Transcranial Magnetic Stimulation Indices of Cortical Excitability Enhance the Prediction of Response to Pharmacotherapy in Late-Life Depression

      Abstract

      Background

      Older adults with late-life depression (LLD) often experience incomplete or lack of response to first-line pharmacotherapy. The treatment of LLD could be improved using objective biological measures to predict response. Transcranial magnetic stimulation (TMS) can be used to measure cortical excitability, inhibition, and plasticity, which have been implicated in LLD pathophysiology and associated with brain stimulation treatment outcomes in younger adults with depression. TMS measures have not yet been investigated as predictors of treatment outcomes in LLD or pharmacotherapy outcomes in adults of any age with depression.

      Methods

      We assessed whether pretreatment single-pulse and paired-pulse TMS measures, combined with clinical and demographic measures, predict venlafaxine treatment response in 76 outpatients with LLD. We compared the predictive performance of machine learning models including or excluding TMS predictors.

      Results

      Two single-pulse TMS measures predicted venlafaxine response: cortical excitability (neuronal membrane excitability) and the variability of cortical excitability (dynamic fluctuations in excitability levels). In cross-validation, models using a combination of these TMS predictors, clinical markers of treatment resistance, and age classified patients with 73% ± 11% balanced accuracy (average correct classification rate of responders and nonresponders; permutation testing, p < .005); these models significantly outperformed (corrected t test, p = .025) models using clinical and demographic predictors alone (60% ± 10% balanced accuracy).

      Conclusions

      These preliminary findings suggest that single-pulse TMS measures of cortical excitability may be useful predictors of response to pharmacotherapy in LLD. Future studies are needed to confirm these findings and determine whether combining TMS predictors with other biomarkers further improves the accuracy of predicting LLD treatment outcome.

