Connectome-wide Functional Connectivity Abnormalities in Youth With Obsessive-Compulsive Symptoms

  • Aaron F. Alexander-Bloch
    Correspondence
    Address correspondence to Aaron F. Alexander-Bloch, M.D., Ph.D., M.Phil.
    Affiliations
    Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania

    Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania

    CHOP/Penn Lifespan Brain Institute, University of Pennsylvania, Philadelphia, Pennsylvania
    Search for articles by this author
  • Rahul Sood
    Affiliations
    Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania
    Search for articles by this author
  • Russell T. Shinohara
    Affiliations
    Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania

    Penn Statistics in Imaging and Visualization Center, University of Pennsylvania, Philadelphia, Pennsylvania

    Penn Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, Pennsylvania
    Search for articles by this author
  • Tyler M. Moore
    Affiliations
    Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania

    CHOP/Penn Lifespan Brain Institute, University of Pennsylvania, Philadelphia, Pennsylvania
    Search for articles by this author
  • Monica E. Calkins
    Affiliations
    Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania

    CHOP/Penn Lifespan Brain Institute, University of Pennsylvania, Philadelphia, Pennsylvania
    Search for articles by this author
  • Casey Chertavian
    Affiliations
    Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania
    Search for articles by this author
  • Daniel H. Wolf
    Affiliations
    Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania
    Search for articles by this author
  • Ruben C. Gur
    Affiliations
    Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania

    CHOP/Penn Lifespan Brain Institute, University of Pennsylvania, Philadelphia, Pennsylvania
    Search for articles by this author
  • Theodore D. Satterthwaite
    Affiliations
    Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania

    Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, Pennsylvania

    CHOP/Penn Lifespan Brain Institute, University of Pennsylvania, Philadelphia, Pennsylvania
    Search for articles by this author
  • Raquel E. Gur
    Affiliations
    Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania

    Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania

    CHOP/Penn Lifespan Brain Institute, University of Pennsylvania, Philadelphia, Pennsylvania
    Search for articles by this author
  • Ran Barzilay
    Affiliations
    Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania

    Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania

    CHOP/Penn Lifespan Brain Institute, University of Pennsylvania, Philadelphia, Pennsylvania
    Search for articles by this author
Published:August 07, 2021DOI:https://doi.org/10.1016/j.bpsc.2021.07.014

      Abstract

      Background

      Obsessive-compulsive symptomatology (OCS) is common in adolescence but usually does not meet the diagnostic threshold for obsessive-compulsive disorder. Nevertheless, both obsessive-compulsive disorder and subthreshold OCS are associated with increased likelihood of experiencing other serious psychiatric conditions, including depression and suicidal ideation. Unfortunately, there is limited information on the neurobiology of OCS.

      Methods

      Here, we undertook one of the first brain imaging studies of OCS in a large adolescent sample (analyzed n = 832) from the Philadelphia Neurodevelopmental Cohort. We investigated resting-state functional magnetic resonance imaging functional connectivity using complementary analytic approaches that focus on different neuroanatomical scales, from known functional systems to connectome-wide tests.

      Results

      We found a robust pattern of connectome-wide, OCS-related differences, as well as evidence of specific abnormalities involving known functional systems, including dorsal and ventral attention, frontoparietal, and default mode systems. Analysis of cerebral perfusion imaging and high-resolution structural imaging did not show OCS-related differences, consistent with domain specificity to functional connectivity.

      Conclusions

      The brain connectomic associations with OCS reported here, together with early studies of its clinical relevance, support the potential for OCS as an early marker of psychiatric risk that may enhance our understanding of mechanisms underlying the onset of adolescent psychopathology.

