Symptom-Based Profiling and Multimodal Neuroimaging of a Large Preteenage Population Identifies Distinct Obsessive-Compulsive Disorder–like Subtypes With Neurocognitive Differences

  • Author Footnotes
    1 XW and GY contributed equally to this work.
    Xinran Wu
    Footnotes
    1 XW and GY contributed equally to this work.
    Affiliations
    Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
    Search for articles by this author
  • Author Footnotes
    1 XW and GY contributed equally to this work.
    Gechang Yu
    Footnotes
    1 XW and GY contributed equally to this work.
    Affiliations
    Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
    Search for articles by this author
  • Kai Zhang
    Affiliations
    School of Computer Science and Technology, East China Normal University, Shanghai, China
    Search for articles by this author
  • Jianfeng Feng
    Affiliations
    Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China

    Shanghai Center for Mathematical Sciences, Shanghai, China

    Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China

    Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China

    Department of Computer Science, University of Warwick, Coventry, United Kingdom
    Search for articles by this author
  • Jie Zhang
    Correspondence
    Address correspondence to Jie Zhang, Ph.D.
    Affiliations
    Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China

    Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
    Search for articles by this author
  • Barbara J. Sahakian
    Affiliations
    Departments of Psychiatry, University of Cambridge, Cambridge, United Kingdom

    Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
    Search for articles by this author
  • Trevor W. Robbins
    Affiliations
    Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China

    Department of Psychology, University of Cambridge, Cambridge, United Kingdom

    Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
    Search for articles by this author
  • Author Footnotes
    1 XW and GY contributed equally to this work.

      Abstract

      Background

      Obsessive-compulsive disorder (OCD) is characterized by both internalizing (anxiety) and externalizing (compulsivity) symptoms. Currently, little is known about their interrelationships and their relative contributions to disease heterogeneity. Our goal is to resolve affective and cognitive symptom heterogeneity related to internalized and externalized symptom dimensions by determining subtypes of children with OCD symptoms, and to identify any corresponding neural differences.

      Methods

      A total of 1269 children with OCD symptoms screened using the Child Behavior Checklist Obsessive-Compulsive Symptom scale and 3987 matched control subjects were obtained from the Adolescent Brain Cognitive Development (ABCD) Study. Consensus hierarchical clustering was used to cluster children with OCD symptoms into distinct subtypes. Ten neurocognitive task scores and 20 Child Behavior Checklist syndrome scales were used to characterize cognitive/behavioral differences. Gray matter volume, fractional anisotropy of major white matter fiber tracts, and functional connectivity among networks were used in case-control studies.

      Results

      We identified two subgroups with contrasting patterns in internalized and externalized dimensions. Group 1 showed compulsive thoughts and repeated acts but relatively low anxiety symptoms, whereas group 2 exhibited higher anxiety and perfectionism and relatively low repetitive behavior. Only group 1 had significant cognitive impairments and gray matter volume reductions in the bilateral inferior parietal lobe, precentral gyrus, and precuneus gyrus, and had white matter tract fractional anisotropy reductions in the corticostriatal fasciculus.

      Conclusions

      Children with OCD symptoms are heterogeneous at the level of symptom clustering and its underlying neural basis. Two subgroups represent distinct patterns of externalizing and internalizing symptoms, suggesting that anxiety is not its major predisposing factor. These results may have implications for the nosology and treatment of preteenage OCD.