      Keywords

      To read this article in full you will need to make a payment

      References

        • Tedeschini E.
        • Levkovitz Y.
        • Iovieno N.
        • Ameral V.E.
        • Nelson J.C.
        • Papakostas G.I.
        Efficacy of antidepressants for late-life depression: A meta-analysis and meta-regression of placebo-controlled randomized trials.
        J Clin Psychiatry. 2011; 72: 1660-1668
        • Nelson J.C.
        • Delucchi K.
        • Schneider L.S.
        Efficacy of second generation antidepressants in late-life depression: A meta-analysis of the evidence.
        Am J Geriatr Psychiatry. 2008; 16: 558-567
        • Chekroud A.M.
        • Zotti R.J.
        • Shehzad Z.
        • Gueorguieva R.
        • Johnson M.K.
        • Trivedi M.H.
        • et al.
        Cross-trial prediction of treatment outcome in depression: A machine learning approach.
        Lancet Psychiatry. 2016; 3: 243-250
        • Wu W.
        • Zhang Y.
        • Jiang J.
        • Lucas M.V.
        • Fonzo G.A.
        • Rolle C.E.
        • et al.
        An electroencephalographic signature predicts antidepressant response in major depression.
        Nat Biotechnol. 2020; 38: 439-447
        • Korgaonkar M.S.
        • Goldstein-Piekarski A.N.
        • Fornito A.
        • Williams L.M.
        Intrinsic connectomes are a predictive biomarker of remission in major depressive disorder.
        Mol Psychiatry. 2020; 25: 1537-1549
        • Drysdale A.T.
        • Grosenick L.
        • Downar J.
        • Dunlop K.
        • Mansouri F.
        • Meng Y.
        • et al.
        Resting-state connectivity biomarkers define neurophysiological subtypes of depression.
        Nat Med. 2017; 23: 28-38
        • McKinney B.C.
        • Sibille E.
        The age-by-disease interaction hypothesis of late-life depression.
        Am J Geriatr Psychiatry. 2013; 21: 418-432
        • Lissemore J.I.
        • Bhandari A.
        • Mulsant B.H.
        • Lenze E.J.
        • Reynolds C.F.
        • Karp J.F.
        • et al.
        Reduced GABAergic cortical inhibition in aging and depression.
        Neuropsychopharmacology. 2018; 43: 2277-2284
        • Ward M.J.
        • Karim H.T.
        • Jessen Z.F.
        • Ghuman A.S.
        • Richardson R.M.
        • Reynolds 3rd C.F.
        • Karp J.F.
        Association between increased theta cordance and early response to ECT in late-life depression.
        Int J Geriatr Psychiatry. 2020; 35: 147-152
        • Alexopoulos G.S.
        • Hoptman M.J.
        • Kanellopoulos D.
        • Murphy C.F.
        • Lim K.O.
        • Gunning F.M.
        Functional connectivity in the cognitive control network and the default mode network in late-life depression.
        J Affect Disord. 2012; 139: 56-65
        • Andreescu C.
        • Tudorascu D.L.
        • Butters M.A.
        • Tamburo E.
        • Patel M.
        • Price J.
        • et al.
        Resting state functional connectivity and treatment response in late-life depression.
        Psychiatry Res. 2013; 214: 313-321
        • Steffens D.C.
        • Wang L.
        • Pearlson G.D.
        Functional connectivity predictors of acute depression treatment outcome.
        Int Psychogeriatr. 2019; 31: 1831-1835
        • Emam H.
        • Steffens D.C.
        • Pearlson G.D.
        • Wang L.
        Increased ventromedial prefrontal cortex activity and connectivity predict poor sertraline treatment outcome in late-life depression.
        Int J Geriatr Psychiatry. 2019; 34: 730-737
        • Narushima K.
        • McCormick L.M.
        • Yamada T.
        • Thatcher R.W.
        • Robinson R.G.
        Subgenual cingulate theta activity predicts treatment response of repetitive transcranial magnetic stimulation in participants with vascular depression.
        J Neuropsychiatry Clin Neurosci. 2010; 22: 75-84
        • Karim H.T.
        • Wang M.
        • Andreescu C.
        • Tudorascu D.
        • Butters M.A.
        • Karp J.F.
        • et al.
        Acute trajectories of neural activation predict remission to pharmacotherapy in late-life depression.
