Development of thalamocortical structural connectivity in typically developing and psychosis spectrum youth

Published:October 13, 2021DOI:https://doi.org/10.1016/j.bpsc.2021.09.009

      Abstract

      Background

      Thalamocortical white matter connectivity is disrupted in psychosis and is hypothesized to play a role in its etiology and associated cognitive impairment. Attenuated cognitive symptoms often begin in adolescence, during a critical phase of white matter and cognitive development. However, little is known about the development of thalamocortical white matter connectivity and its association with cognition.

      Methods

      The present study characterized effects of age, sex, psychosis symptomatology, and cognition in thalamocortical networks in a large sample of youth (n = 1144, aged 8-22 years, 46% male) from the Philadelphia Neurodevelopmental Cohort (PNC), which included 316 typically-developing youth, 330 psychosis-spectrum youth, and 498 youth with other psychopathology. Probabilistic tractography was used to quantify percent total connectivity between the thalamus and six cortical regions, and assess microstructural properties (i.e. fractional anisotropy-FA) of thalamocortical white matter tracts.

      Results

      Overall, percent total connectivity of the thalamus was weakly associated with age and was not associated with psychopathology or cognition. In contrast, FA of all thalamocortical tracts increased significantly with age, was generally higher in males than females, and was lowest in psychosis-spectrum youth. FA of tracts linking the thalamus to prefrontal and posterior parietal cortex was related to better cognitive function across subjects.

      Conclusions

      By characterizing the pattern of typical development and alterations in those at risk for psychotic disorders, this study provides a foundation for further conceptualization of thalamocortical white matter microstructure as a marker of neurodevelopment supporting cognition and an important risk marker for psychosis.