      Keywords

      To read this article in full you will need to make a payment

      References

        • de Mathis M.A.
        • Diniz J.B.
        • Hounie A.G.
        • Shavitt R.G.
        • Fossaluza V.
        • Ferrão Y.
        • et al.
        Trajectory in obsessive-compulsive disorder comorbidities.
        Eur Neuropsychopharmacol. 2013; 23: 594-601
        • Karno M.
        • Golding J.M.
        • Sorenson S.B.
        • Burnam M.A.
        The epidemiology of obsessive-compulsive disorder in five US communities.
        Arch Gen Psychiatry. 1988; 45: 1094-1099
        • Poyurovsky M.
        Exploring OCD subtypes and treatment resistance.
        Psychiatr Times. 2007; 24 (42-42)
        • Lochner C.
        • Stein D.J.
        Heterogeneity of obsessive-compulsive disorder: A literature review.
        Harv Rev Psychiatry. 2003; 11: 113-132
        • Bragdon L.B.
        • Coles M.E.
        Examining heterogeneity of obsessive-compulsive disorder: Evidence for subgroups based on motivations.
        J Anxiety Disord. 2017; 45: 64-71
        • Miguel E.
        • Leckman J.
        • Rauch S.
        • do Rosario-Campos M.
        • Hounie A.
        • Mercadante M.
        • et al.
        Obsessive-compulsive disorder phenotypes: Implications for genetic studies.
        Mol Psychiatry. 2005; 10: 258-275
        • Ivarsson T.
        • Larsson B.
        The Obsessive-Compulsive Symptom (OCS) scale of the Child Behavior Checklist: A comparison between Swedish children with Obsessive-Compulsive Disorder from a specialized unit, regular outpatients and a school sample.
        J Anxiety Disord. 2008; 22: 1172-1179
        • Van Den Heuvel O.A.
        • Remijnse P.L.
        • Mataix-Cols D.
        • Vrenken H.
        • Groenewegen H.J.
        • Uylings H.B.
        • et al.
        The major symptom dimensions of obsessive-compulsive disorder are mediated by partially distinct neural systems.
        Brain. 2009; 132: 853-868
        • Mataix-Cols D.
        • Wooderson S.
        • Lawrence N.
        • Brammer M.J.
        • Speckens A.
        • Phillips M.L.
        Distinct neural correlates of washing, checking, and hoarding symptomdimensions in obsessive-compulsive disorder.
        Arch Gen Psychiatry. 2004; 61: 564-576
        • Jahanshahi M.
        • Obeso I.
        • Rothwell J.C.
        • Obeso J.A.
        A fronto–striato–subthalamic–pallidal network for goal-directed and habitual inhibition.
        Nat Rev Neurosci. 2015; 16: 719-732
        • Menzies L.
        • Chamberlain S.R.
        • Laird A.R.
        • Thelen S.M.
        • Sahakian B.J.
        • Bullmore E.T.
        Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: The orbitofronto-striatal model revisited.
        Neurosci Biobehav Rev. 2008; 32: 525-549
        • Boedhoe P.S.
        • Schmaal L.
        • Abe Y.
        • Ameis S.H.
        • Arnold P.D.
        • Batistuzzo M.C.
        • et al.
        Distinct subcortical volume alterations in pediatric and adult OCD: A worldwide meta-and mega-analysis.
        Am J Psychiatry. 2017; 174: 60-69
        • Stern E.R.
        • Fitzgerald K.D.
        • Welsh R.C.
        • Abelson J.L.
        • Taylor S.F.
        Resting-state functional connectivity between fronto-parietal and default mode networks in obsessive-compulsive disorder.
        PLoS One. 2012; 7e36356
        • Simon D.
        • Adler N.
        • Kaufmann C.
        • Kathmann N.
        Amygdala hyperactivation during symptom provocation in obsessive–compulsive disorder and its modulation by distraction.
        NeuroImage Clin. 2014; 4: 549-557
        • Guzick A.G.
        • Cooke D.L.
        • McNamara J.P.
        • Reid A.M.
        • Graziano P.A.
        • Lewin A.B.
        • et al.
        Parents’ perceptions of internalizing and externalizing features in childhood OCD.
        Child Psychiatry Hum Dev. 2019; 50: 692-701
        • Dollard J.
        • Miller N.E.
        Personality and Psychotherapy: An Analysis in Terms of Learning, Thinking, and Culture.
        McGraw-Hill, New York, NY1950
        • Rachman S.
        Obsessional-compulsive checking.
        Behav Res Ther. 1976; 14: 269-277
        • Foa E.B.