        Neuroimage Clin. 2018; 19: 831-839
        • Pimontel M.A.
        • Rindskopf D.
        • Rutherford B.R.
        • Brown P.J.
        • Roose S.P.
        • Sneed J.R.
        A meta-analysis of executive dysfunction and antidepressant treatment response in late-life depression.
        Am J Geriatr Psychiatry. 2016; 24: 31-41
        • Niendam T.A.
        • Laird A.R.
        • Ray K.L.
        • Dean Y.M.
        • Glahn D.C.
        • Carter C.S.
        Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions.
        Cogn Affect Behav Neurosci. 2012; 12: 241-268
        • Hallett M.
        Transcranial magnetic stimulation: A primer.
        Neuron. 2007; 55: 187-199
        • Cueva A.S.
        • Galhardoni R.
        • Cury R.G.
        • Parravano D.C.
        • Correa G.
        • Araujo H.
        • et al.
        Normative data of cortical excitability measurements obtained by transcranial magnetic stimulation in healthy subjects.
        Neurophysiol Clin. 2016; 46: 43-51
        • Bhandari A.
        • Radhu N.
        • Farzan F.
        • Mulsant B.H.
        • Rajji T.K.
        • Daskalakis Z.J.
        • Blumberger D.M.
        A meta-analysis of the effects of aging on motor cortex neurophysiology assessed by transcranial magnetic stimulation.
        Clin Neurophysiol. 2016; 127: 2834-2845
        • Radhu N.
        • de Jesus D.R.
        • Ravindran L.N.
        • Zanjani A.
        • Fitzgerald P.B.
        • Daskalakis Z.J.
        A meta-analysis of cortical inhibition and excitability using transcranial magnetic stimulation in psychiatric disorders.
        Clin Neurophysiol. 2013; 124: 1309-1320
        • Player M.J.
        • Taylor J.L.
        • Weickert C.S.
        • Alonzo A.
        • Sachdev P.
        • Martin D.
        • et al.
        Neuroplasticity in depressed individuals compared with healthy controls.
        Neuropsychopharmacology. 2013; 38: 2101-2108
        • Lissemore J.I.
        • Shanks H.R.C.
        • Butters M.A.
        • Bhandari A.
        • Zomorrodi R.
        • Rajji T.K.
        • et al.
        An inverse relationship between cortical plasticity and cognitive inhibition in late-life depression.
        Neuropsychopharmacology. 2019; 44: 1659-1666
        • Bajbouj M.
        • Lisanby S.H.
        • Lang U.E.
        • Danker-Hopfe H.
        • Heuser I.
        • Neu P.
        Evidence for impaired cortical inhibition in patients with unipolar major depression.
        Biol Psychiatry. 2006; 59: 395-400
        • Lefaucheur J.P.
        • Lucas B.
        • Andraud F.
        • Hogrel J.Y.
        • Bellivier F.
        • Del Cul A.
        • et al.
        Inter-hemispheric asymmetry of motor corticospinal excitability in major depression studied by transcranial magnetic stimulation.
        J Psychiatr Res. 2008; 42: 389-398
        • Levinson A.J.
        • Fitzgerald P.B.
        • Favalli G.
        • Blumberger D.M.
        • Daigle M.
        • Daskalakis Z.J.
        Evidence of cortical inhibitory deficits in major depressive disorder.
        Biol Psychiatry. 2010; 67: 458-464
        • Fitzgerald P.B.
        • Brown T.L.
        • Marston N.A.U.
        • Daskalakis Z.J.
        • de Castella A.
        • Bradshaw J.L.
        • Kulkarni J.
        Motor cortical excitability and clinical response to rTMS in depression.
        J Affect Disord. 2004; 82: 71-76
        • Voineskos D.
        • Levinson A.J.
        • Sun Y.
        • Barr M.S.
        • Farzan F.
        • Rajji T.K.
        • et al.
        The relationship between cortical inhibition and electroconvulsive therapy in the treatment of major depressive disorder.
        Sci Rep. 2016; 6: 37461
        • Oliveira-Maia A.J.
        • Press D.
        • Pascual-Leone A.
        Modulation of motor cortex excitability predicts antidepressant response to prefrontal cortex repetitive transcranial magnetic stimulation.
        Brain Stimul. 2017; 10: 787-794
        • Lisanby S.H.
        • Husain M.M.
        • Rosenquist P.B.
        • Maixner D.
        • Gutierrez R.
        • Krystal A.
