Using Network Parcels and Resting-State Networks to Estimate Correlates of Mood Disorder and Related Research Domain Criteria Constructs of Reward Responsiveness and Inhibitory Control

      Abstract

      Background

      Resting-state graph-based network edges can be powerful tools for identification of mood disorders. We address whether these edges can be integrated with Research Domain Criteria (RDoC) constructs for accurate identification of mood disorder–related markers, while minimizing active symptoms of disease.

      Methods

      We compared 132 individuals with currently remitted or euthymic mood disorder with 65 healthy comparison participants, ages 18–30 years. Subsets of smaller brain parcels, combined into three prominent networks and one network of parcels overlapping across these networks, were used to compare edge differences between groups. Consistent with the RDoC framework, we evaluated individual differences with performance measure regressors of inhibitory control and reward responsivity. Within an omnibus regression model, we predicted edges related to diagnostic group membership, performance within both RDoC domains, and relevant interactions.

      Results

      There were several edges of mood disorder group, predominantly of greater connectivity across networks, different than those related to individual differences in inhibitory control and reward responsivity. Edges related to diagnosis and inhibitory control did not align well with prior literature, whereas edges in relation to reward responsivity constructs showed greater alignment with prior literature. Those edges in interaction between RDoC constructs and diagnosis showed a divergence for inhibitory control (negative interactions in default mode) relative to reward (positive interactions with salience and emotion network).

      Conclusions

      In conclusion, there is evidence that prior simple network models of mood disorders are currently of insufficient biological or diagnostic clarity or that parcel-based edges may be insufficiently sensitive for these purposes.