        Cognitive behavioral therapy of obsessive-compulsive disorder.
        Dialogues Clin Neurosci. 2010; 12: 199-207
        • Robbins T.W.
        • Vaghi M.M.
        • Banca P.
        Obsessive-compulsive disorder: Puzzles and prospects.
        Neuron. 2019; 102: 27-47
        • Stein D.J.
        Psychobiology of anxiety disorders and obsessive-compulsive spectrum disorders.
        CNS Spectr. 2008; 13: 23-28
        • Wheaton M.G.
        • Mahaffey B.
        • Timpano K.R.
        • Berman N.C.
        • Abramowitz J.S.
        The relationship between anxiety sensitivity and obsessive-compulsive symptom dimensions.
        J Behav Ther Exp Psychiatry. 2012; 43: 891-896
        • Calamari J.E.
        • Wiegartz P.S.
        • Janeck A.S.
        Obsessive–compulsive disorder subgroups: A symptom-based clustering approach.
        Behav Res Ther. 1999; 37: 113-125
        • Lochner C.
        • Hemmings S.M.
        • Kinnear C.J.
        • Nel D.
        • Seedat S.
        • Moolman-Smook J.C.
        • et al.
        Cluster analysis of obsessive-compulsive symptomatology: Identifying obsessive-compulsive disorder subtypes.
        Isr J Psychiatry Relat Sci. 2008; 45: 164-176
        • Hasanpour H.
        • Asadi S.
        • Meibodi R.G.
        • Daraeian A.
        • Ahmadiani A.
        • Shams J.
        • et al.
        A critical appraisal of heterogeneity in obsessive-compulsive disorder using symptom-based clustering analysis.
        Asian J Psychiatry. 2017; 28: 89-96
        • Harrison B.J.
        • Pujol J.
        • Cardoner N.
        • Deus J.
        • Alonso P.
        • López-Solà M.
        • et al.
        Brain corticostriatal systems and the major clinical symptom dimensions of obsessive-compulsive disorder.
        Biol Psychiatry. 2013; 73: 321-328
        • Lochner C.
        • Stein D.J.
        Does work on obsessive–compulsive spectrum disorders contribute to understanding the heterogeneity of obsessive–compulsive disorder?.
        Prog Neuropsychopharmacol Biol Psychiatry. 2006; 30: 353-361
        • Achenbach T.M.
        The Child Behavior Checklist and related instruments.
        in: Maruish M.E. The Use of Psychological Testing for Treatment Planning and Outcomes Assessment. Erlbaum, Mahwah, NJ1999: 429-466
        • Mazefsky C.A.
        • Anderson R.
        • Conner C.M.
        • Minshew N.
        Child behavior checklist scores for school-aged children with autism: Preliminary evidence of patterns suggesting the need for referral.
        J Psychopathol Behav Assess. 2011; 33: 31-37
        • Achenbach T.M.
        • Ruffle T.M.
        The Child Behavior Checklist and related forms for assessing behavioral/emotional problems and competencies.
        Pediatr Rev. 2000; 21: 265-271
        • Karcher N.R.
        • Barch D.M.
        The ABCD study: Understanding the development of risk for mental and physical health outcomes.
        Neuropsychopharmacology. 2021; 46: 131-142
        • Barch D.M.
        • Albaugh M.D.
        • Avenevoli S.
        • Chang L.
        • Clark D.B.
        • Glantz M.D.
        • et al.
        Demographic, physical and mental health assessments in the adolescent brain and cognitive development study: Rationale and description.
        Dev Cogn Neurosci. 2018; 32: 55-66
        • Nelson E.C.
        • Hanna G.L.
        • Hudziak J.J.
        • Botteron K.N.
        • Heath A.C.
        • Todd R.D.
        Obsessive-compulsive scale of the child behavior checklist: Specificity, sensitivity, and predictive power.
        Pediatrics. 2001; 108: E14
        • Saad L.O.
        • do Rosario M.C.
        • Cesar R.C.
        • Batistuzzo M.C.
        • Hoexter M.Q.
        • Manfro G.G.
        • et al.
        The Child Behavior Checklist—Obsessive-Compulsive Subscale detects severe psychopathology and behavioral problems among school-aged children.
        J Child Adolesc Psychopharmacol. 2017; 27: 342-348
        • Andersen P.A.S.
        • Bilenberg N.
        Comparison of Child Behavior Checklist subscales in screening for obsessive-compulsive disorder.
        Dan Med J. 2012; 59: A4523
        • Hudziak J.J.
        • Althoff R.R.
        • Stanger C.
        • van Beijsterveldt C.