        • et al.
        Daily left prefrontal repetitive transcranial magnetic stimulation in the acute treatment of major depression: Clinical predictors of outcome in a multisite, randomized controlled clinical trial.
        Neuropsychopharmacology. 2009; 34: 522-534
        • Croarkin P.E.
        • Nakonezny P.A.
        • Husain M.M.
        • Port J.D.
        • Melton T.
        • Kennard B.D.
        • et al.
        Evidence for pretreatment lici deficits among depressed children and adolescents with nonresponse to fluoxetine.
        Brain Stimul. 2014; 7: 243-251
        • Widge A.S.
        • Avery D.H.
        • Zarkowski P.
        Baseline and treatment-emergent EEG biomarkers of antidepressant medication response do not predict response to repetitive transcranial magnetic stimulation.
        Brain Stimul. 2013; 6: 929-931
        • Lenze E.J.
        • Mulsant B.H.
        • Blumberger D.M.
        • Karp J.F.
        • Newcomer J.W.
        • Anderson S.J.
        • et al.
        Efficacy, safety, and tolerability of augmentation pharmacotherapy with aripiprazole for treatment-resistant depression in late life: A randomised, double-blind, placebo-controlled trial.
        Lancet. 2015; 386: 2404-2412
        • Lissemore J.I.
        • Mulsant B.H.
        • Rajji T.K.
        • Karp J.F.
        • Reynolds C.F.
        • Lenze E.J.
        • et al.
        Cortical inhibition, facilitation and plasticity in late-life depression: Effects of venlafaxine pharmacotherapy.
        J Psychiatry Neurosci. 2021; 46: E88-E96
        • Joel I.
        • Begley A.E.
        • Mulsant B.H.
        • Lenze E.J.
        • Mazumdar S.
        • Dew M.A.
        • et al.
        Dynamic prediction of treatment response in late-life depression.
        Am J Geriatr Psychiatry. 2014; 22: 167-176
        • Smagula S.F.
        • Butters M.A.
        • Anderson S.J.
        • Lenze E.J.
        • Dew M.A.
        • Mulsant B.H.
        • et al.
        Antidepressant response trajectories and associated clinical prognostic factors among older adults.
        JAMA Psychiatry. 2015; 72: 1021-1028
        • Tunvirachaisakul C.
        • Gould R.L.
        • Coulson M.C.
        • Ward E.V.
        • Reynolds G.
        • Gathercole R.L.
        • et al.
        Predictors of treatment outcome in depression in later life: A systematic review and meta-analysis.
        J Affect Disord. 2018; 227: 164-182
        • First M.B.
        • Spitzer R.L.
        • Gibbon M.
        • Williams J.B.
        Structured Clinical Interview for DSM-IV-TR Axis I Disorders. Research Version, Patient Edition. (SCID-I/P). Biometrics Research, New York State Psychiatric Institute, New York2002
        • Andreescu C.
        • Mulsant B.H.
        • Houck P.R.
        • Whyte E.M.
        • Mazumdar S.
        • Dombrovski A.Y.
        • et al.
        Empirically derived decision trees for the treatment of late-life depression.
        Am J Psychiatry. 2008; 165: 855-862
        • Hsu J.H.
        • Mulsant B.H.
        • Lenze E.J.
        • Karp J.F.
        • Lavretsky H.
        • Roose S.P.
        • et al.
        Impact of prior treatment on remission of late-life depression with venlafaxine and subsequent aripiprazole or placebo augmentation.
        Am J Geriatr Psychiatry. 2016; 24: 918-922
        • Oslin D.W.
        • Datto C.J.
        • Kallan M.J.
        • Katz I.R.
        • Edell W.S.
        • TenHave T.
        Association between medical comorbidity and treatment outcomes in late-life depression.
        J Am Geriatr Soc. 2002; 50: 823-828
        • Trivedi M.H.
        • Rush A.J.
        • Wisniewski S.R.
        • Nierenberg A.A.
        • Warden D.
        • Ritz L.
        • et al.
        Evaluation of outcomes with citalopram for depression using measurement-based care in STAR∗D: Implications for clinical practice.
        Am J Psychiatry. 2006; 163: 28-40
        • Paulus W.
        • Classen J.
        • Cohen L.G.
        • Large C.H.
        • Di Lazzaro V.
        • Nitsche M.
        • et al.
        State of the art: Pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation.
