Advertisement

The Eyes Have It: A Meta-analysis of Oculomotor Inhibition in Attention-Deficit/Hyperactivity Disorder

      Abstract

      Background

      Diminished inhibitory control is one of the main characteristics of attention-deficit/hyperactivity disorder (ADHD), and impairments in oculomotor inhibition have been proposed as a potential biomarker of the disorder. The present meta-analysis summarizes the effects reported in studies comparing oculomotor inhibition in ADHD patients and healthy control subjects.

      Methods

      Inhibitory outcomes were derived from oculomotor experimental paradigms including the antisaccade (AS), memory-guided saccade, and prolonged fixation tasks. Temporal and spatial measures were also extracted from these tasks and from visually guided saccade tasks as secondary outcomes. Data were available from k = 31 studies (N = 1567 participants). Summary effect sizes were computed using random-effects models and a restricted maximum-likelihood estimator.

      Results

      Among inhibitory outcomes, direction errors in AS, after correcting for publication bias, showed a moderate effect and large between-study heterogeneity (k = 18, n = 739, g = 0.57, 95% confidence interval [CI] [0.27, 0.88], I2 = 74%); anticipatory saccades in memory-guided saccade showed a large effect and low heterogeneity (k = 11, n = 487; g = 0.86, 95% CI [0.64, 1.08], I2 = 17.7%); and saccades during prolonged fixation evidenced large effect size and heterogeneity (k = 6, n = 325 g = 1.11, 95% CI [0.56, 1.65], I2 = 79.1%) partially related to age. Among secondary outcomes, saccadic reaction time in AS (k = 22, n = 932, g = 0.34, 95% CI [0.06, 0.63], I2 = 53.12%) and coefficient of variability in visually guided saccade (k = 5, n = 282, g = 0.53, 95% CI [0.28, 0.78], I2 = 0.01%) indicated significant effects with small to moderate effects sizes.

      Conclusions

      ADHD groups commit more oculomotor inhibition failures than control groups. The substantial effects support the conclusion that oculomotor disinhibition is a relevant ADHD-related mechanism. Moderate effects observed in saccadic reaction time variability suggest that fluctuant performance in oculomotor tasks is another relevant characteristic of ADHD.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • American Psychiatric Association
        Diagnostic and Statistical Manual of Mental Disorders.
        5th ed. American Psychiatric Publishing, Arlington, VA2013
        • Thapar A.
        • Cooper M.
        • Eyre O.
        • Langley K.
        What have we learnt about the causes of ADHD?.
        J Child Psychol Psychiatry. 2013; 54: 3-16
        • Pouget P.
        Introduction to the study of eye movements.
        in: Klein C. Ettinger U. Eye Movement Research. An Introduction to Its Scientific Foundations and Applications. Springer International, Cham, Switzerland2019
        • Milea D.
        • Lobel E.
        • Lehéricy S.
        • Leboucher P.
        • Pochon J.B.
        • Pierrot-Deseilligny C.
        • Berthoz A.
        Prefrontal cortex is involved in internal decision of forthcoming saccades.
        Neuroreport. 2007; 18: 1221-1224
        • Polner B.
        • Aichert D.
        • Macare C.
        • Costa A.
        • Ettinger U.
        Gently restless: Association of ADHD-like traits with response inhibition and interference control.
        Eur Arch Psychiatry Clin Neurosci. 2015; 265: 689-699
        • Roberts W.
        • Fillmore M.T.
        • Milich R.
        Linking impulsivity and inhibitory control using manual and oculomotor response inhibition tasks.
        Acta Psychol (Amst). 2011; 138: 419-428
        • Bompas A.
        • Campbell A.E.
        • Sumner P.
        cognitive control and automatic interference in mind and brain: A unified model of saccadic inhibition and countermanding.
        Psychol Rev. 2020; 127: 524-561
        • Ettinger U.
        • Aichert D.S.
        • Wöstmann N.
        • Dehning S.
