Impact of Prenatal Stress on Amygdala Anatomy in Young Adulthood: Timing and Location Matter

Published:August 03, 2021DOI:https://doi.org/10.1016/j.bpsc.2021.07.009

      Abstract

      Background

      Exposure to maternal stress in utero has long-term implications for the developing brain and has been linked with a higher risk of depression. The amygdala, which develops during the early embryonic stage and is critical for emotion processing, might be particularly sensitive.

      Methods

      Using data from a neuroimaging follow-up of the European Longitudinal Study of Pregnancy and Childhood prenatal birth cohort (n = 129, 47% men, 23–24 years old), we studied the impact of prenatal stress during the first and second halves of pregnancy on the volume of the amygdala and its nuclei in young adult offspring. We further evaluated the relationship between amygdala anatomy and offspring depressive symptomatology. Amygdala nuclei were parcellated using FreeSurfer’s automated segmentation pipeline. Depressive symptoms were measured via self-report using the Beck Depression Inventory.

      Results

      Exposure to stress during the first half of pregnancy was associated with smaller accessory basal (Cohen’s f2 = 0.27, false discovery rate [FDR]-corrected p [pFDR] = .03) and cortical (Cohen’s f2 = 0.29, pFDR = .03) nuclei volumes. This effect remained significant after correcting for sex, stress during the second half of pregnancy, maternal age at birth, birth weight, maternal education, and offspring’s age at magnetic resonance imaging. These two nuclei showed a quadratic relationship with Beck Depression Inventory scores in young adulthood, where both smaller and larger volumes were associated with more depressive symptoms (accessory basal nucleus: adj. R2 = 0.05, pFDR = .015; cortical nucleus: adj. R2 = 0.04, pFDR = .015).

      Conclusions

      We conclude that exposure to stress during the first half of pregnancy might have long-term implications for amygdala anatomy, which may in turn predict the experience of depressive symptoms in young adulthood.