        Brain Stimul. 2008; 1: 151-163
        • Groves S.J.
        • Douglas K.M.
        • Porter R.J.
        A systematic review of cognitive predictors of treatment outcome in major depression.
        Front Psychiatry. 2018; 9: 382
        • Kaneriya S.H.
        • Robbins-Welty G.A.
        • Smagula S.F.
        • Karp J.F.
        • Butters M.A.
        • Lenze E.J.
        • et al.
        Predictors and moderators of remission with aripiprazole augmentation in treatment-resistant late-life depression: An analysis of the irl-grey randomized clinical trial.
        JAMA Psychiatry. 2016; 73: 329-336
        • Rossini P.M.
        • Barker A.T.
        • Berardelli A.
        • Caramia M.D.
        • Caruso G.
        • Cracco R.Q.
        • et al.
        Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: Basic principles and procedures for routine clinical application. Report of an IFCN committee.
        Electroencephalogr Clin Neurophysiol. 1994; 91: 79-92
        • Ziemann U.
        • Reis J.
        • Schwenkreis P.
        • Rosanova M.
        • Strafella A.
        • Badawy R.
        • Müller-Dahlhaus F.
        TMS and drugs revisited 2014.
        Clin Neurophysiol. 2015; 126: 1847-1868
        • Jung N.H.
        • Delvendahl I.
        • Kuhnke N.G.
        • Hauschke D.
        • Stolle S.
        • Mall V.
        Navigated transcranial magnetic stimulation does not decrease the variability of motor-evoked potentials.
        Brain Stimul. 2010; 3: 87-94
        • Kiers L.
        • Cros D.
        • Chiappa K.H.
        • Fang J.
        Variability of motor potentials evoked by transcranial magnetic stimulation.
        Electroencephalogr Clin Neurophysiol. 1993; 89: 415-423
        • Rossini P.M.
        • Burke D.
        • Chen R.
        • Cohen L.G.
        • Daskalakis Z.
        • Di Iorio R.
        • et al.
        Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an IFCN committee.
        Clin Neurophysiol. 2015; 126: 1071-1107
        • Ellaway P.H.
        • Davey N.J.
        • Maskill D.W.
        • Rawlinson S.R.
        • Lewis H.S.
        • Anissimova N.P.
        Variability in the amplitude of skeletal muscle responses to magnetic stimulation of the motor cortex in man.
        Electroencephalogr Clin Neurophysiol. 1998; 109: 104-113
        • Kujirai T.
        • Caramia M.D.
        • Rothwell J.C.
        • Day B.L.
        • Thompson P.D.
        • Ferbert A.
        • et al.
        Corticocortical inhibition in human motor cortex.
        J Physiol. 1993; 471: 501-519
        • Stefan K.
        • Kunesch E.
        • Cohen L.G.
        • Benecke R.
        • Classen J.
        Induction of plasticity in the human motor cortex by paired associative stimulation.
        Brain. 2000; 123: 572-584
        • Holland J.H.
        Adaptation in Natural and Artificial Systems: An Introductory Analysis With Applications to Biology, Control, and Artificial Intelligence.
        University of Michigan Press, Oxford1975
        • Fortin F.-A.
        • De Rainville F.-M.
        • Gardner M.-A.G.
        • Parizeau M.
        • Gagné C.
        DEAP: Evolutionary algorithms made easy.
        J Mach Learn Res. 2012; 13: 2171-2175
        • Li L.
        • Weinberg C.R.
        • Darden T.A.
        • Pedersen L.G.
        Gene selection for sample classification based on gene expression data: Study of sensitivity to choice of parameters of the GA/KNN method.
        Bioinformatics. 2001; 17: 1131-1142
        • Beheshti I.
        • Demirel H.
        • Matsuda H.
        • Alzheimer’s Disease Neuroimaging Initiative
        Classification of Alzheimer’s disease and prediction of mild cognitive impairment-to-Alzheimer’s conversion from structural magnetic resource imaging using feature ranking and a genetic algorithm.
        Comput Biol Med. 2017; 83: 109-119
        • Li H.
        • Yuan D.
        • Ma X.
        • Cui D.
        • Cao L.
        Genetic algorithm for the optimization of features and neural networks in ECG signals classification.