        • Riedel M.
        • Kumari V.
        Response inhibition and interference control: Effects of schizophrenia, genetic risk, and schizotypy.
        J Neuropsychol. 2018; 12: 484-510
        • Bari A.
        • Robbins T.W.
        Inhibition and impulsivity: Behavioral and neural basis of response control.
        Prog Neurobiol. 2013; 108: 44-79
        • Miyake A.
        • Friedman N.P.
        • Emerson M.J.
        • Witzki A.H.
        • Howerter A.
        The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis.
        Cogn Psychol. 2000; 41: 49-100
        • Wodka E.L.
        • Mahone E.M.
        • Blankner J.G.
        • Larson J.C.G.
        • Fotedar S.
        • Denckla M.B.
        • Mostofsky S.H.
        Evidence that response inhibition is a primary deficit in ADHD.
        J Clin Exp Neuropsychol. 2007; 29: 345-356
        • Barkley R.A.
        Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD.
        Psychol Bull. 1997; 121: 65-94
        • Nigg J.T.
        On inhibition/disinhibition in developmental psychopathology: Views from cognitive and personality psychology and a working inhibition taxonomy.
        Psychol Bull. 2000; 126: 220-246
        • Aron A.R.
        From reactive to proactive and selective control: Developing a richer model for stopping inappropriate responses.
        Biol Psychiatry. 2011; 69: e55-e68
        • Hutton S.B.
        • Ettinger U.
        The antisaccade task as a research tool in psychopathology: A critical review.
        Psychophysiology. 2006; 43: 302-313
        • Munoz D.
        • Everling S.
        Look away: The anti-saccade task and the voluntary control of eye movement.
        Nat Rev Neurosci. 2004; 5: 218-228
        • Goto Y.
        • Hatakeyama K.
        • Kitama T.
        • Sato Y.
        • Kanemura H.
        • Aoyagi K.
        • et al.
        Saccade eye movements as a quantitative measure of frontostriatal network in children with ADHD.
        Brain Dev. 2010; 32: 347-355
        • Klein C.
        • Raschke A.
        • Brandenbusch A.
        Development of pro- and antisaccades in children with attention-deficit hyperactivity disorder (ADHD) and healthy controls.
        Psychophysiology. 2003; 40: 17-28
        • Mahone E.M.
        • Mostofsky S.H.
        • Lasker A.G.
        • Zee D.S.
        • Denckla M.B.
        Oculomotor anomalies in attention-deficit/hyperactivity disorder: Evidence for deficits in response preparation and inhibition.
        J Am Acad Child Adolesc Psychiatry. 2009; 48: 749-756
        • Munoz D.
        • Armstrong I.T.
        • Hampton K.A.
        • Moore K.D.
        Altered control of visual fixation and saccadic eye movements in attention-deficit hyperactivity disorder.
        J Neurophysiol. 2003; 90: 503-514
        • Nigg J.T.
        • Butler K.M.
        • Huang-Pollock C.L.
        • Henderson J.M.
        Inhibitory processes in adults with persistent childhood onset ADHD.
        J Consult Clin Psychol. 2002; 70: 153-157
        • Hakvoort Schwerdtfeger R.M.
        • Alahyane N.
        • Brien D.C.
        • Coe B.C.
        • Stroman P.W.
        • Munoz D.P.
        Preparatory neural networks are impaired in adults with attention-deficit/hyperactivity disorder during the antisaccade task.
        Neuroimage Clin. 2013; 2: 63-78
        • Fernandez-Ruiz J.
        • Hakvoort Schwerdtfeger R.M.
        • Alahyane N.
        • Brien D.C.
        • Coe B.C.
        • Munoz D.P.
        Dorsolateral prefrontal cortex hyperactivity during inhibitory control in children with ADHD in the antisaccade task.
        Brain Imaging Behav. 2020; 14: 2450-2463
        • Hanisch C.
        • Radach R.
        • Holtkamp K.
        • Herpertz-Dahlmann B.