        • Nelson E.C.
        • Hanna G.L.
        • et al.
        The obsessive compulsive scale of the child behavior checklist predicts obsessive-compulsive disorder: A receiver operating characteristic curve analysis.
        J Child Psychol Psychiatry. 2006; 47: 160-166
        • Bartz J.A.
        • Hollander E.
        Is obsessive–compulsive disorder an anxiety disorder?.
        Prog Neuropsychopharmacol Biol Psychiatry. 2006; 30: 338-352
        • Sassaroli S.
        • Lauro L.J.R.
        • Ruggiero G.M.
        • Mauri M.C.
        • Vinai P.
        • Frost R.
        Perfectionism in depression, obsessive-compulsive disorder and eating disorders.
        Behav Res Ther. 2008; 46: 757-765
        • Robbins T.W.
        • Gillan C.M.
        • Smith D.G.
        • de Wit S.
        • Ersche K.D.
        Neurocognitive endophenotypes of impulsivity and compulsivity: Towards dimensional psychiatry.
        Trends Cogn Sci. 2012; 16: 81-91
        • Monti S.
        • Tamayo P.
        • Mesirov J.
        • Golub T.
        Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data.
        Mach Learn. 2003; 52: 91-118
        • Liu Y.
        • Gu Q.
        • Hou J.P.
        • Han J.
        • Ma J.
        A network-assisted co-clustering algorithm to discover cancer subtypes based on gene expression.
        BMC Bioinformatics. 2014; 15: 37
        • Rasero J.
        • Pellicoro M.
        • Angelini L.
        • Cortes J.M.
        • Marinazzo D.
        • Stramaglia S.
        Consensus clustering approach to group brain connectivity matrices.
        Netw Neurosci. 2017; 1: 242-253
        • Dwyer D.B.
        • Kalman J.L.
        • Budde M.
        • Kambeitz J.
        • Ruef A.
        • Antonucci L.A.
        • et al.
        An investigation of psychosis subgroups with prognostic validation and exploration of genetic underpinnings: The PsyCourse Study.
        JAMA Psychiatry. 2020; 77: 523-533
        • Maechler M.
        • Rousseeuw P.
        • Struyf A.
        • Hubert M.
        • Hornik K.
        Cluster: Cluster analysis basics and extensions.
        R package version 1:56. 2012; (Available at:)
        • Casey B.
        • Cannonier T.
        • Conley M.I.
        • Cohen A.O.
        • Barch D.M.
        • Heitzeg M.M.
        • et al.
        The adolescent brain cognitive development (ABCD) study: Imaging acquisition across 21 sites.
        Dev Cogn Neurosci. 2018; 32: 43-54
        • Desikan R.S.
        • Ségonne F.
        • Fischl B.
        • Quinn B.T.
        • Dickerson B.C.
        • Blacker D.
        • et al.
        An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest.
        NeuroImage. 2006; 31: 968-980
        • Fischl B.
        • Salat D.H.
        • Busa E.
        • Albert M.
        • Dieterich M.
        • Haselgrove C.
        • et al.
        Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain.
        Neuron. 2002; 33: 341-355
        • Hagler Jr., D.J.
        • Ahmadi M.E.
        • Kuperman J.
        • Holland D.
        • McDonald C.R.
        • Halgren E.
        • et al.
        Automated white-matter tractography using a probabilistic diffusion tensor atlas: Application to temporal lobe epilepsy.
        Hum Brain Mapp. 2009; 30: 1535-1547
        • Gordon E.M.
        • Laumann T.O.
        • Adeyemo B.
        • Huckins J.F.
        • Kelley W.M.
        • Petersen S.E.
        Generation and evaluation of a cortical area parcellation from resting-state correlations.
        Cereb Cortex. 2016; 26: 288-303
        • Cheng W.
        • Rolls E.
        • Gong W.
        • Du J.
        • Zhang J.
        • Zhang X.-Y.
        • et al.
        Sleep duration, brain structure, and psychiatric and cognitive problems in children [published online ahead of print Feb 3].
        Mol Psychiatry. 2020;
        • Masi G.
        • Millepiedi S.
        • Mucci M.
        • Bertini N.
        • Pfanner C.
        • Arcangeli F.
        Comorbidity of obsessive-compulsive disorder and attention-deficit/hyperactivity disorder in referred children and adolescents.
        Compr Psychiatry. 2006; 47: 42-47
        • Abramovitch A.
        • Dar R.
        • Mittelman A.
        • Wilhelm S.