      Keywords

      To read this article in full you will need to make a payment

      References

        • Alvarenga P.G.
        • do Rosario M.C.
        • Cesar R.C.
        • Manfro G.G.
        • Moriyama T.S.
        • Bloch M.H.
        • et al.
        Obsessive–compulsive symptoms are associated with psychiatric comorbidities, behavioral and clinical problems: A population-based study of Brazilian school children.
        Eur Child Adolesc Psychiatry. 2016; 25: 175-182
        • Apter A.
        • Fallon Jr., T.J.
        • King R.A.
        • Ratzoni G.
        • Zohar A.H.
        • Binder M.
        • et al.
        Obsessive-compulsive characteristics: From symptoms to syndrome.
        J Am Acad Child Adolesc Psychiatry. 1996; 35: 907-912
        • Fullana M.A.
        • Mataix-Cols D.
        • Caspi A.
        • Harrington H.
        • Grisham J.R.
        • Moffitt T.E.
        • Poulton R.
        Obsessions and compulsions in the community: Prevalence, interference, help-seeking, developmental stability, and co-occurring psychiatric conditions.
        Am J Psychiatry. 2009; 166: 329-336
        • American Psychiatric Association
        Diagnostic and Statistical Manual of Mental Disorders (DSM-5®).
        American Psychiatric Publishing, Washington, DC2013
        • Barzilay R.
        • Patrick A.
        • Calkins M.E.
        • Moore T.M.
        • Wolf D.H.
        • Benton T.D.
        • et al.
        Obsessive-compulsive symptomatology in community youth: Typical development or a red flag for psychopathology?.
        J Am Acad Child Adolesc Psychiatry. 2019; 58: 277-286.e4
        • Weeland C.J.
        • White T.
        • Vriend C.
        • Muetzel R.L.
        • Starreveld J.
        • Hillegers M.H.J.
        • et al.
        Brain morphology associated with obsessive-compulsive symptoms in 2,551 children from the general population.
        J Am Acad Child Adolesc Psychiatry. 2021; 60: 470-478
        • Pagliaccio D.
        • Durham K.
        • Fitzgerald K.D.
        • Marsh R.
        Obsessive-compulsive symptoms among children in the adolescent brain and cognitive development study: Clinical, cognitive, and brain connectivity correlates.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2021; 6: 399-409
        • Harrison B.J.
        • Soriano-Mas C.
        • Pujol J.
        • Ortiz H.
        • López-Solà M.
        • Hernández-Ribas R.
        • et al.
        Altered corticostriatal functional connectivity in obsessive-compulsive disorder.
        Arch Gen Psychiatry. 2009; 66: 1189-1200
        • Menzies L.
        • Chamberlain S.R.
        • Laird A.R.
        • Thelen S.M.
        • Sahakian B.J.
        • Bullmore E.T.
        Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: The orbitofronto-striatal model revisited.
        Neurosci Biobehav Rev. 2008; 32: 525-549
        • Saxena S.
        • Brody A.L.
        • Schwartz J.M.
        • Baxter L.R.
        Neuroimaging and frontal-subcortical circuitry in obsessive-compulsive disorder.
        Br J Psychiatry. 1998; Suppl: 26-37
        • Menon V.
        Large-scale brain networks and psychopathology: A unifying triple network model.
        Trends Cogn Sci. 2011; 15: 483-506
        • Gonçalves Ó.F.
        • Soares J.M.
        • Carvalho S.
        • Leite J.
        • Ganho-Ávila A.
        • Fernandes-Gonçalves A.
        • et al.
        Patterns of default mode network deactivation in obsessive compulsive disorder.
        Sci Rep. 2017; 7: 44468
        • Posner J.
        • Marsh R.
        • Maia T.V.
        • Peterson B.S.
        • Gruber A.
        • Simpson H.B.
        Reduced functional connectivity within the limbic cortico-striato-thalamo-cortical loop in unmedicated adults with obsessive-compulsive disorder.