      Keywords

      To read this article in full you will need to make a payment

      References

        • Qiu A.
        • Rifkin-Graboi A.
        • Chen H.
        • Chong Y.S.
        • Kwek K.
        • Gluckman P.D.
        • et al.
        Maternal anxiety and infants’ hippocampal development: Timing matters.
        Transl Psychiatry. 2013; 3: e306
        • Qiu A.
        • Tuan T.A.
        • Ong M.L.
        • Li Y.
        • Chen H.
        • Rifkin-Graboi A.
        • et al.
        COMT haplotypes modulate associations of antenatal maternal anxiety and neonatal cortical morphology.
        Am J Psychiatry. 2015; 172: 163-172
        • Qiu A.
        • Shen M.
        • Buss C.
        • Chong Y.S.
        • Kwek K.
        • Saw S.M.
        • et al.
        Effects of antenatal maternal depressive symptoms and socio-economic status on neonatal brain development are modulated by genetic risk.
        Cereb Cortex. 2017; 27: 3080-3092
        • Scheinost D.
        • Kwon S.H.
        • Lacadie C.
        • Sze G.
        • Sinha R.
        • Constable R.T.
        • Ment L.R.
        Prenatal stress alters amygdala functional connectivity in preterm neonates.
        Neuroimage Clin. 2016; 12: 381-388
        • Lebel C.
        • Walton M.
        • Letourneau N.
        • Giesbrecht G.F.
        • Kaplan B.J.
        • Dewey D.
        Prepartum and postpartum maternal depressive symptoms are related to children’s brain structure in preschool.
        Biol Psychiatry. 2016; 80: 859-868
        • McQuaid G.A.
        • Darcey V.L.
        • Avalos M.F.
        • Fishbein D.H.
        • VanMeter J.W.
        Altered cortical structure and psychiatric symptom risk in adolescents exposed to maternal stress in utero: A retrospective investigation.
        Behav Brain Res. 2019; 375: 112145
        • Wen D.J.
        • Poh J.S.
        • Ni S.N.
        • Chong Y.S.
        • Chen H.
        • Kwek K.
        • et al.
        Influences of prenatal and postnatal maternal depression on amygdala volume and microstructure in young children.
        Transl Psychiatry. 2017; 7: e1103
        • Soe N.N.
        • Wen D.J.
        • Poh J.S.
        • Chong Y.S.
        • Broekman B.F.
        • Chen H.
        • et al.
        Perinatal maternal depressive symptoms alter amygdala functional connectivity in girls.
        Hum Brain Mapp. 2018; 39: 680-690
        • Favaro A.
        • Tenconi E.
        • Degortes D.
        • Manara R.
        • Santonastaso P.
        Neural correlates of prenatal stress in young women.
        Psychol Med. 2015; 45: 2533-2543
        • Marecková K.
        • Klasnja A.
        • Bencurova P.
        • Andrýsková L.
        • Brázdil M.
        • Paus T.
        Prenatal stress, mood, and gray matter volume in young adulthood.
        Cereb Cortex. 2019; 29: 1244-1250
        • Mareckova K.
        • Marecek R.
        • Andryskova L.
        • Brazdil M.
        • Nikolova Y.S.
        Maternal depressive symptoms during pregnancy and brain age in young adult offspring: Findings from a prenatal birth cohort.
        Cereb Cortex. 2020; 30: 3991-3999
        • Constantinof A.
        • Moisiadis V.G.
        • Matthews S.G.
        Programming of stress pathways: A transgenerational perspective.
        J Steroid Biochem Mol Biol. 2016; 160: 175-180
        • Singh-Taylor A.
        • Korosi A.
        • Molet J.
        • Gunn B.G.
        • Baram T.Z.
        Synaptic rewiring of stress-sensitive neurons by early-life experience: A mechanism for resilience?.
        Neurobiol Stress. 2015; 1: 109-115
        • Rifkin-Graboi A.
        • Meaney M.J.
        • Chen H.
        • Bai J.
        • Hameed W.B.
        • Tint M.T.
        • et al.
        Antenatal maternal anxiety predicts variations in neural structures implicated in anxiety disorders in newborns.
        J Am Acad Child Adolesc Psychiatry. 2015; 54: 313-321.e2
        • Van den Bergh B.R.H.
        • van den Heuvel M.I.
        • Lahti M.
        • Braeken M.
        • de Rooij S.R.
        • Entringer S.
        • et al.
        Prenatal developmental origins of behavior and mental health: The influence of maternal stress in pregnancy.
        Neurosci Biobehav Rev. 2020; 117: 26-64
        • Kessler R.C.
        The effects of stressful life events on depression.
        Annu Rev Psychol. 1997; 48: 191-214
        • American Psychiatric Association
        Diagnostic and Statistical Manual of Mental Disorders.
        4th ed. American Psychiatric Association, Washington, DC1994
        • Whalen P.J.
        • Shin L.M.
        • Somerville L.H.
        • McLean A.A.
        • Kim H.
        Functional neuroimaging studies of the amygdala in depression.
        Semin Clin Neuropsychiatry. 2002; 7: 234-242
        • LeDoux J.E.
        Emotion circuits in the brain.
        Annu Rev Neurosci. 2000; 23: 155-184
        • Sierra-Mercado D.
        • Padilla-Coreano N.
        • Quirk G.J.
        Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear.
        Neuropsychopharmacology. 2011; 36: 529-538
        • Humphrey T.
        The development of the human amygdala during early embryonic life.
        J Comp Neurol. 1968; 132: 135-165
        • Nikolić I.
        • Kostović I.
        Development of the lateral amygdaloid nucleus in the human fetus: Transient presence of discrete cytoarchitectonic units.
        Anat Embryol (Berl). 1986; 174: 355-360
        • Teicher M.H.
        • Andersen S.L.
        • Polcari A.
        • Anderson C.M.
        • Navalta C.P.
        • Kim D.M.
        The neurobiological consequences of early stress and childhood maltreatment.
        Neurosci Biobehav Rev. 2003; 27: 33-44
        • Graham A.M.
        • Rasmussen J.M.
        • Entringer S.
        • Ben Ward E.
        • Rudolph M.D.
        • Gilmore J.H.
        • et al.
        Maternal cortisol concentrations during pregnancy and sex-specific associations with neonatal amygdala connectivity and emerging internalizing behaviors.
        Biol Psychiatry. 2019; 85: 172-181
        • Salm A.K.
        • Pavelko M.
        • Krouse E.M.
        • Webster W.
        • Kraszpulski M.
        • Birkle D.L.
        Lateral amygdaloid nucleus expansion in adult rats is associated with exposure to prenatal stress.
        Brain Res Dev Brain Res. 2004; 148: 159-167
        • Kraszpulski M.
        • Dickerson P.A.
        • Salm A.K.
        Prenatal stress affects the developmental trajectory of the rat amygdala.
        Stress. 2006; 9: 85-95
        • Jones S.L.
        • Dufoix R.
        • Laplante D.P.
        • Elgbeili G.
        • Patel R.
        • Chakravarty M.M.
        • et al.
        Larger amygdala volume mediates the association between prenatal maternal stress and higher levels of externalizing behaviors: Sex specific effects in project ice storm.
        Front Hum Neurosci. 2019; 13: 144
        • Buss C.
        • Davis E.P.
        • Shahbaba B.
        • Pruessner J.C.
        • Head K.
        • Sandman C.A.
        Maternal cortisol over the course of pregnancy and subsequent child amygdala and hippocampus volumes and affective problems.
        Proc Natl Acad Sci U S A. 2012; 109: E1312-E1319
        • LeDoux J.
        The amygdala.
        Curr Biol. 2007; 17: R868-R874
        • Trezza V.
        • Campolongo P.
        Toward understanding the neurobiology of social attachment: Role of estrogen receptors in the medial amygdala.
        J Neurosci. 2009; 29: 1-2
        • Haller J.
        The role of central and medial amygdala in normal and abnormal aggression: A review of classical approaches.
        Neurosci Biobehav Rev. 2018; 85: 34-43
        • Everitt B.J.
        • Morris K.A.
        • O’Brien A.
        • Robbins T.W.
        The basolateral amygdala-ventral striatal system and conditioned place preference: Further evidence of limbic-striatal interactions underlying reward-related processes.
        Neuroscience. 1991; 42: 1-18
        • Cardinal R.N.
        • Parkinson J.A.
        • Hall J.
        • Everitt B.J.
        Emotion and motivation: The role of the amygdala, ventral striatum, and prefrontal cortex.
        Neurosci Biobehav Rev. 2002; 26: 321-352
        • Campeau S.
        • Davis M.
        Involvement of the central nucleus and basolateral complex of the amygdala in fear conditioning measured with fear-potentiated startle in rats trained concurrently with auditory and visual conditioned stimuli.
        J Neurosci. 1995; 15: 2301-2311
        • LeDoux J.E.
        • Cicchetti P.
        • Xagoraris A.
        • Romanski L.M.
        The lateral amygdaloid nucleus: Sensory interface of the amygdala in fear conditioning.
        J Neurosci. 1990; 10: 1062-1069
        • Maren S.
        • Fanselow M.S.
        The amygdala and fear conditioning: Has the nut been cracked?.
        Neuron. 1996; 16: 237-240
        • Saygin Z.M.
        • Kliemann D.
        • Iglesias J.E.
        • van der Kouwe A.J.W.
        • Boyd E.
        • Reuter M.
        • et al.
        High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: Manual segmentation to automatic atlas.
        Neuroimage. 2017; 155: 370-382
        • Teicher M.H.
        • Tomoda A.
        • Andersen S.L.
        Neurobiological consequences of early stress and childhood maltreatment: Are results from human and animal studies comparable?.
        Ann N Y Acad Sci. 2006; 1071: 313-323
        • Teicher M.H.
        • Samson J.A.
        • Polcari A.
        • McGreenery C.E.
        Sticks, stones, and hurtful words: Relative effects of various forms of childhood maltreatment.
        Am J Psychiatry. 2006; 163: 993-1000
        • Goldstein J.M.
        • Hale T.
        • Foster S.L.
        • Tobet S.A.
        • Handa R.J.
        Sex differences in major depression and comorbidity of cardiometabolic disorders: Impact of prenatal stress and immune exposures.
        Neuropsychopharmacology. 2019; 44: 59-70
        • Goldstein J.M.
