230-1236
        • Barkley R.A.
        Defiant Children: A Clinician’s Manual for Assessment and Parent Training.
        2nd ed. Guilford Press, New York1997
        • Leckman J.F.
        • Sholomskas D.
        • Thompson W.D.
        • Belanger A.
        • Weissman M.M.
        Best estimate of lifetime psychiatric diagnosis: A methodological study.
        Arch Gen Psychiatry. 1982; 39: 879-883
        • Morie K.P.
        • Wu J.
        • Landi N.
        • Potenza M.N.
        • Mayes L.C.
        • Crowley M.J.
        Oscillatory dynamics of feedback processing in adolescents with prenatal cocaine exposure.
        Dev Neuropsychol. 2019; 44: 429-442
        • Crowley M.J.
        • van Noordt S.J.R.
        • Wu J.
        • Hommer R.E.
        • South M.
        • Fearon R.M.P.
        • et al.
        Reward feedback processing in children and adolescents: Medial frontal theta oscillations.
        Brain Cogn. 2014; 89: 79-89
        • Debnath R.
        • Buzzell G.A.
        • Morales S.
        • Bowers M.E.
        • Leach S.C.
        • Fox N.A.
        The Maryland analysis of developmental EEG (MADE) pipeline.
        Psychophysiology. 2020; 57e13580
        • Delorme A.
        • Makeig S.
        EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis.
        J Neurosci Methods. 2004; 134: 9-21
        • Tadel F.
        • Baillet S.
        • Mosher J.C.
        • Pantazis D.
        • Leahy R.M.
        Brainstorm: A user-friendly application for MEG/EEG analysis.
        Comput Intell Neurosci. 2011; 2011: 879716
        • Desikan R.S.
        • Ségonne F.
        • Fischl B.
        • Quinn B.T.
        • Dickerson B.C.
        • Blacker D.
        • et al.
        An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest.
        NeuroImage. 2006; 31: 968-980
        • Lachaux J.-P.
        • Rodriguez E.
        • Martinerie J.
        • Varela F.J.
        Measuring phase synchrony in brain signals.
        Hum Brain Mapp. 1999; 8: 194-208
        • Aydore S.
        • Pantazis D.
        • Leahy R.M.
        A note on the phase locking value and its properties.
        NeuroImage. 2013; 74: 231-244
        • Hassan M.
        • Merlet I.
        • Mheich A.
        • Kabbara A.
        • Biraben A.
        • Nica A.
        • et al.
        Identification of interictal epileptic networks from dense-EEG.
        Brain Topogr. 2017; 30: 60-76
        • Brauchli C.
        • Leipold S.
        • Jäncke L.
        Diminished large-scale functional brain networks in absolute pitch during the perception of naturalistic music and audiobooks.
        NeuroImage. 2020; 216: 116513
        • Xu T.
        • Cullen K.R.
        • Mueller B.
        • Schreiner M.W.
        • Lim K.O.
        • Schulz S.C.
        • et al.
        Network analysis of functional brain connectivity in borderline personality disorder using resting-state fMRI.
        NeuroImage Clin. 2016; 11: 302-315
        • Xue K.
        • Luo C.
        • Zhang D.
        • Yang T.
        • Li J.
        • Gong D.
        • et al.
        Diffusion tensor tractography reveals disrupted structural connectivity in childhood absence epilepsy.
        Epilepsy Res. 2014; 108: 125-138
        • Zalesky A.
        • Fornito A.
        • Bullmore E.T.
        Network-based statistic: Identifying differences in brain networks.
        NeuroImage. 2010; 53: 1197-1207
        • Xia M.
        • Wang J.
        • He Y.
        BrainNet viewer: A network visualization tool for human brain connectomics.
        PLoS One. 2013; 8e68910
        • Shannon P.
        • Markiel A.
        • Ozier O.
        • Baliga N.S.
        • Wang J.T.
        • Ramage D.
        • et al.
        Cytoscape: A software environment for integrated models of biomolecular interaction networks.
        Genome Res. 2003; 13: 2498-2504
        • Settle B.
        • Otasek D.
        • Morris J.H.
        • Demchak B.
        aMatReader: Importing adjacency matrices via Cytoscape Automation.
        F1000Res. 2018; 7 (ISCB Comm J-823)
        • van den Heuvel M.P.
        • Sporns O.
        Network hubs in the human brain.
        Trends Cogn Sci. 2013; 17: 683-696
        • Worbe Y.
        • Malherbe C.
        • Hartmann A.
        • Pélégrini-Issac M.
        • Messé A.
        • Vidailhet M.
        • et al.
        Functional immaturity of cortico-basal ganglia networks in Gilles de la Tourette syndrome.
        Brain. 2012; 135: 1937-1946
        • Sukhodolsky D.G.
        • Woods D.W.
        • Piacentini J.
        • Wilhelm S.
        • Peterson A.L.
        • Katsovich L.
        • et al.
        Moderators and predictors of response to behavior therapy for tics in Tourette syndrome.