        Hum Brain Mapp. 2014; 35: 2852-2860
        • Stern E.R.
        • Fitzgerald K.D.
        • Welsh R.C.
        • Abelson J.L.
        • Taylor S.F.
        Resting-state functional connectivity between fronto-parietal and default mode networks in obsessive-compulsive disorder.
        PLoS One. 2012; 7e36356
        • Zhu Y.
        • Fan Q.
        • Zhang H.
        • Qiu J.
        • Tan L.
        • Xiao Z.
        • et al.
        Altered intrinsic insular activity predicts symptom severity in unmedicated obsessive-compulsive disorder patients: A resting state functional magnetic resonance imaging study.
        BMC Psychiatry. 2016; 16: 104
        • Hou J.
        • Song L.
        • Zhang W.
        • Wu W.
        • Wang J.
        • Zhou D.
        • et al.
        Morphologic and functional connectivity alterations of corticostriatal and default mode network in treatment-naïve patients with obsessive-compulsive disorder.
        PLoS One. 2013; 8e83931
        • Beucke J.C.
        • Sepulcre J.
        • Eldaief M.C.
        • Sebold M.
        • Kathmann N.
        • Kaufmann C.
        Default mode network subsystem alterations in obsessive–compulsive disorder.
        Br J Psychiatry. 2014; 205: 376-382
        • Gürsel D.A.
        • Avram M.
        • Sorg C.
        • Brandl F.
        • Koch K.
        Frontoparietal areas link impairments of large-scale intrinsic brain networks with aberrant fronto-striatal interactions in OCD: A meta-analysis of resting-state functional connectivity.
        Neurosci Biobehav Rev. 2018; 87: 151-160
        • Shin D.J.
        • Jung W.H.
        • He Y.
        • Wang J.
        • Shim G.
        • Byun M.S.
        • et al.
        The effects of pharmacological treatment on functional brain connectome in obsessive-compulsive disorder.
        Biol Psychiatry. 2014; 75: 606-614
        • Zhang T.
        • Wang J.
        • Yang Y.
        • Wu Q.
        • Li B.
        • Chen L.
        • et al.
        Abnormal small-world architecture of top–down control networks in obsessive–compulsive disorder.
        J Psychiatry Neurosci. 2011; 36: 23-31
        • Anticevic A.
        • Hu S.
        • Zhang S.
        • Savic A.
        • Billingslea E.
        • Wasylink S.
        • et al.
        Global resting-state functional magnetic resonance imaging analysis identifies frontal cortex, striatal, and cerebellar dysconnectivity in obsessive-compulsive disorder.
        Biol Psychiatry. 2014; 75: 595-605
        • Fair D.A.
        • Cohen A.L.
        • Power J.D.
        • Dosenbach N.U.F.
        • Church J.A.
        • Miezin F.M.
        • et al.
        Functional brain networks develop from a “local to distributed” organization.
        PLoS Comput Biol. 2009; 5e1000381
        • Gu S.
        • Satterthwaite T.D.
        • Medaglia J.D.
        • Yang M.
        • Gur R.E.
        • Gur R.C.
        • Bassett D.S.
        Emergence of system roles in normative neurodevelopment.
        Proc Natl Acad Sci U S A. 2015; 112: 13681-13686
        • Dosenbach N.U.F.
        • Nardos B.
        • Cohen A.L.
        • Fair D.A.
        • Power J.D.
        • Church J.A.
        • et al.
        Prediction of individual brain maturity using fMRI.
        Science. 2010; 329: 1358-1361
        • Satterthwaite T.D.
        • Wolf D.H.
        • Ruparel K.
        • Erus G.
        • Elliott M.A.
        • Eickhoff S.B.
        • et al.
        Heterogeneous impact of motion on fundamental patterns of developmental changes in functional connectivity during youth.
        Neuroimage. 2013; 83: 45-57
        • Sen B.
        • Bernstein G.A.
        • Mueller B.A.
        • Cullen K.R.
        • Parhi K.K.