      Keywords

      To read this article in full you will need to make a payment

      References

        • Gordon E.M.
        • Lynch C.J.
        • Gratton C.
        • Laumann T.O.
        • Gilmore A.W.
        • Greene D.J.
        • et al.
        Three distinct sets of connector hubs integrate human brain function.
        Cell Rep. 2018; 24: 1687-1695.e4
        • Bessette K.L.
        • Karstens A.J.
        • Crane N.A.
        • Peters A.T.
        • Stange J.P.
        • Elverman K.H.
        • et al.
        A lifespan model of interference resolution and inhibitory control: Risk for depression and changes with illness progression.
        Neuropsychol Rev. 2020; 30: 477-498
        • Lee M.H.
        • Smyser C.D.
        • Shimony J.S.
        Resting-state fMRI: A review of methods and clinical applications.
        AJNR Am J Neuroradiol. 2013; 34: 1866-1872
        • Fox M.D.
        • Greicius M.
        Clinical applications of resting state functional connectivity.
        Front Syst Neurosci. 2010; 4: 19
        • Yamada T.
        • Hashimoto R.I.
        • Yahata N.
        • Ichikawa N.
        • Yoshihara Y.
        • Okamoto Y.
        • et al.
        Resting-state functional connectivity-based biomarkers and functional MRI-based neurofeedback for psychiatric disorders: A challenge for developing theranostic biomarkers.
        Int J Neuropsychopharmacol. 2017; 20: 769-781
        • Sonkusare S.
        • Breakspear M.
        • Guo C.
        Naturalistic stimuli in neuroscience: Critically acclaimed.
        Trends Cogn Sci. 2019; 23: 699-714
        • Jelsone-Swain L.M.
        • Fling B.W.
        • Seidler R.D.
        • Hovatter R.
        • Gruis K.
        • Welsh R.C.
        Reduced interhemispheric functional connectivity in the motor cortex during rest in limb-onset amyotrophic lateral sclerosis.
        Front Syst Neurosci. 2010; 4: 158
        • Ekhtiari H.
        • Kuplicki R.
        • Yeh H.W.
        • Paulus M.P.
        Physical characteristics not psychological state or trait characteristics predict motion during resting state fMRI.
        Sci Rep. 2019; 9: 419
        • Stange J.P.
        • Jenkins L.M.
        • Bessette K.L.
        • Kling L.R.
        • Bark J.S.
        • Shepard R.
        • et al.
        Predictors of attrition in longitudinal neuroimaging research: Inhibitory control, head movement, and resting-state functional connectivity.
        Brain Connect. 2018; 8: 527-536
        • Franco A.R.
        • Mannell M.V.
        • Calhoun V.D.
        • Mayer A.R.
        Impact of analysis methods on the reproducibility and reliability of resting-state networks.
        Brain Connect. 2013; 3: 363-374
        • Ball T.M.
        • Stein M.B.
        • Paulus M.P.
        Toward the application of functional neuroimaging to individualized treatment for anxiety and depression.
        Depress Anxiety. 2014; 31: 920-933
        • Insel T.
        • Cuthbert B.
        • Garvey M.
        • Heinssen R.
        • Pine D.S.
        • Quinn K.
        • et al.
        Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders.
        Am J Psychiatry. 2010; 167: 748-751
        • MacNamara A.
        • Klumpp H.
        • Kennedy A.E.
        • Langenecker S.A.
        • Phan K.L.
        Transdiagnostic neural correlates of affective face processing in anxiety and depression.
        Depress Anxiety. 2017; 34: 621-631
        • McTeague L.M.
        • Goodkind M.S.
        • Etkin A.
        Transdiagnostic impairment of cognitive control in mental illness.
        J Psychiatr Res. 2016; 83: 37-46
        • Sanislow C.A.
        • Pine D.S.
        • Quinn K.J.
        • Kozak M.J.
        • Garvey M.A.
        • Heinssen R.K.
        • et al.
        Developing constructs for psychopathology research: Research domain criteria.
        J Abnorm Psychol. 2010; 119: 631-639
        • Vanheule S.
        Diagnosis in the field of psychotherapy: A plea for an alternative to the DSM-5.x.
        Psychol Psychother. 2012; 85: 128-142
        • Weine S.M.
        • Langenecker S.A.
        • Arenliu A.
        Global mental health and the National Institute of Mental Health Research Domain Criteria.
        Int J Soc Psychiatry. 2018; 64: 436-442
        • Buch A.M.
        • Liston C.
        Dissecting diagnostic heterogeneity in depression by integrating neuroimaging and genetics.
        Neuropsychopharmacology. 2021; 46: 156-175
        • Zald D.H.
        • Lahey B.B.