        Neurology. 2017; 88: 1029-1036
        • Uddin L.Q.
        • Yeo B.T.T.
        • Spreng R.N.
        Towards a universal taxonomy of macro-scale functional human brain networks.
        Brain Topogr. 2019; 32: 926-942
        • Tomasi D.
        • Volkow N.D.
        Functional connectivity hubs in the human brain.
        NeuroImage. 2011; 57: 908-917
        • Cavanna A.E.
        • Trimble M.R.
        The precuneus: A review of its functional anatomy and behavioural correlates.
        Brain. 2006; 129: 564-583
        • Utevsky A.V.
        • Smith D.V.
        • Huettel S.A.
        Precuneus is a functional core of the default-mode network.
        J Neurosci. 2014; 34: 932-940
        • Cavanna A.E.
        • Nani A.
        Tourette syndrome and consciousness of action.
        Tremor Other Hyperkinet Mov (N Y). 2013; 3 (tre-03-181-4368-4361)
        • Matsuda N.
        • Nonaka M.
        • Kono T.
        • Fujio M.
        • Nobuyoshi M.
        • Kano Y.
        Premonitory awareness facilitates tic suppression: Subscales of the Premonitory Urge for Tics Scale and a new self-report questionnaire for tic-associated sensations.
        Front Psychiatry. 2020; 11 (592–592)
        • Vogeley K.
        • Bussfeld P.
        • Newen A.
        • Herrmann S.
        • Happé F.
        • Falkai P.
        • et al.
        Mind reading: Neural mechanisms of theory of mind and self-perspective.
        NeuroImage. 2001; 14: 170-181
        • Delorme C.
        • Salvador A.
        • Voon V.
        • Roze E.
        • Vidailhet M.
        • Hartmann A.
        • et al.
        Illusion of agency in patients with Gilles de la Tourette Syndrome.
        Cortex. 2016; 77: 132-140
        • Sigurdsson H.P.
        • Jackson S.R.
        • Jolley L.
        • Mitchell E.
        • Jackson G.M.
        Alterations in cerebellar grey matter structure and covariance networks in young people with Tourette syndrome.
        Cortex. 2020; 126: 1-15
        • Ganos C.
        • Asmuss L.
        • Bongert J.
        • Brandt V.
        • Münchau A.
        • Haggard P.
        Volitional action as perceptual detection: Predictors of conscious intention in adolescents with tic disorders.
        Cortex. 2015; 64: 47-54
        • Cui Y.
        • Jin Z.
        • Chen X.
        • He Y.
        • Liang X.
        • Zheng Y.
        Abnormal baseline brain activity in drug-naïve patients with Tourette syndrome: A resting-state fMRI study.
        Front Hum Neurosci. 2014; 7 (913–913)
        • Tikoo S.
        • Cardona F.
        • Tommasin S.
        • Giannì C.
        • Conte G.
        • Upadhyay N.
        • et al.
        Resting-state functional connectivity in drug-naive pediatric patients with Tourette syndrome and obsessive-compulsive disorder.
        J Psychiatr Res. 2020; 129: 129-140
        • Castellanos F.X.
        • Aoki Y.
        Intrinsic functional connectivity in attention-deficit/hyperactivity disorder: A science in development.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2016; 1: 253-261
        • Gao Y.
        • Shuai D.
        • Bu X.
        • Hu X.
        • Tang S.
        • Zhang L.
        • et al.
        Impairments of large-scale functional networks in attention-deficit/hyperactivity disorder: A meta-analysis of resting-state functional connectivity.
        Psychol Med. 2019; 49: 2475-2485
        • Aron A.R.
        • Robbins T.W.
        • Poldrack R.A.
        Inhibition and the right inferior frontal cortex: One decade on.
        Trends Cogn Sci. 2014; 18: 177-185
        • Conelea C.A.
        • Woods D.W.
        Examining the impact of distraction on tic suppression in children and adolescents with Tourette syndrome.
        Behav Res Ther. 2008; 46: 1193-1200
        • Menon V.
        Large-scale brain networks and psychopathology: A unifying triple network model.
        Trends Cogn Sci. 2011; 15: 483-506
        • Sridharan D.
        • Levitin D.J.
        • Menon V.
        A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks.
        Proc Natl Acad Sci U S A. 2008; 105: 12569-12574
        • Northoff G.
        • Hirjak D.
        • Wolf R.C.
        • Magioncalda P.
        • Martino M.
        All roads lead to the motor cortex: Psychomotor mechanisms and their biochemical modulation in psychiatric disorders.
        Mol Psychiatry. 2021; 26: 92-102
        • Bohlhalter S.
        • Goldfine A.
        • Matteson S.
        • Garraux G.
        • Hanakawa T.
        • Kansaku K.
        • et al.
        Neural correlates of tic generation in Tourette syndrome: An event-related functional MRI study.
        Brain. 2006; 129: 2029-2037
        • Neuner I.