        Comorbidity between attention deficit/hyperactivity disorder and obsessive-compulsive disorder across the lifespan: A systematic and critical review.
        Harv Rev Psychiatry. 2015; 23: 245
        • Mersin Kilic S.
        • Dondu A.
        • Memis C.O.
        • Ozdemiroglu F.
        • Sevincok L.
        The clinical characteristics of ADHD and obsessive-compulsive disorder comorbidity.
        J Atten Disord. 2020; 24: 1757-1763
        • Pinto A.
        • Greene A.L.
        • Storch E.A.
        • Simpson H.B.
        Prevalence of childhood obsessive–compulsive personality traits in adults with obsessive compulsive disorder versus obsessive compulsive personality disorder.
        J Obsessive Compuls Relat Disord. 2015; 4: 25-29
        • Diedrich A.
        • Voderholzer U.
        Obsessive–compulsive personality disorder: A current review.
        Curr Psychiatry Rep. 2015; 17: 2
        • Kaczkurkin A.N.
        • Moore T.M.
        • Sotiras A.
        • Xia C.H.
        • Shinohara R.T.
        • Satterthwaite T.D.
        Approaches to defining common and dissociable neurobiological deficits associated with psychopathology in youth.
        Biol Psychiatry. 2020; 88: 51-62
        • Feczko E.
        • Fair D.A.
        Methods and challenges for assessing heterogeneity.
        Biol Psychiatry. 2020; 88: 9-17
        • Lynch C.J.
        • Gunning F.M.
        • Liston C.
        Causes and consequences of diagnostic heterogeneity in depression: Paths to discovering novel biological depression subtypes.
        Biol Psychiatry. 2020; 88: 83-94
        • Goodman W.K.
        • Price L.H.
        • Rasmussen S.A.
        • Mazure C.
        • Fleischmann R.L.
        • Hill C.L.
        • et al.
        The Yale-Brown obsessive compulsive scale: I. Development, use, and reliability.
        Arch Gen Psychiatry. 1989; 46: 1006-1011
        • Insel T.
        • Cuthbert B.
        • Garvey M.
        • Heinssen R.
        • Pine D.S.
        • Quinn K.
        • et al.
        Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders.
        Am J Psychiatry. 2010; 167: 748-751
        • Cuthbert B.N.
        • Insel T.R.
        Toward the future of psychiatric diagnosis: The seven pillars of RDoC.
        BMC Med. 2013; 11: 126
        • Garnaat S.L.
        • Conelea C.A.
        • McLaughlin N.C.R.
        • Benito K.
        Pediatric OCD in the era of RDoC.
        J Obsessive Compuls Relat Disord. 2019; 23: 100385
        • Gillan C.M.
        • Fineberg N.A.
        • Robbins T.W.
        A trans-diagnostic perspective on obsessive-compulsive disorder.
        Psychol Med. 2017; 47: 1528-1548
        • Pagliaccio D.
        • Durham K.
        • Fitzgerald K.D.
        • Marsh R.
        Obsessive-compulsive symptoms among children in the Adolescent Brain and Cognitive Development Study: Clinical, cognitive, and brain connectivity correlates.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2020; 6: 399-409
        • Nordahl T.E.
        • Benkelfat C.
        • Semple W.E.
        • Gross M.
        • King A.C.
        • Cohen R.M.
        Cerebral glucose metabolic rates in obsessive compulsive disorder.
        Neuropsychopharmacology. 1989; 2: 23-28
        • Rauch S.L.
        • Jenike M.A.
        • Alpert N.M.
        • Baer L.
        • Breiter H.C.
        • Savage C.R.
        • et al.
        Regional cerebral blood flow measured during symptom provocation in obsessive-compulsive disorder using oxygen 15—labeled carbon dioxide and positron emission tomography.
        Arch Gen Psychiatry. 1994; 51: 62-70
        • Valente Jr., A.A.
        • Miguel E.C.
        • Castro C.C.
        • Amaro Jr., E.
        • Duran F.L.
        • Buchpiguel C.A.
        • et al.
        Regional gray matter abnormalities in obsessive-compulsive disorder: A voxel-based morphometry study.
        Biol Psychiatry. 2005; 58: 479-487
        • Carmona S.
        • Bassas N.
        • Rovira M.
        • Gispert J.-D.
        • Soliva J.-C.
        • Prado M.
        • et al.
        Pediatric OCD structural brain deficits in conflict monitoring circuits: A voxel-based morphometry study.
        Neurosci Lett. 2007; 421: 218-223
        • Chamberlain S.R.