        • Cohen J.E.
        • Mareckova K.
        • Holsen L.
        • Whitfield-Gabrieli S.
        • Gilman S.E.
        • et al.
        Impact of prenatal maternal cytokine exposure on sex differences in brain circuitry regulating stress in offspring 45 years later.
        Proc Natl Acad Sci U S A. 2021; 118e2014464118
        • Blume S.R.
        • Padival M.
        • Urban J.H.
        • Rosenkranz J.A.
        Disruptive effects of repeated stress on basolateral amygdala neurons and fear behavior across the estrous cycle in rats.
        Sci Rep. 2019; 9: 12292
        • Hamilton J.P.
        • Siemer M.
        • Gotlib I.H.
        Amygdala volume in major depressive disorder: A meta-analysis of magnetic resonance imaging studies.
        Mol Psychiatry. 2008; 13: 993-1000
        • Schmaal L.
        • Pozzi E.
        • C Ho T.
        • van Velzen L.S.
        • Veer I.M.
        • Opel N.
        • et al.
        ENIGMA MDD: Seven years of global neuroimaging studies of major depression through worldwide data sharing.
        Transl Psychiatry. 2020; 10: 172
        • Piler P.
        • Kandrnal V.
        • Kukla L.
        • Andrýsková L.
        • Švancara J.
        • Jarkovský J.
        • et al.
        Cohort profile: The European longitudinal study of pregnancy and childhood (ELSPAC) in the Czech Republic.
        Int J Epidemiol. 2017; 46 (1379–1379f)
        • Beck A.T.
        • Steer R.A.
        • Brown G.K.
        Manual for the Beck Depression Inventory-II.
        Psychological Corporation, San Antonio1996
        • Young A.F.
        • Powers J.R.
        • Bell S.L.
        Attrition in longitudinal studies: Who do you lose?.
        Aust N Z J Public Health. 2006; 30: 353-361
        • Russell J.D.
        • Marsee M.A.
        • Weems C.F.
        Developmental variation in amygdala volumes: Modeling differences across time, age, and puberty.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2021; 6: 117-125
        • Nikolova Y.S.
        • Misquitta K.A.
        • Rocco B.R.
        • Prevot T.D.
        • Knodt A.R.
        • Ellegood J.
        • et al.
        Shifting priorities: Highly conserved behavioral and brain network adaptations to chronic stress across species.
        Transl Psychiatry. 2018; 8: 26
        • Ousdal O.T.
        • Milde A.M.
        • Hafstad G.S.
        • Hodneland E.
        • Dyb G.
        • Craven A.R.
        • et al.
        The association of PTSD symptom severity with amygdala nuclei volumes in traumatized youths.
        Transl Psychiatry. 2020; 10: 288
        • McEwen B.S.
        • Nasca C.
        • Gray J.D.
        Stress effects on neuronal structure: Hippocampus, amygdala, and prefrontal cortex.
        Neuropsychopharmacology. 2016; 41: 3-23
        • Covington 3rd, H.E.
        • Lobo M.K.
        • Maze I.
        • Vialou V.
        • Hyman J.M.
        • Zaman S.
        • et al.
        Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex.
        J Neurosci. 2010; 30: 16082-16090
        • Magariños A.M.
        • McEwen B.S.
        • Flügge G.
        • Fuchs E.
        Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews.
        J Neurosci. 1996; 16: 3534-3540
        • Roy A.K.
        • Shehzad Z.
        • Margulies D.S.
        • Kelly A.M.
        • Uddin L.Q.
        • Gotimer K.
        • et al.
        Functional connectivity of the human amygdala using resting state fMRI.
        Neuroimage. 2009; 45: 614-626
        • Heimer L.
        • Van Hoesen G.W.
        The limbic lobe and its output channels: Implications for emotional functions and adaptive behavior.
        Neurosci Biobehav Rev. 2006; 30: 126-147
        • Price J.L.
        Comparative aspects of amygdala connectivity.
        Ann N Y Acad Sci. 2003; 985: 50-58
        • Gutiérrez-Castellanos N.
        • Pardo-Bellver C.
        • Martínez-García F.
        • Lanuza E.
        The vomeronasal cortex - Afferent and efferent projections of the posteromedial cortical nucleus of the amygdala in mice.
        Eur J Neurosci. 2014; 39: 141-158
        • Martínez-Ricós J.
        • Agustín-Pavón C.
        • Lanuza E.
        • Martínez-García F.
        Role of the vomeronasal system in intersexual attraction in female mice.
        Neuroscience. 2008; 153: 383-395
        • Haga S.
        • Hattori T.
        • Sato T.
        • Sato K.
        • Matsuda S.
        • Kobayakawa R.
        • et al.
        The male mouse pheromone ESP1 enhances female sexual receptive behaviour through a specific vomeronasal receptor.
        Nature. 2010; 466: 118-122
        • Roberts T.
        • Roiser J.P.
        In the nose of the beholder: Are olfactory influences on human mate choice driven by variation in immune system genes or sex hormone levels?.
        Exp Biol Med (Maywood). 2010; 235: 1277-1281
        • Chamero P.
        • Marton T.F.
        • Logan D.W.
        • Flanagan K.
        • Cruz J.R.
        • Saghatelian A.
        • et al.