        • Konrad K.
        Oculomotor inhibition in children with and without attention-deficit hyperactivity disorder (ADHD).
        J Neural Transm (Vienna). 2006; 113: 671-684
        • Adams Z.W.
        • Milich R.
        • Fillmore M.T.
        Examining manual and visual response inhibition among ADHD subtypes.
        J Abnorm Child Psychol. 2010; 38: 971-983
        • Van Der Stigchel S.
        • Rommelse N.N.J.
        • Deijen J.B.
        • Geldof C.J.A.
        • Witlox J.
        • Oosterlaan J.
        • et al.
        Oculomotor capture in ADHD.
        Cogn Neuropsychol. 2007; 24: 535-549
        • Nigg J.T.
        Is ADHD a disinhibitory disorder?.
        Psychol Bull. 2001; 127: 571-598
        • Gould T.D.
        • Bastain T.M.
        • Israel M.E.
        • Hommer D.W.
        • Castellanos F.X.
        Altered performance on an ocular fixation task in attention-deficit/hyperactivity disorder.
        Biol Psychiatry. 2001; 50: 633-635
        • Loe I.M.
        • Feldman H.M.
        • Yasui E.
        • Luna B.
        Oculomotor performance identifies underlying cognitive deficits in ADHD.
        J Am Acad Child Adolesc Psychiatry. 2009; 48: 431-440
        • Adams Z.W.
        • Roberts W.M.
        • Milich R.
        • Fillmore M.T.
        Does response variability predict distractibility among adults with attention-deficit/hyperactivity disorder?.
        Psychol Assess. 2011; 23: 427-436
        • Friedman N.P.
        • Miyake A.
        The relations among inhibition and interference control functions: A latent-variable analysis.
        J Exp Psychol Gen. 2004; 133: 101-135
        • Massen C.
        Parallel programming of exogenous and endogenous components in the antisaccade task.
        Q J Exp Psychol A. 2004; 57: 475-498
        • Mostofsky S.H.
        • Lasker A.G.
        • Singer H.S.
        • Denckla M.B.
        • Zee D.S.
        Oculomotor abnormalities in boys with Tourette syndrome with and without ADHD.
        J Am Acad Child Adolesc Psychiatry. 2001; 40: 1464-1472
        • Epstein J.N.
        • Langberg J.M.
        • Rosen P.J.
        • Graham A.
        • Narad M.E.
        • Antonini T.N.
        • et al.
        Evidence for higher reaction time variability for children with ADHD on a range of cognitive tasks including reward and event rate manipulations.
        Neuropsychology. 2011; 25: 427-441
        • Kofler M.J.
        • Rapport M.D.
        • Sarver D.E.
        • Raiker J.S.
        • Orban S.A.
        • Friedman L.M.
        • Kolomeyer E.G.
        Reaction time variability in ADHD: A meta-analytic review of 319 studies.
        Clin Psychol Rev. 2013; 33: 795-811
        • Matsuo Y.
        • Watanabe M.
        • Taniike M.
        • Mohri I.
        • Kobashi S.
        • Tachibana M.
        • et al.
        Gap effect abnormalities during a visually guided Pro-Saccade task in children with attention deficit hyperactivity disorder.
        PLoS One. 2015; 10e0125573
        • Ettinger U.
        • Hejda S.
        • Flak V.
        • Corr P.J.
        Prepulse inhibition of the acoustic startle reflex and oculomotor control.
        Psychophysiology. 2005; 42: 473-482
        • Shamseer L.
        • Moher D.
        • Clarke M.
        • Ghersi D.
        • Liberati A.
        • Petticrew M.
        • et al.
        Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation.
        BMJ. 2015; 350: g7647
        • Moola S.
        • Munn Z.
        • Tufanaru C.
        • Aromataris E.
        • Sears K.
        • Sfetcu R.
        • et al.
        Chapter 7: Systematic reviews of etiology and risk.
        in: Aromataris E.M.Z. Joanna Briggs Institute Reviewer’s Manual. Joanna Briggs Institute, Adelaide, Australia2017
        • Higgins J.P.