        • Menzies L.
        • Hampshire A.
        • Suckling J.
        • Fineberg N.A.
        • del Campo N.
        • et al.
        Orbitofrontal dysfunction in patients with obsessive-compulsive disorder and their unaffected relatives.
        Science. 2008; 321: 421-422
        • Boedhoe P.S.
        • Schmaal L.
        • Abe Y.
        • Alonso P.
        • Ameis S.H.
        • Anticevic A.
        • et al.
        Cortical abnormalities associated with pediatric and adult obsessive-compulsive disorder: Findings from the ENIGMA Obsessive-Compulsive Disorder Working Group.
        Am J Psychiatry. 2018; 175: 453-462
        • Van den Heuvel O.A.
        • Boedhoe P.S.
        • Bertolin S.
        • Bruin W.B.
        • Francks C.
        • Ivanov I.
        • et al.
        An overview of the first 5 years of the ENIGMA obsessive–compulsive disorder working group: The power of worldwide collaboration [published online ahead of print Mar 10].
        Hum Brain Mapp. 2020;
        • Szeszko P.R.
        • Ardekani B.A.
        • Ashtari M.
        • Malhotra A.K.
        • Robinson D.G.
        • Bilder R.M.
        • et al.
        White matter abnormalities in obsessive-compulsive disorder: A diffusion tensor imaging study.
        Arch Gen Psychiatry. 2005; 62: 782-790
        • de Wit S.J.
        • de Vries F.E.
        • van der Werf Y.D.
        • Cath D.C.
        • Heslenfeld D.J.
        • Veltman E.M.
        • et al.
        Presupplementary motor area hyperactivity during response inhibition: A candidate endophenotype of obsessive-compulsive disorder.
        Am J Psychiatry. 2012; 169: 1100-1108
        • Morein-Zamir S.
        • Voon V.
        • Dodds C.M.
        • Sule A.
        • van Niekerk J.
        • Sahakian B.J.
        • et al.
        Divergent subcortical activity for distinct executive functions: Stopping and shifting in obsessive compulsive disorder.
        Psychol Med. 2016; 46: 829-840
        • Jones R.
        • Bhattacharya J.
        A role for the precuneus in thought–action fusion: Evidence from participants with significant obsessive–compulsive symptoms.
        NeuroImage Clin. 2014; 4: 112-121
        • Shafran R.
        • Rachman S.
        Thought-action fusion: A review.
        J Behav Ther Exp Psychiatry. 2004; 35: 87-107
        • Weeland C.J.
        • White T.
        • Vriend C.
        • Muetzel R.L.
        • Starreveld J.
        • Hillegers M.H.J.
        • et al.
        Brain morphology associated with obsessive-compulsive symptoms in 2,551 children from the general population.
        J Am Acad Child Adolesc Psychiatry. 2021; 60: 470-478
        • Barnes S.A.
        • Sawiak S.J.
        • Caprioli D.
        • Jupp B.
        • Buonincontri G.
        • Mar A.C.
        • et al.
        Impaired limbic cortico-striatal structure and sustained visual attention in a rodent model of schizophrenia.
        Int J Neuropsychopharmacol. 2015; 18: pyu010
        • Mills K.L.
        • Bathula D.
        • Costa Dias T.G.
        • Iyer S.P.
        • Fenesy M.C.
        • Musser E.D.
        • et al.
        Altered cortico-striatal–thalamic connectivity in relation to spatial working memory capacity in children with ADHD.
        Front Psychiatry. 2012; 3: 2
        • Murty V.P.
        • Sambataro F.
        • Radulescu E.
        • Altamura M.
        • Iudicello J.
        • Zoltick B.
        • et al.
        Selective updating of working memory content modulates meso-cortico-striatal activity.
        NeuroImage. 2011; 57: 1264-1272
        • Marek S.
        • Dosenbach N.U.
        The frontoparietal network: Function, electrophysiology, and importance of individual precision mapping.
        Dialogues Clin Neurosci. 2018; 20: 133-140
        • Yeo B.T.
        • Krienen F.M.
        • Sepulcre J.
        • Sabuncu M.R.
        • Lashkari D.
        • Hollinshead M.
        • et al.
        The organization of the human cerebral cortex estimated by intrinsic functional connectivity.
        J Neurophysiol. 2011; 106: 1125-1165
        • Jang J.H.
        • Kim J.-H.
        • Jung W.H.
        • Choi J.-S.
        • Jung M.H.
        • Lee J.-M.
        • et al.