        Identification of protein pheromones that promote aggressive behaviour.
        Nature. 2007; 450: 899-902
        • Papes F.
        • Logan D.W.
        • Stowers L.
        The vomeronasal organ mediates interspecies defensive behaviors through detection of protein pheromone homologs.
        Cell. 2010; 141: 692-703
        • Isogai Y.
        • Si S.
        • Pont-Lezica L.
        • Tan T.
        • Kapoor V.
        • Murthy V.N.
        • Dulac C.
        Molecular organization of vomeronasal chemoreception.
        Nature. 2011; 478: 241-245
        • Nodari F.
        • Hsu F.F.
        • Fu X.
        • Holekamp T.F.
        • Kao L.F.
        • Turk J.
        • Holy T.E.
        Sulfated steroids as natural ligands of mouse pheromone-sensing neurons.
        J Neurosci. 2008; 28: 6407-6418
        • Rivière S.
        • Challet L.
        • Fluegge D.
        • Spehr M.
        • Rodriguez I.
        Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors.
        Nature. 2009; 459: 574-577
        • Kemppainen S.
        • Jolkkonen E.
        • Pitkänen A.
        Projections from the posterior cortical nucleus of the amygdala to the hippocampal formation and parahippocampal region in rat.
        Hippocampus. 2002; 12: 735-755
        • Kuhn M.
        • Höger N.
        • Feige B.
        • Blechert J.
        • Normann C.
        • Nissen C.
        Fear extinction as a model for synaptic plasticity in major depressive disorder.
        PLoS One. 2014; 9e115280
        • Dibbets P.
        • van den Broek A.
        • Evers E.A.
        Fear conditioning and extinction in anxiety- and depression-prone persons.
        Memory. 2015; 23: 350-364
        • Xiao Y.
        • Luo H.
        • Yang W.Z.
        • Zeng Y.
        • Shen Y.
        • Ni X.
        • et al.
        A brain signaling framework for stress-induced depression and ketamine treatment elucidated by phosphoproteomics.
        Front Cell Neurosci. 2020; 14: 48
        • Schweizer S.
        • Kievit R.A.
        • Emery T.
        • Cam-CAN
        • Henson R.N.
        Symptoms of depression in a large healthy population cohort are related to subjective memory complaints and memory performance in negative contexts.
        Psychol Med. 2018; 48: 104-114
        • Yong Ping E.
        • Laplante D.P.
        • Elgbeili G.
        • Hillerer K.M.
        • Brunet A.
        • O’Hara M.W.
        • King S.
        Prenatal maternal stress predicts stress reactivity at 2½ years of age: The Iowa Flood Study.
        Psychoneuroendocrinology. 2015; 56: 62-78
        • Kang H.J.
        • Kawasawa Y.I.
        • Cheng F.
        • Zhu Y.
        • Xu X.
        • Li M.
        • et al.
        Spatio-temporal transcriptome of the human brain.
        Nature. 2011; 478: 483-489
        • McEwen B.S.
        Gonadal steroid influences on brain development and sexual differentiation.
        Int Rev Physiol. 1983; 27: 99-145
        • Bale T.L.
        Neuroendocrine and immune influences on the CNS: It’s a matter of sex.
        Neuron. 2009; 64: 13-16
        • Handa R.J.
        • Weiser M.J.
        Gonadal steroid hormones and the hypothalamo-pituitary-adrenal axis.
        Front Neuroendocrinol. 2014; 35: 197-220
        • Tobet S.
        • Knoll J.G.
        • Hartshorn C.
        • Aurand E.
        • Stratton M.
        • Kumar P.
        • et al.
        Brain sex differences and hormone influences: A moving experience?.
        J Neuroendocrinol. 2009; 21: 387-392
        • Hicks L.M.
        • Swales D.A.
        • Garcia S.E.
        • Driver C.
        • Davis E.P.
        Does prenatal maternal distress contribute to sex differences in child psychopathology?.
        Curr Psychiatry Rep. 2019; 21: 7
        • Sutherland S.
        • Brunwasser S.M.
        Sex differences in vulnerability to prenatal stress: A review of the recent literature.
        Curr Psychiatry Rep. 2018; 20: 102
        • Mareckova K.
        • Miles A.
        • Andryskova L.
        • Brazdil M.
        • Nikolova Y.S.
        Temporally and sex-specific effects of maternal perinatal stress on offspring cortical gyrification and mood in young adulthood.
        Hum Brain Mapp. 2020; 41: 4866-4875
        • Stoye D.Q.
        • Blesa M.
        • Sullivan G.
        • Galdi P.
        • Lamb G.J.
        • Black G.S.
        • et al.
        Maternal cortisol is associated with neonatal amygdala microstructure and connectivity in a sexually dimorphic manner.
        Elife. 2020; 9e60729
        • Beck A.T.
        • Steer R.A.
        • Carbin M.G.
        Psychometric properties of the Beck Depression Inventory: Twenty-five years of evaluation.
        Clin Psychol Rev. 1988; 8: 77-100
        • Class Q.A.
        • Lichtenstein P.
        • Långström N.
        • D’Onofrio B.M.
        Timing of prenatal maternal exposure to severe life events and adverse pregnancy outcomes: A population study of 2.6 million pregnancies.
        Psychosom Med. 2011; 73: 234-241