        Implications of the hierarchical structure of psychopathology for psychiatric neuroimaging.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2017; 2: 310-317
        • Bessette K.L.
        • Jenkins L.M.
        • Skerrett K.A.
        • Gowins J.R.
        • DelDonno S.R.
        • Zubieta J.K.
        • et al.
        Reliability, convergent validity and time invariance of default mode network deviations in early adult major depressive disorder.
        Front Psychiatry. 2018; 9 (244–244)
        • Kaiser R.H.
        • Andrews-Hanna J.R.
        • Wager T.D.
        • Pizzagalli D.A.
        Large-scale network dysfunction in major depressive disorder: A meta-analysis of resting-state functional connectivity.
        JAMA Psychiatry. 2015; 72: 603-611
        • Yan C.G.
        • Chen X.
        • Li L.
        • Castellanos F.X.
        • Bai T.J.
        • Bo Q.J.
        • et al.
        Reduced default mode network functional connectivity in patients with recurrent major depressive disorder.
        Proc Natl Acad Sci U S A. 2019; 116: 9078-9083
        • Tang S.
        • Lu L.
        • Zhang L.
        • Hu X.
        • Bu X.
        • Li H.
        • et al.
        Abnormal amygdala resting-state functional connectivity in adults and adolescents with major depressive disorder: A comparative meta-analysis.
        EBiomedicine. 2018; 36: 436-445
        • Jacobs R.H.
        • Barba A.
        • Gowins J.R.
        • Klumpp H.
        • Jenkins L.M.
        • Mickey B.J.
        • et al.
        Decoupling of the amygdala to other salience network regions in adolescent-onset recurrent major depressive disorder.
        Psychol Med. 2016; 46: 1055-1067
        • Cheng W.
        • Rolls E.T.
        • Qiu J.
        • Xie X.
        • Wei D.
        • Huang C.C.
        • et al.
        Increased functional connectivity of the posterior cingulate cortex with the lateral orbitofrontal cortex in depression.
        Transl Psychiatry. 2018; 8: 90
        • Dhami P.
        • Atluri S.
        • Lee J.C.
        • Knyahnytska Y.
        • Croarkin P.E.
        • Blumberger D.M.
        • et al.
        Prefrontal cortical reactivity and connectivity markers distinguish youth depression from healthy youth.
        Cereb Cortex. 2020; 30: 3884-3894
        • Sheline Y.I.
        • Price J.L.
        • Yan Z.
        • Mintun M.A.
        Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus.
        Proc Natl Acad Sci U S A. 2010; 107: 11020-11025
        • Posner J.
        • Cha J.
        • Wang Z.
        • Talati A.
        • Warner V.
        • Gerber A.
        • et al.
        Increased default mode network connectivity in individuals at high familial risk for depression.
        Neuropsychopharmacology. 2016; 41: 1759-1767
        • Zhong X.
        • Pu W.
        • Yao S.
        Functional alterations of fronto-limbic circuit and default mode network systems in first-episode, drug-naïve patients with major depressive disorder: A meta-analysis of resting-state fMRI data.
        J Affect Disord. 2016; 206: 280-286
        • Dinga R.
        • Schmaal L.
        • Penninx B.W.J.H.
        • van Tol M.J.
        • Veltman D.J.
        • van Velzen L.
        • et al.
        Evaluating the evidence for biotypes of depression: Methodological replication and extension of.
        Neuroimage Clin. 2019; 22: 101796
        • Drysdale A.T.
        • Grosenick L.
        • Downar J.
        • Dunlop K.
        • Mansouri F.
        • Meng Y.
        • et al.
        Resting-state connectivity biomarkers define neurophysiological subtypes of depression.
        Nat Med. 2017; 23: 28-38
        • Stange J.P.
        • Jenkins L.M.
        • Pocius S.
        • Kreutzer K.
        • Bessette K.L.
        • DelDonno S.R.
        • et al.
        Using resting-state intrinsic network connectivity to identify suicide risk in mood disorders.
        Psychol Med. 2020; 50: 2324-2334
        • Stange J.P.
        • Bessette K.L.
        • Jenkins L.M.
        • Peters A.T.
        • Feldhaus C.
        • Crane N.A.
        • et al.
        Attenuated intrinsic connectivity within cognitive control network among individuals with remitted depression: Temporal stability and association with negative cognitive styles.
        Hum Brain Mapp. 2017; 38: 2939-2954
        • Hwang J.W.
        • Egorova N.
        • Yang X.Q.
        • Zhang W.Y.
        • Chen J.
        • Yang X.Y.
        • et al.