        Functional connectivity in fronto-subcortical circuitry during the resting state in obsessive-compulsive disorder.
        Neurosci Lett. 2010; 474: 158-162
        • de Lange S.C.
        • Scholtens L.H.
        • van den Berg L.H.
        • Boks M.P.
        • Bozzali M.
        • Cahn W.
        • et al.
        Shared vulnerability for connectome alterations across psychiatric and neurological brain disorders.
        Nat Hum Behav. 2019; 3: 988-998
        • Milad M.R.
        • Rauch S.L.
        Obsessive-compulsive disorder: Beyond segregated cortico-striatal pathways.
        Trends Cogn Sci. 2012; 16: 43-51
        • de Wit S.
        • Watson P.
        • Harsay H.A.
        • Cohen M.X.
        • van de Vijver I.
        • Ridderinkhof K.R.
        Corticostriatal connectivity underlies individual differences in the balance between habitual and goal-directed action control.
        J Neurosci. 2012; 32: 12066-12075
        • Balleine B.W.
        • O'Doherty J.P.
        Human and rodent homologies in action control: Corticostriatal determinants of goal-directed and habitual action.
        Neuropsychopharmacology. 2010; 35: 48-69
        • Simmler L.D.
        • Ozawa T.
        Neural circuits in goal-directed and habitual behavior: Implications for circuit dysfunction in obsessive-compulsive disorder.
        Neurochem Int. 2019; 129: 104464
        • Voon V.
        • Derbyshire K.
        • Rück C.
        • Irvine M.A.
        • Worbe Y.
        • Enander J.
        • et al.
        Disorders of compulsivity: A common bias towards learning habits.
        Mol Psychiatry. 2015; 20: 345-352
        • Vaghi M.M.
        • Moutoussis M.
        • Váša F.
        • Kievit R.A.
        • Hauser T.U.
        • Vértes P.E.
        • et al.
        Compulsivity is linked to reduced adolescent development of goal-directed control and frontostriatal functional connectivity.
        Proc Natl Acad Sci U S A. 2020; 117: 25911-25922
        • van der Straten A.
        • van Leeuwen W.
        • Denys D.
        • van Marle H.
        • van Wingen G.
        The effect of distress on the balance between goal-directed and habit networks in obsessive-compulsive disorder.
        Transl Psychiatry. 2020; 10: 73
        • Voon V.
        • Joutsa J.
        • Majuri J.
        • Baek K.
        • Nord C.L.
        • Arponen E.
        • et al.
        The neurochemical substrates of habitual and goal-directed control.
        Transl Psychiatry. 2020; 10: 84
        • Gillan C.M.
        • Papmeyer M.
        • Morein-Zamir S.
        • Sahakian B.J.
        • Fineberg N.A.
        • Robbins T.W.
        • et al.
        Disruption in the balance between goal-directed behavior and habit learning in obsessive-compulsive disorder.
        Am J Psychiatry. 2011; 168: 718-726
        • Gillan C.M.
        • Robbins T.W.
        • Sahakian B.J.
        • van den Heuvel O.A.
        • van Wingen G.
        The role of habit in compulsivity.
        Eur Neuropsychopharmacol. 2016; 26: 828-840
        • Swedo S.E.
        • Schapiro M.B.
        • Grady C.L.
        • Cheslow D.L.
        • Leonard H.L.
        • Kumar A.
        • et al.
        Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder.
        Arch Gen Psychiatry. 1989; 46: 518-523
        • Flett G.L.
        • Greene A.
        • Hewitt P.L.
        Dimensions of perfectionism and anxiety sensitivity.
        J Ration Emot Cogn Behav Ther. 2004; 22: 39-57
        • Nobel R.
        • Manassis K.
        • Wilansky-Traynor P.
        The role of perfectionism in relation to an intervention to reduce anxious and depressive symptoms in children.
        J Ration Emot Cogn Behav Ther. 2012; 30: 77-90
        • Walkup J.T.
        • Albano A.M.
        • Piacentini J.
        • Birmaher B.
        • Compton S.N.
        • Sherrill J.T.
        • et al.
        Cognitive behavioral therapy, sertraline, or a combination in childhood anxiety.
        N Engl J Med. 2008; 359: 2753-2766
        • Uthman O.A.
        • Abdulmalik J.
        Comparative efficacy and acceptability of pharmacotherapeutic agents for anxiety disorders in children and adolescents: A mixed treatment comparison meta-analysis.
        Curr Med Res Opin. 2010; 26: 53-59