        Sub-graph entropy based network approaches for classifying adolescent obsessive-compulsive disorder from resting-state functional MRI.
        Neuroimage Clin. 2020; 26: 102208
        • Armstrong C.C.
        • Moody T.D.
        • Feusner J.D.
        • McCracken J.T.
        • Chang S.
        • Levitt J.G.
        • et al.
        Graph-theoretical analysis of resting-state fMRI in pediatric obsessive-compulsive disorder.
        J Affect Disord. 2016; 193: 175-184
        • Cyr M.
        • Pagliaccio D.
        • Yanes-Lukin P.
        • Fontaine M.
        • Rynn M.A.
        • Marsh R.
        Altered network connectivity predicts response to cognitive-behavioral therapy in pediatric obsessive-compulsive disorder.
        Neuropsychopharmacology. 2020; 45: 1232-1240
        • Calkins M.E.
        • Merikangas K.R.
        • Moore T.M.
        • Burstein M.
        • Behr M.A.
        • Satterthwaite T.D.
        • et al.
        The Philadelphia Neurodevelopmental Cohort: Constructing a deep phenotyping collaborative.
        J Child Psychol Psychiatry. 2015; 56: 1356-1369
        • Satterthwaite T.D.
        • Elliott M.A.
        • Ruparel K.
        • Loughead J.
        • Prabhakaran K.
        • Calkins M.E.
        • et al.
        Neuroimaging of the Philadelphia neurodevelopmental cohort.
        Neuroimage. 2014; 86: 544-553
        • Xia C.H.
        • Ma Z.
        • Ciric R.
        • Gu S.
        • Betzel R.F.
        • Kaczkurkin A.N.
        • et al.
        Linked dimensions of psychopathology and connectivity in functional brain networks.
        Nat Commun. 2018; 9: 3003
        • Carp J.
        On the plurality of (methodological) worlds: Estimating the analytic flexibility of fMRI experiments.
        Front Neurosci. 2012; 6: 149
        • Botvinik-Nezer R.
        • Holzmeister F.
        • Camerer C.F.
        • Dreber A.
        • Huber J.
        • Johannesson M.
        • et al.
        Variability in the analysis of a single neuroimaging dataset by many teams.
        Nature. 2020; 582: 84-88
        • Pan W.
        • Kim J.
        • Zhang Y.
        • Shen X.
        • Wei P.
        A powerful and adaptive association test for rare variants.
        Genetics. 2014; 197: 1081-1095
        • Zalesky A.
        • Fornito A.
        • Bullmore E.T.
        Network-based statistic: Identifying differences in brain networks.
        Neuroimage. 2010; 53: 1197-1207
        • Yeo B.T.T.
        • Krienen F.M.
        • Sepulcre J.
        • Sabuncu M.R.
        • Lashkari D.
        • Hollinshead M.
        • et al.
        The organization of the human cerebral cortex estimated by intrinsic functional connectivity.
        J Neurophysiol. 2011; 106: 1125-1165
        • Moore T.M.
        • Martin I.K.
        • Gur O.M.
        • Jackson C.T.
        • Scott J.C.
        • Calkins M.E.
        • et al.
        Characterizing social environment’s association with neurocognition using census and crime data linked to the Philadelphia Neurodevelopmental Cohort.
        Psychol Med. 2016; 46: 599-610
        • Canavera K.E.
        • Wilkins K.C.
        • Pincus D.B.
        • Ehrenreich-May J.T.
        Parent-child agreement in the assessment of obsessive-compulsive disorder.
        J Clin Child Adolesc Psychol. 2009; 38: 909-915
        • Rothen S.
        • Vandeleur C.L.
        • Lustenberger Y.
        • Jeanprêtre N.
        • Ayer E.
        • Gamma F.
        • et al.
        Parent-child agreement and prevalence estimates of diagnoses in childhood: Direct interview versus family history method.
        Int J Methods Psychiatr Res. 2009; 18: 96-109
        • Kaufman J.
        • Birmaher B.
        • Brent D.
        • Rao U.
        • Flynn C.
        • Moreci P.
        • et al.
        Schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): Initial reliability and validity data.
        J Am Acad Child Adolesc Psychiatry. 1997; 36: 980-988
        • Caspi A.
        • Houts R.M.
        • Belsky D.W.
        • Goldman-Mellor S.J.
        • Harrington H.
        • Israel S.
        • et al.
        The p factor: One general psychopathology factor in the structure of psychiatric disorders?.
        Clin Psychol Sci. 2014; 2: 119-137
        • Lahey B.B.
        • Applegate B.
        • Hakes J.K.
        • Zald D.H.
        • Hariri A.R.
        • Rathouz P.J.
        Is there a general factor of prevalent psychopathology during adulthood?.
        J Abnorm Psychol. 2012; 121: 971-977
        • Allegrini A.G.
        • Cheesman R.
        • Rimfeld K.
        • Selzam S.
        • Pingault J.B.
        • Eley T.C.
        • Plomin R.
        The p factor: Genetic analyses support a general dimension of psychopathology in childhood and adolescence.
        J Child Psychol Psychiatry. 2020; 61: 30-39
        • Moore T.M.
        • Calkins M.E.
        • Satterthwaite T.D.
        • Roalf D.R.
        • Rosen A.F.G.
        • Gur R.C.
        • Gur R.E.
        Development of a computerized adaptive screening tool for overall psychopathology (“p”).
        J Psychiatr Res. 2019; 116: 26-33
        • Jenkinson M.
        • Beckmann C.F.
        • Behrens T.E.J.
        • Woolrich M.W.
        • Smith S.M.
        FSL. Neuroimage. 2012; 62: 782-790
        • Cox R.W.
        AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages.
        Comput Biomed Res. 1996; 29: 162-173
        • Greve D.N.
        • Fischl B.
        Accurate and robust brain image alignment using boundary-based registration.
        Neuroimage. 2009; 48: 63-72
        • Tustison N.J.
        • Cook P.A.
        • Klein A.
        • Song G.
        • Das S.R.
        • Duda J.T.
        • et al.
        Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements.
        Neuroimage. 2014; 99: 166-179
        • Schaefer A.
        • Kong R.
        • Gordon E.M.
        • Laumann T.O.
        • Zuo X.N.
        • Holmes A.J.
        • et al.
        Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI.
        Cereb Cortex. 2018; 28: 3095-3114
        • Avants B.B.
        • Tustison N.J.
        • Wu J.
        • Cook P.A.
        • Gee J.C.
        An open source multivariate framework for n-tissue segmentation with evaluation on public data.
        Neuroinformatics. 2011; 9: 381-400
        • Avants B.B.
        • Tustison N.J.
        • Song G.
        • Cook P.A.
        • Klein A.
        • Gee J.C.
        A reproducible evaluation of ANTs similarity metric performance in brain image registration.
        NeuroImage. 2011; 54: 2033-2044
        • Tustison N.J.
        • Avants B.B.
        • Cook P.A.
        • Zheng Y.
        • Egan A.
        • Yushkevich P.A.
        • Gee J.C.
        N4ITK: Improved N3 bias correction.
        IEEE Trans Med Imaging. 2010; 29: 1310-1320
        • Klein A.
        • Ghosh S.S.
        • Avants B.
        • Yeo B.T.T.
        • Fischl B.
        • Ardekani B.
        • et al.
        Evaluation of volume-based and surface-based brain image registration methods.
        Neuroimage. 2010; 51: 214-220
        • Das S.R.
        • Avants B.B.
        • Grossman M.
        • Gee J.C.
        Registration based cortical thickness measurement.
        Neuroimage. 2009; 45: 867-879
        • Jenkinson M.
        • Bannister P.
        • Brady M.
        • Smith S.
        Improved optimization for the robust and accurate linear registration and motion correction of brain images.
        Neuroimage. 2002; 17: 825-841
        • Smith S.M.
        • Brady J.M.
        SUSAN—A new approach to low level image processing.