        • Werner C.J.
        • Arrubla J.
        • Stocker T.
        • Ehlen C.
        • Wegener H.P.
        • et al.
        Imaging the where and when of tic generation and resting state networks in adult Tourette patients.
        Front Hum Neurosci. 2014; 8: 362
        • Worbe Y.
        • Marrakchi-Kacem L.
        • Lecomte S.
        • Valabregue R.
        • Poupon F.
        • Guevara P.
        • et al.
        Altered structural connectivity of cortico-striato-pallido-thalamic networks in Gilles de la Tourette syndrome.
        Brain. 2015; 138: 472-482
        • Mazzone L.
        • Yu S.
        • Blair C.
        • Gunter B.C.
        • Wang Z.
        • Marsh R.
        • et al.
        An FMRI study of frontostriatal circuits during the inhibition of eye blinking in persons with Tourette syndrome.
        Am J Psychiatry. 2010; 167: 341-349
        • Nielsen A.N.
        • Gratton C.
        • Church J.A.
        • Dosenbach N.U.F.
        • Black K.J.
        • Petersen S.E.
        • et al.
        Atypical functional connectivity in Tourette syndrome differs between children and adults.
        Biol Psychiatry. 2020; 87: 164-173
        • Fair D.A.
        • Cohen A.L.
        • Dosenbach N.U.F.
        • Church J.A.
        • Miezin F.M.
        • Barch D.M.
        • et al.
        The maturing architecture of the brain’s default network.
        Proc Natl Acad Sci U S A. 2008; 105: 4028
        • Rebello K.
        • Moura L.M.
        • Pinaya W.H.L.
        • Rohde L.A.
        • Sato J.R.
        Default mode network maturation and environmental adversities during childhood.
        Chronic Stress (Thousand Oaks). 2018; 2 (2470547018808295)
        • Sherman L.E.
        • Rudie J.D.
        • Pfeifer J.H.
        • Masten C.L.
        • McNealy K.
        • Dapretto M.
        Development of the default mode and central executive networks across early adolescence: A longitudinal study.
        Dev Cogn Neurosci. 2014; 10: 148-159
        • Ramkiran S.
        • Heidemeyer L.
        • Gaebler A.
        • Shah N.J.
        • Neuner I.
        Alterations in basal ganglia-cerebello-thalamo-cortical connectivity and whole brain functional network topology in Tourette’s syndrome.
        NeuroImage Clin. 2019; 24: 101998
        • Leckman J.F.
        • Zhang H.
        • Vitale A.
        • Lahnin F.
        • Lynch K.
        • Bondi C.
        • et al.
        Course of tic severity in Tourette syndrome: The first two decades.
        Pediatrics. 1998; 102: 14-19
        • Woods D.W.
        • Piacentini J.
        • Himle M.B.
        • Chang S.
        Premonitory Urge for Tics Scale (PUTS): Initial psychometric results and examination of the premonitory urge phenomenon in youths with Tic disorders.
        J Dev Behav Pediatr. 2005; 26: 397-403
        • Gulisano M.
        • Calì P.
        • Palermo F.
        • Robertson M.
        • Rizzo R.
        Premonitory urges in patients with Gilles de la Tourette syndrome: An Italian translation and a 7-year follow-up.
        J Child Adolesc Psychopharmacol. 2015; 25: 810-816
        • Piacentini J.
        • Woods D.W.
        • Scahill L.
        • Wilhelm S.
        • Peterson A.L.
        • Chang S.
        • et al.
        Behavior therapy for children with Tourette disorder: A randomized controlled trial.
        JAMA. 2010; 303: 1929-1937
        • Reese H.E.
        • Brown W.A.
        • Summers B.J.
        • Shin J.
        • Wheeler G.
        • Wilhelm S.
        Feasibility and acceptability of an online mindfulness-based group intervention for adults with tic disorders.
        Pilot Feasibility Stud. 2021; 7: 82
        • Reese H.E.
        • Vallejo Z.
        • Rasmussen J.
        • Crowe K.
        • Rosenfield E.
        • Wilhelm S.
        Mindfulness-based stress reduction for Tourette syndrome and chronic tic disorder: A pilot study.
        J Psychosom Res. 2015; 78: 293-298
        • Essoe J.K.-Y.
        • Ramsey K.A.
        • Singer H.S.
        • Grados M.
        • McGuire J.F.
        Mechanisms underlying behavior therapy for Tourette’s disorder [published onlinea head of print Feb 24].
        Curr Dev Disord Rep. 2021;
        • Zhang R.
        • Volkow N.D.
        Brain default-mode network dysfunction in addiction.
        NeuroImage. 2019; 200: 313-331
        • Bitsko R.H.
        • Holbrook J.R.
        • Visser S.N.
        • Mink J.W.
        • Zinner S.H.
        • Ghandour R.M.
        • et al.
        A national profile of Tourette syndrome, 2011-2012.
        J Dev Behav Pediatr. 2014; 35: 317-322