        Subthreshold depression is associated with impaired resting-state functional connectivity of the cognitive control network.
        Transl Psychiatry. 2015; 5: e683
        • Jacobs R.H.
        • Jenkins L.M.
        • Gabriel L.B.
        • Barba A.
        • Ryan K.A.
        • Weisenbach S.L.
        • et al.
        Increased coupling of intrinsic networks in remitted depressed youth predicts rumination and cognitive control.
        PLoS One. 2014; 9e104366
        • Lois G.
        • Linke J.
        • Wessa M.
        Altered functional connectivity between emotional and cognitive resting state networks in euthymic bipolar I disorder patients.
        PLoS One. 2014; 9e107829
        • Sylvester C.M.
        • Barch D.M.
        • Corbetta M.
        • Power J.D.
        • Schlaggar B.L.
        • Luby J.L.
        Resting state functional connectivity of the ventral attention network in children with a history of depression or anxiety.
        J Am Acad Child Adolesc Psychiatry. 2013; 52: 1326-1336.e5
        • Langenecker S.A.
        • Jenkins L.M.
        • Stange J.P.
        • Chang Y.S.
        • DelDonno S.R.
        • Bessette K.L.
        • et al.
        Cognitive control neuroimaging measures differentiate between those with and without future recurrence of depression.
        Neuroimage Clin. 2018; 20: 1001-1009
        • Burkhouse K.L.
        • Stange J.P.
        • Jacobs R.H.
        • Bhaumik R.
        • Bessette K.L.
        • Peters A.T.
        • et al.
        Developmental changes in resting-state functional networks among individuals with and without internalizing psychopathologies.
        Depress Anxiety. 2019; 36: 141-152
        • Singh M.K.
        • Leslie S.M.
        • Packer M.M.
        • Weisman E.F.
        • Gotlib I.H.
        Limbic intrinsic connectivity in depressed and high-risk youth.
        J Am Acad Child Adolesc Psychiatry. 2018; 57: 775-785.e3
        • Shapero B.G.
        • Chai X.J.
        • Vangel M.
        • Biederman J.
        • Hoover C.S.
        • Whitfield-Gabrieli S.
        • et al.
        Neural markers of depression risk predict the onset of depression.
        Psychiatry Res Neuroimaging. 2019; 285: 31-39
        • Malhi G.S.
        • Das P.
        • Outhred T.
        • Bryant R.A.
        • Calhoun V.
        Resting-state neural network disturbances that underpin the emergence of emotional symptoms in adolescent girls: Resting-state fMRI study.
        Br J Psychiatry. 2019; 215: 545-551
        • Dichter G.S.
        • Gibbs D.
        • Smoski M.J.
        A systematic review of relations between resting-state functional-MRI and treatment response in major depressive disorder.
        J Affect Disord. 2015; 172: 8-17
        • Kaymak S.U.
        • Demir B.
        • Sentürk S.
        • Tatar I.
        • Aldur M.M.
        • Uluğ B.
        Hippocampus, glucocorticoids and neurocognitive functions in patients with first-episode major depressive disorders.
        Eur Arch Psychiatry Clin Neurosci. 2010; 260: 217-223
        • Rydmark I.
        • Wahlberg K.
        • Ghatan P.H.
        • Modell S.
        • Nygren A.
        • Ingvar M.
        • et al.
        Neuroendocrine, cognitive and structural imaging characteristics of women on longterm sick leave with job stress-induced depression.
        Biol Psychiatry. 2006; 60: 867-873
        • Menon V.
        Large-scale brain networks and psychopathology: A unifying triple network model.
        Trends Cogn Sci. 2011; 15: 483-506
        • Crane N.A.
        • Jenkins L.M.
        • Bhaumik R.
        • Dion C.
        • Gowins J.R.
        • Mickey B.J.
        • et al.
        Multidimensional prediction of treatment response to antidepressants with cognitive control and functional MRI.
        Brain. 2017; 140: 472-486
        • Crane N.A.
        • Verges A.
        • Kamali M.
        • Bhaumik R.
        • Ryan K.A.
        • Marshall D.F.
        • et al.
        Developing dimensional, pandiagnostic inhibitory control constructs with self-report and neuropsychological data.
        Assessment. 2020; 27: 787-802
        • Quinn M.E.
        • Stange J.P.
        • Jenkins L.M.
        • Corwin S.
        • DelDonno S.R.
        • Bessette K.L.
        • et al.
        Cognitive control and network disruption in remitted depression: A correlate of childhood adversity.
        Soc Cogn Affect Neurosci. 2018; 13: 1081-1090
        • Langenecker S.A.
        • Mickey B.J.
        • Eichhammer P.