        • Li T.
        • Deeks J.J.
        Chapter 6: Choosing effect measures and computing estimates of effect.
        in: Higgins J. Thomas J. Chandler J. Cumpston M. Li T. Page M. Welch V. Cochrane Handbook for Systematic Reviews of Interventions, version 6.0. Cochrane, 2020 (Available at:) (Accessed February 28, 2020)
        • Viechtbauer W.
        Conducting meta-analyses in R with the metafor.
        J Stat Softw. 2010; 36: 1-48
        • Cohen J.
        Statistical power analysis.
        Curr Dir Psychol Sci. 1992; 1: 98-101
        • Peters J.L.
        • Sutton A.J.
        • Jones D.R.
        • Abrams K.R.
        • Rushton L.
        Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry.
        J Clin Epidemiol. 2008; 61: 991-996
        • Higgins J.
        • Thompson S.
        • Deeks J.
        • Altman D.G.
        Measuring inconsistency in meta-analyses.
        BMJ. 2003; 327: 557-560
        • Chan F.
        • Armstrong I.T.
        • Pari G.
        • Riopelle R.J.
        • Munoz D.P.
        Deficits in saccadic eye-movement control in Parkinson’s disease.
        Neuropsychologia. 2005; 43: 784-796
        • Schwarz N.F.
        • Krafft C.E.
        • Chi L.
        • Weinberger A.L.
        • Schaeffer D.J.
        • Pierce J.E.
        • et al.
        Antisaccade-related brain activation in children with attention- deficit/hyperactivity disorder—A pilot study.
        Psychiatry Res. 2015; 234: 272-279
        • Dafoe J.M.
        • Armstrong I.T.
        • Munoz D.P.
        The influence of stimulus direction and eccentricity on pro- and anti-saccades in humans.
        Exp Brain Res. 2007; 179: 563-570
        • Antoniades C.
        • Ettinger U.
        • Gaymard B.
        • Gilchrist I.
        • Kristjánsson A.
        • Kennard C.
        • et al.
        An internationally standardised antisaccade protocol.
        Vision Res. 2013; 84: 1-5
        • Cutsuridis V.
        • Kumari V.
        • Ettinger U.
        Antisaccade performance in schizophrenia: A neural model of decision making in the superior colliculus.
        Front Neurosci. 2014; 8: 13
        • Noorani I.
        • Carpenter R.H.S.
        The LATER model of reaction time and decision.
        Neurosci Biobehav Rev. 2016; 64: 229-251
        • Aponte E.A.
        • Schöbi D.
        • Stephan K.E.
        • Heinzle J.
        The stochastic early reaction, inhibition, and late action (SERIA) model for antisaccades.
        PLoS Comput Biol. 2017; 13e1005692
        • Ross R.G.
        • Harris J.G.
        • Olincy A.
        • Radant A.
        Eye movement task measures inhibition and spatial working memory in adults with schizophrenia, ADHD, and a normal comparison group.
        Psychiatry Res. 2000; 95: 35-42
        • Rommelse N.N.J.
        • Van Der Stigchel S.
        • Witlox J.
        • Geldof C.
        • Deijen J.B.
        • Theeuwes J.
        • et al.
        Deficits in visuo-spatial working memory, inhibition and oculomotor control in boys with ADHD and their non-affected brothers.
        J Neural Transm (Vienna). 2008; 115: 249-260
        • Chamorro Y.
        • Ramírez-Dueñas M.D.L.
        • Matute E.
        Anticipatory oculomotor responses in parents of children with attention deficit hyperactivity disorder.
        Psychiatr Genet. 2020; : 65-72
        • Feifel D.
        • Farber R.H.
        • Clementz B.A.
        • Perry W.
        • Anllo-Vento L.
        Inhibitory deficits in ocular motor behavior in adults with attention-deficit/hyperactivity disorder.