        Sci Rep. 2017; 7: 41011
        • Peng S.
        • Xu Q.
        • Ling X.B.
        • Peng X.
        • Du W.
        • Chen L.
        Molecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machines.
        FEBS Lett. 2003; 555: 358-362
        • Cortes C.
        • Vapnik V.
        Support-vector networks.
        Mach Learn. 1995; 20: 273-297
        • Pedregosa F.
        • Varoquaux G.
        • Gramfort A.
        • Michel V.
        • Thirion B.
        • Grisel O.
        • et al.
        Scikit-learn: Machine learning in Python.
        J Mach Learn Res. 2011; 12: 2825-2830
        • Chang C.C.
        • Lin C.J.
        LIBSVM: A library for support vector machines.
        ACM Trans Intell Syst Technol. 2011; 2: 1-27
        • Nadeau C.
        • Bengio Y.
        Inference for the generalization error.
        in: Solla S.A. Müller K.R. Leen T.K. Advances in Neural Information Processing Systems. The MIT Press, Cambridge2000
        • Bouckaert R.R.
        • Frank E.
        Evaluating the replicability of significance tests for comparing learning algorithms.
        in: Dai H. Srikant R. Zhang C. Advances in Knowledge Discovery and Data Mining. Springer, Berlin2004
        • Harris K.D.
        • Shepherd G.M.G.
        The neocortical circuit: Themes and variations.
        Nat Neurosci. 2015; 18: 170-181
        • Dolberg O.T.
        • Dannon P.N.
        • Schreiber S.
        • Grunhaus L.
        Magnetic motor threshold and response to TMS in major depressive disorder.
        Acta Psychiatr Scand. 2002; 106: 220-223
        • Laruelle M.
        • Vanisberg M.A.
        • Maloteaux J.M.
        Regional and subcellular localization in human brain of [3H]paroxetine binding, a marker of serotonin uptake sites.
        Biol Psychiatry. 1988; 24: 299-309
        • Kish S.J.
        • Furukawa Y.
        • Chang L.J.
        • Tong J.
        • Ginovart N.
        • Wilson A.
        • et al.
        Regional distribution of serotonin transporter protein in postmortem human brain: Is the cerebellum a SERT-free brain region?.
        Nucl Med Biol. 2005; 32: 123-128
        • Smith H.R.
        • Beveridge T.J.R.
        • Porrino L.J.
        Distribution of norepinephrine transporters in the non-human primate brain.
        Neuroscience. 2006; 138: 703-714
        • Darmani G.
        • Bergmann T.O.
        • Zipser C.
        • Baur D.
        • Müller-Dahlhaus F.
        • Ziemann U.
        Effects of antiepileptic drugs on cortical excitability in humans: A TMS-EMG and TMS-EEG study.
        Hum Brain Mapp. 2019; 40: 1276-1289
        • Ossemann M.
        • de Fays K.
        • Bihin B.
        • Vandermeeren Y.
        Effect of a single dose of retigabine in cortical excitability parameters: A cross-over, double-blind placebo-controlled TMS study.
        Epilepsy Res. 2016; 126: 78-82
        • Mueller D.
        • Porter J.T.
        • Quirk G.J.
        Noradrenergic signaling in infralimbic cortex increases cell excitability and strengthens memory for fear extinction.
        J Neurosci. 2008; 28: 369-375
        • Grzelka K.
        • Kurowski P.
        • Gawlak M.
        • Szulczyk P.
        Noradrenaline modulates the membrane potential and holding current of medial prefrontal cortex pyramidal neurons via β 1-adrenergic receptors and HCN channels.
        Front Cell Neurosci. 2017; 11: 341
        • Davies M.F.
        • Deisz R.A.
        • Prince D.A.
        • Peroutka S.J.
        Two distinct effects of 5-hydroxytryptamine on single cortical neurons.
        Brain Res. 1987; 423: 347-352
        • Kellner V.
        • Menkes-Caspi N.
        • Beker S.
        • Stern E.A.
        Amyloid-β alters ongoing neuronal activity and excitability in the frontal cortex.
        Neurobiol Aging. 2014; 35: 1982-1991
        • Buchalter E.L.F.
        • Oughli H.A.
        • Lenze E.J.
        • Dixon D.
        • Miller J.P.
        • Blumberger D.M.
        • et al.
        Predicting remission in late-life major depression: A clinical algorithm based upon past treatment history.
        J Clin Psychiatry. 2019; 80: 18m12483