        • Sen S.
        • Elverman K.H.
        • Kennedy S.E.
        • et al.
        Cognitive control as a 5-HT 1A-based domain that is disrupted in major depressive disorder.
        Front Psychol. 2019; 10: 691
        • DelDonno S.R.
        • Karstens A.J.
        • Cerny B.
        • Kling L.R.
        • Jenkins L.M.
        • Stange J.P.
        • et al.
        The titrated monetary incentive delay task: Sensitivity, convergent and divergent validity, and neural correlates in an RDoC sample.
        J Clin Exp Neuropsychol. 2019; 41: 512-529
        • Breiter H.C.
        • Aharon I.
        • Kahneman D.
        • Dale A.
        • Shizgal P.
        Functional imaging of neural responses to expectancy and experience of monetary gains and losses.
        Neuron. 2001; 30: 619-639
        • Bermpohl F.
        • Pascual-Leone A.
        • Amedi A.
        • Merabet L.B.
        • Fregni F.
        • Gaab N.
        • et al.
        Dissociable networks for the expectancy and perception of emotional stimuli in the human brain.
        Neuroimage. 2006; 30: 588-600
        • Schlaepfer T.E.
        • Cohen M.X.
        • Frick C.
        • Kosel M.
        • Brodesser D.
        • Axmacher N.
        • et al.
        Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression.
        Neuropsychopharmacology. 2008; 33: 368-377
        • Satterthwaite T.D.
        • Kable J.W.
        • Vandekar L.
        • Katchmar N.
        • Bassett D.S.
        • Baldassano C.F.
        • et al.
        Common and dissociable dysfunction of the reward system in bipolar and unipolar depression.
        Neuropsychopharmacology. 2015; 40: 2258-2268
        • Walsh E.C.
        • Eisenlohr-Moul T.A.
        • Minkel J.
        • Bizzell J.
        • Petty C.
        • Crowther A.
        • et al.
        Pretreatment brain connectivity during positive emotion upregulation predicts decreased anhedonia following behavioral activation therapy for depression.
        J Affect Disord. 2019; 243: 188-192
        • Peters A.T.
        • Burkhouse K.L.
        • Feldhaus C.C.
        • Langenecker S.A.
        • Jacobs R.H.
        Aberrant resting-state functional connectivity in limbic and cognitive control networks relates to depressive rumination and mindfulness: A pilot study among adolescents with a history of depression.
        J Affect Disord. 2016; 200: 178-181
        • DelDonno S.R.
        • Jenkins L.M.
        • Crane N.A.
        • Nusslock R.
        • Ryan K.A.
        • Shankman S.A.
        • et al.
        Affective traits and history of depression are related to ventral striatum connectivity.
        J Affect Disord. 2017; 221: 72-80
        • Jenkins L.M.
        • Stange J.P.
        • Barba A.
        • DelDonno S.R.
        • Kling L.R.
        • Briceño E.M.
        • et al.
        Integrated cross-network connectivity of amygdala, insula, and subgenual cingulate associated with facial emotion perception in healthy controls and remitted major depressive disorder.
        Cogn Affect Behav Neurosci. 2017; 17: 1242-1254
        • Nurnberger Jr., J.I.
        • Blehar M.C.
        • Kaufmann C.A.
        • York-Cooler C.
        • Simpson S.G.
        • Harkavy-Friedman J.
        • et al.
        Diagnostic interview for genetic studies. Rationale, unique features, and training. NIMH Genetics Initiative.
        Arch Gen Psychiatry. 1994; 51 (discussion 863–864): 849-859
        • First M.B.
        • Spitzer R.L.
        • Gibbon M.
        • Williams J.B.
        Structured Clinical Interview for DSM-IV Axis 1 Disorder.
        Biometrics Research Department, New York State Psychiatric Institute, New York1996
        • Zackary R.A.
        Shipley Institute of Living Scale. Revised Manual.
        Western Psychological Services, Los Angeles1986
        • Langenecker S.A.
        The neuroanatomy of inhibitory control in healthy aging: Evidence from event-related fMRI.
        Dissertation, Marquette University, Milwaukee, Wisconsin, 2001
        • Langenecker S.A.
        • Bieliauskas L.A.
        • Rapport L.J.
        • Zubieta J.K.
        • Wilde E.A.
        • Berent S.
        Face emotion perception and executive functioning deficits in depression.
        J Clin Exp Neuropsychol. 2005; 27: 320-333
        • Langenecker S.A.
        • Zubieta J.K.
        • Young E.A.
        • Akil H.
        • Nielson K.A.
        A task to manipulate attentional load, set-shifting, and inhibitory control: Convergent validity and test-retest reliability of the Parametric Go/No-Go Test.