        Int J Comput Vis. 1997; 23: 45-78
        • Smith S.M.
        Fast robust automated brain extraction.
        Hum Brain Mapp. 2002; 17: 143-155
        • Kim J.
        • Wozniak J.R.
        • Mueller B.A.
        • Shen X.
        • Pan W.
        Comparison of statistical tests for group differences in brain functional networks.
        Neuroimage. 2014; 101: 681-694
        • Pan W.
        • Kwak I.Y.
        • Wei P.
        A powerful pathway-based adaptive test for genetic association with common or rare variants.
        Am J Hum Genet. 2015; 97: 86-98
        • Zalesky A.
        • Cocchi L.
        • Fornito A.
        • Murray M.M.
        • Bullmore E.
        Connectivity differences in brain networks.
        Neuroimage. 2012; 60: 1055-1062
        • Gu Z.
        • Gu L.
        • Eils R.
        • Schlesner M.
        • Brors B.
        circlize implements and enhances circular visualization in R.
        Bioinformatics. 2014; 30: 2811-2812
        • Fitzgerald K.D.
        • Welsh R.C.
        • Stern E.R.
        • Angstadt M.
        • Hanna G.L.
        • Abelson J.L.
        • Taylor S.F.
        Developmental alterations of frontal-striatal-thalamic connectivity in obsessive-compulsive disorder.
        J Am Acad Child Adolesc Psychiatry. 2011; 50: 938-948.e3
        • Bernstein G.A.
        • Mueller B.A.
        • Schreiner M.W.
        • Campbell S.M.
        • Regan E.K.
        • Nelson P.M.
        • et al.
        Abnormal striatal resting-state functional connectivity in adolescents with obsessive–compulsive disorder.
        Psychiatry Res Neuroimaging. 2016; 247: 49-56
        • Weber A.M.
        • Soreni N.
        • Noseworthy M.D.
        A preliminary study of functional connectivity of medication naïve children with obsessive–compulsive disorder.
        Prog Neuropsychopharmacol Biol Psychiatry. 2014; 53: 129-136
        • Buckner R.L.
        • Andrews-Hanna J.R.
        • Schacter D.L.
        The brain’s default network: Anatomy, function, and relevance to disease.
        Ann N Y Acad Sci. 2008; 1124: 1-38
        • Raichle M.E.
        The brain’s default mode network.
        Annu Rev Neurosci. 2015; 38: 433-447
        • Prabhu L.
        • Cherian A.V.
        • Viswanath B.
        • Kandavel T.
        • Bada Math S.
        • Janardhan Reddy Y.C.
        Symptom dimensions in OCD and their association with clinical characteristics and comorbid disorders..
        Obsessive Compuls Relat Disord. 2012; 2: 14-21
        • McKay D.
        • Piacentini J.
        • Greisberg S.
        • Graae F.
        • Jaffer M.
        • Miller J.
        The structure of childhood obsessions and compulsions: Dimensions in an outpatient sample.
        Behav Res Ther. 2006; 44: 137-146
        • Ruscio A.M.
        • Stein D.J.
        • Chiu W.T.
        • Kessler R.C.
        The epidemiology of obsessive-compulsive disorder in the National comorbidity Survey Replication.
        Mol Psychiatry. 2010; 15: 53-63
        • Stewart S.E.
        • Rosario M.C.
        • Baer L.
        • Carter A.S.
        • Brown T.A.
        • Scharf J.M.
        • et al.
        Four-factor structure of obsessive-compulsive disorder symptoms in children, adolescents, and adults.
        J Am Acad Child Adolesc Psychiatry. 2008; 47: 763-772
        • Scahill L.
        • Riddle M.A.
        • McSwiggin-Hardin M.
        • Ort S.I.
        • King R.A.
        • Goodman W.K.
        • et al.
        Children’s Yale-Brown Obsessive Compulsive Scale: Reliability and validity.
        J Am Acad Child Adolesc Psychiatry. 1997; 36: 844-852
        • Mowinckel A.M.
        • Vidal-Piñeiro D.
        Visualisation of brain statistics with R-packages ggseg and ggseg3d.
        arXiv. 2019; (https://doi.org/1912.08200)