        Biol Psychiatry. 2004; 56: 333-339
        • Cairney S.
        • Maruff P.
        • Vance A.
        • Barnett R.
        • Luk E.
        • Currie J.
        Contextual abnormalities of saccadic inhibition in children with attention deficit hyperactivity disorder.
        Exp Brain Res. 2001; 141: 507-518
        • Hikosaka O.
        • Takikawa Y.
        • Kawagoe R.
        Role of the basal ganglia in the control of purposive saccadic eye movements.
        Physiol Rev. 2000; 80: 953-978
        • Caldani S.
        • Razuk M.
        • Septier M.
        • Barela J.A.
        • Delorme R.
        • Acquaviva E.
        • Bucci M.P.
        The effect of dual task on attentional performance in children with ADHD.
        Front Integr Neurosci. 2019; 12: 67
        • Friedman-Hill S.R.
        • Wagman M.R.
        • Gex S.E.
        • Pine D.S.
        • Leibenluft E.
        • Ungerleider L.G.
        What does distractibility in ADHD reveal about mechanisms for top-down attentional control?.
        Cognition. 2010; 115: 93-103
        • Huang-Pollock C.L.
        • Nigg J.T.
        • Carr T.H.
        Deficient attention is hard to find: Applying the perceptual load model of selective attention to attention deficit hyperactivity disorder subtypes.
        J Child Psychol Psychiatry. 2005; 46: 1211-1218
        • Luna B.
        • Velanova K.
        • Geier C.F.
        Development of eye-movement control.
        Brain Cogn. 2008; 68: 293-308
        • Castellanos F.X.
        • Sonuga-Barke E.J.S.
        • Milham M.P.
        • Tannock R.
        Characterizing cognition in ADHD: Beyond executive dysfunction.
        Trends Cogn Sci. 2006; 10: 117-124
        • Karatekin C.
        • Bingham C.
        • White T.
        Oculomotor and pupillometric indices of pro- and antisaccade performance in youth-onset psychosis and attention deficit/hyperactivity disorder.
        Schizophr Bull. 2010; 36: 1167-1186
        • Lijffijt M.
        • Kenemans J.L.
        • Verbaten M.N.
        • Van Engeland H.
        A meta-analytic review of stopping performance in attention-deficit/ hyperactivity disorder: Deficient inhibitory motor control?.
        J Abnorm Psychol. 2005; 114: 216-222
        • McAuley T.
        • Yap M.
        • Christ S.E.
        • White D.A.
        Revisiting inhibitory control across the life span: Insights from the ex-Gaussian distribution.
        Dev Neuropsychol. 2006; 29: 447-458
        • Castellanos F.X.
        • Tannock R.
        Neuroscience of attention-deficit/hyperactivity disorder: The search for endophenotypes.
        Nat Rev Neurosci. 2002; 3: 617-628
        • Ettinger U.
        • Kumari V.
        • Crawford T.J.
        • Corr P.J.
        • Das M.
        • Zachariah E.
        • et al.
        Smooth pursuit and antisaccade eye movements in siblings discordant for schizophrenia.
        J Psychiatr Res. 2004; 38: 177-184
        • Willcutt E.G.
        • Doyle A.E.
        • Nigg J.T.
        • Faraone S.V.
        • Pennington B.F.
        Validity of the executive function theory of attention-deficit/hyperactivity disorder: A meta-analytic review.
        Biol Psychiatry. 2005; 57: 1336-1346
        • Perquin M.N.
        • Bompas A.
        Reliability and correlates of intra-individual variability in the oculomotor system.
        J Eye Mov Res. 2019; 12 (0.16910/jemr.12.6.11)
        • Bey K.
        • Lennertz L.
        • Grützmann R.
        • Heinzel S.
        • Kaufmann C.
        • Klawohn J.
        • et al.
        Impaired antisaccades in obsessive-compulsive disorder: Evidence from meta-analysis and a large empirical study.
        Front Psychiatry. 2018; 9: 284
        • Kleberg J.L.