        J Clin Exp Neuropsychol. 2007; 29: 842-853
        • Langenecker S.A.
        • Caveney A.F.
        • Giordani B.
        • Young E.A.
        • Nielson K.A.
        • Rapport L.J.
        • et al.
        The sensitivity and psychometric properties of a brief computer-based cognitive screening battery in a depression clinic.
        Psychiatry Res. 2007; 152: 143-154
        • Votruba K.L.
        • Langenecker S.A.
        Factor structure, construct validity, and age- and education-based normative data for the Parametric Go/No-Go Test.
        J Clin Exp Neuropsychol. 2013; 35: 132-146
        • Knutson B.
        • Bhanji J.P.
        • Cooney R.E.
        • Atlas L.Y.
        • Gotlib I.H.
        Neural responses to monetary incentives in major depression.
        Biol Psychiatry. 2008; 63: 686-692
        • DelDonno S.R.
        • Weldon A.L.
        • Crane N.A.
        • Passarotti A.M.
        • Pruitt P.J.
        • Gabriel L.B.
        • et al.
        Affective personality predictors of disrupted reward learning and pursuit in major depressive disorder.
        Psychiatry Res. 2015; 230: 56-64
        • Jenkins L.M.
        • Skerrett K.A.
        • DelDonno S.R.
        • Patrón V.G.
        • Meyers K.K.
        • Peltier S.
        • et al.
        Individuals with more severe depression fail to sustain nucleus accumbens activity to preferred music over time.
        Psychiatry Res Neuroimaging. 2018; 275: 21-27
        • DelDonno S.R.
        • Mickey B.J.
        • Pruitt P.J.
        • Stange J.P.
        • Hsu D.T.
        • Weldon A.L.
        • et al.
        Influence of childhood adversity, approach motivation traits, and depression on individual differences in brain activation during reward anticipation.
        Biol Psychol. 2019; 146: 107709
        • Glover G.H.
        • Law C.S.
        Spiral-in/out BOLD fMRI for increased SNR and reduced susceptibility artifacts.
        Magn Reson Med. 2001; 46: 515-522
        • Jo H.J.
        • Gotts S.J.
        • Reynolds R.C.
        • Bandettini P.A.
        • Martin A.
        • Cox R.W.
        • Saad Z.S.
        Effective preprocessing procedures virtually eliminate distance-dependent motion artifacts in resting state FMRI.
        J Appl Math. 2013; 2013: 1-9
        • Saad Z.S.
        • Reynolds R.C.
        • Jo H.J.
        • Gotts S.J.
        • Chen G.
        • Martin A.
        • Cox R.W.
        Correcting brain-wide correlation differences in resting-state FMRI.
        Brain Connect. 2013; 3: 339-352
        • Yeo B.T.T.
        • Krienen F.M.
        • Sepulcre J.
        • Sabuncu M.R.
        • Lashkari D.
        • Hollinshead M.
        • et al.
        The organization of the human cerebral cortex estimated by intrinsic functional connectivity.
        J Neurophysiol. 2011; 106: 1125-1165
        • Shen X.
        • Tokoglu F.
        • Papademetris X.
        • Constable R.T.
        Groupwise whole-brain parcellation from resting-state fMRI data for network node identification.
        Neuroimage. 2013; 82: 403-415
        • Finn E.S.
        • Shen X.
        • Scheinost D.
        • Rosenberg M.D.
        • Huang J.
        • Chun M.M.
        • et al.
        Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity.
        Nat Neurosci. 2015; 18: 1664-1671
        • Iverson G.L.
        • Brooks B.L.
        • Langenecker S.A.
        • Young A.H.
        Identifying a cognitive impairment subgroup in adults with mood disorders.
        J Affect Disord. 2011; 132: 360-367
        • Stange J.P.
        • Jenkins L.M.
        • Hamlat E.J.
        • Bessette K.L.
        • DelDonno S.R.
        • Kling L.R.
        • et al.
        Disrupted engagement of networks supporting hot and cold cognition in remitted major depressive disorder.
        J Affect Disord. 2018; 227: 183-191
        • Vrieze E.
        • Pizzagalli D.A.
        • Demyttenaere K.
        • Hompes T.
        • Sienaert P.
        • de Boer P.
        • et al.
        Reduced Reward Learning predicts outcome in Major Depressive Disorder.
        Biol Psychiatry. 2013; 73: 639-645
        • Webb C.A.
        • Dillon D.G.
        • Pechtel P.
        • Goer F.K.
        • Murray L.
        • Huys Q.J.
        • et al.
        Neural correlates of three promising endophenotypes of depression: Evidence from the EMBARC study.
        Neuropsychopharmacology. 2016; 41: 454-463