        • Frick M.A.
        • Brocki K.C.
        Can auditory warning signals normalize eye movements in children with ADHD?.
        Eur Child Adolesc Psychiatry. 2020; 29: 1635-1644
        • Huang J.H.
        • Chan Y.S.
        Saccade eye movement in children with attention deficit hyperactivity disorder.
        Nord J Psychiatry. 2019; 74: 16-22
        • Bucci M.P.
        • Goulème N.
        • Dehouck D.
        • Stordeur C.
        • Acquaviva E.
        • Septier M.
        • et al.
        Interactions between eye movements and posture in children with neurodevelopmental disorders.
        Int J Dev Neurosci. 2018; 71: 61-67
        • Bucci M.P
        • Stordeur C.
        • Septier M.
        • Acquaviva E.
        • Peyre H.
        • Delorme R.
        • et al.
        Oculomotor abnormalities in children with attention-deficit/hyperactivity disorder are improved by methylphenidate.
        J Child Adolesc Psychopharmacol. 2017; 27: 274-280
        • Connolly A.J.
        • Rinehart N.J.
        • Johnson B.
        • Papadopoulos N.
        • Fielding J.
        Voluntary saccades in attention-deficit/hyperactivity disorder: Looking into the relationship between motor impairment and Autism Spectrum Disorder symptoms.
        Neuroscience. 2016; 334: 47-54
        • Connolly A.J.
        • Rinehart N.J.
        • Fielding J.
        Saccade adaptation in young people diagnosed with attention deficit hyperactivity disorder combined type.
        Neuroscience. 2016; 333: 27-34
        • Bucci M.P.
        • Seassau M.
        • Larger S.
        • Bui-Quoc E.
        • Gerard C.L.
        Effect of visual attention on postural control in children with attention-deficit/hyperactivity disorder.
        Res Dev Disabil. 2014; 35: 1292-1300
        • White T.
        • Mous S.
        • Karatekin C.
        Memory-guided saccades in youth-onset psychosis and attention deficit hyperactivity disorder (ADHD).
        Early Interv Psychiatry. 2014; 8: 229-239
        • Karatekin C.
        Improving antisaccade performance in adolescents with attention-deficit/ hyperactivity disorder (ADHD).
        Exp Brain Res. 2006; 174: 324-341
        • O’Driscoll G.A.
        • Dépatie L.
        • Holahan A.L.V.
        • Savion-Lemieux T.
        • Barr R.G.
        • Jolicoeur C.
        • Douglas V.I.
        Executive functions and methylphenidate response in subtypes of attention-deficit/hyperactivity disorder.
        Biol Psychiatry. 2005; 57: 1452-1460
        • Mostofsky S.H.
        • Lasker A.G.
        • Cutting L.E.
        • Denckla M.B.
        • Zee D.S.
        Oculomotor abnormalities in attention deficit hyperactivity disorder: A preliminary study.
        Neurology. 2001; 57: 423-430
        • Castellanos F.X.
        • Marvasti F.F.
        • Ducharme J.L.
        • Walter J.M.
        • Israel M.E.
        • Krain A.
        • et al.
        Executive function oculomotor tasks in girls with ADHD.
        J Am Acad Child Adolesc Psychiatry. 2000; 39: 644-650
        • Karatekin C.
        • Asarnow R.F.
        Components of visual search in childhood-onset schizophrenia and attention-deficit/hyperactivity disorder.
        J Abnorm Child Psychol. 1998; 26: 367-380
        • Ross R.G.
        • Hommer D.W.
        • Breiger D.
        • Varley C.
        • Radant A.
        Eye movement task related to frontal lobe functioning in children with attention deficit disorder.
        J Am Acad Child Adolesc Psychiatry. 1994; 33: 869-874
        • Rothlind J.C.
        • Posner M.I.
        • Schaughency E.A.
        Lateralized control of eye movements in attention deficit hyperactivity disorder.
        J Cogn Neurosci. 1991; 3: 377-381