      Keywords

      To read this article in full you will need to make a payment

      REFERENCES

        • Dorph-Petersen K.A.
        • Lewis D.A.
        Postmortem structural studies of the thalamus in schizophrenia.
        Schizophr Res. 2017; 180: 28-35
        • van Erp T.G.M.M.
        • Hibar D.P.
        • Rasmussen J.M.
        • Glahn D.C.
        • Pearlson G.D.
        • Andreassen O.A.
        • et al.
        Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium.
        Mol Psychiatry. 2016; 21: 547-553
        • Huang A.S.
        • Rogers B.P.
        • Sheffield J.M.
        • Jalbrzikowski M.E.
        • Anticevic A.
        • JU Blackford
        • et al.
        Thalamic nuclei volumes in psychotic disorders and in youths with psychosis spectrum symptoms.
        Am J Psychiatry. 2020; 177: 1159-1167
        • Minzenberg M.J.
        • Laird A.R.
        • Thelen S.
        • Carter C.S.
        • Glahn D.C.
        Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia.
        Arch Gen Psychiatry. 2009; 66: 811-822
        • Ragland J.D.
        • Laird A.R.
        • Ranganath C.
        • Blumenfeld R.S.
        • Gonzales S.M.
        • Glahn D.C.
        Prefrontal Activation Deficits During Episodic Memory in Schizophrenia.
        Am J Psychiatry. 2009; 166: 863-874
        • Cerullo M.A.
        • Adler C.M.
        • Delbello M.P.
        • Strakowski S.M.
        The functional neuroanatomy of bipolar disorder.
        Int Rev Psychiatry. 2009; 21: 314-322
        • Kraguljac N.V.
        • Reid M.
        • White D.
        • Jones R.
        • den Hollander J.
        • Lowman D.
        • Lahti A.C.
        Neurometabolites in schizophrenia and bipolar disorder - a systematic review and meta-analysis.
        Psychiatry Res. 2012; 203: 111-125
        • Andreasen N.
        • Arndt S.
        • Swayze V.
        • Cizadlo T.
        • Flaum M.
        • O’Leary D.
        • et al.
        Thalamic abnormalities in schizophrenia visualized through magnetic resonance image averaging.
        Science. 1994; 266: 294-298
        • Andreasen N.C.
        The Role of the Thalamus in Schizophrenia.
        Can J Psychiatry. 1997; 42: 27-33
        • Scheibel A.B.
        The thalamus and neuropsychiatric illness.
        J Neuropsychiatry Clin Neurosci. 1997; 9: 342-353
        • Swerdlow N.R.
        Integrative circuit models and their implications for the pathophysiologies and treatments of the schizophrenias.
        Curr Top Behav Neurosci. 2010; 4: 555-583
        • Giraldo-Chica M.
        • Woodward N.D.
        Review of thalamocortical resting-state fMRI studies in schizophrenia.
        Schizophr Res. 2017; 180: 58-63
        • Ramsay I.S.
        An Activation Likelihood Estimate Meta-analysis of Thalamocortical Dysconnectivity in Psychosis.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2019; 4: 859-869
        • Woodward N.D.
        • Karbasforoushan H.
        • Heckers S.
        Thalamocortical dysconnectivity in schizophrenia.
        Am J Psychiatry. 2012; 169: 1092-1099
        • Anticevic A.
        • Cole M.W.
        • Repovs G.
        • Murray J.D.
        • Brumbaugh M.S.
        • Winkler A.M.
        • et al.
        Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness.
        Cereb Cortex. 2014; 24: 3116-3130
        • Cho K.I.K.
        • Shenton M.E.
        • Kubicki M.
        • Jung W.H.
        • Lee T.Y.
        • Yun J.Y.
        • et al.
        Altered thalamo-cortical white matter connectivity: Probabilistic tractography study in clinical-high risk for psychosis and first-episode psychosis.
        Schizophr Bull. 2016; 42: 723-731
        • Kubota M.
        • Miyata J.
        • Sasamoto A.
        • Sugihara G.
        • Yoshida H.
        • Kawada R.
        • et al.
        Thalamocortical disconnection in the orbitofrontal region associated with cortical thinning in schizophrenia.
        Arch Gen Psychiatry. 2013; 70: 12-21
        • Sheffield J.M.
        • Huang A.S.
        • Rogers B.P.
        • Giraldo-Chica M.
        • Landman B.A.
        • JU Blackford
        • et al.
        Thalamocortical anatomical connectivity in schizophrenia and psychotic bipolar disorder.
        Schizophr Bull. 2020; 46: 1062-1071
        • Giraldo-Chica M.
        • Rogers B.P.
        • Damon S.M.
        • Landman B.A.
        • Woodward N.D.
        Prefrontal-Thalamic Anatomical Connectivity and Executive Cognitive Function in Schizophrenia.
        Biol Psychiatry. 2018; 83: 509-517
        • Marenco S.
        • Stein J.L.
        • Savostyanova A.A.
        • Sambataro F.
        • Tan H.Y.
        • Goldman A.L.
        • et al.
        Investigation of anatomical thalamo-cortical connectivity and fMRI activation in schizophrenia.
        Neuropsychopharmacology. 2012; 37: 499-507
        • Szeszko P.R.
        • Robinson D.G.
        • Ashtari M.
        • Vogel J.
        • Betensky J.
        • Sevy S.
        • et al.
        Clinical and Neuropsychological Correlates of White Matter Abnormalities in Recent Onset Schizophrenia.
        Neuropsychopharmacology. 2008; 33: 976-984
        • Levin H.S.
        • Wilde E.A.
        • Chu Z.
        • Yallampalli R.
        • Hanten G.R.
        • Li X.
        • et al.
        Diffusion tensor imaging in relation to cognitive and functional outcome of traumatic brain injury in children.
        J Head Trauma Rehabil. 2008; 23: 197-208
        • Campbell L.E.
        • Daly E.
        • Toal F.
        • Stevens A.
        • Azuma R.
        • Karmiloff-Smith A.
        • et al.
        Brain structural differences associated with the behavioural phenotype in children with Williams syndrome.
        Brain Res. 2009; 1258: 96-107
        • Cornblath E.J.
        • Ashourvan A.
        • Kim J.Z.
        • Betzel R.F.
        • Ciric R.
        • Adebimpe A.
        • et al.
        Temporal sequences of brain activity at rest are constrained by white matter structure and modulated by cognitive demands.
        Commun Biol. 2020; 3: 1-12
        • Aoki Y.
        • Yoncheva Y.N.
        • Chen B.
        • Nath T.
        • Sharp D.
        • Lazar M.
        • et al.
        Association of White Matter Structure With Autism Spectrum Disorder and Attention-Deficit/Hyperactivity Disorder.
        JAMA psychiatry. 2017; 74: 1120-1128
        • Unger A.
        • Alm K.H.
        • Collins J.A.
        • O’Leary J.M.
        • Olson I.R.
        Variation in white matter connectivity predicts the ability to remember faces and discriminate their emotions.
        J Int Neuropsychol Soc. 2016; 22: 180-190
        • Kochunov P.
        • Zavaliangos-Petropulu A.
        • Jahanshad N.
        • Thompson P.M.
        • Ryan M.C.
        • Chiappelli J.
        • et al.
        A White Matter Connection of Schizophrenia and Alzheimer’s Disease.
        Schizophr Bull. 2021; 47: 197-206
        • Qiu A.
        • Zhong J.
        • Graham S.
        • Chia M.Y.
        • Sim K.
        Combined analyses of thalamic volume, shape and white matter integrity in first-episode schizophrenia.
        Neuroimage. 2009; 47: 1163-1171
        • Weinberger D.R.
        Implications of Normal Brain Development for the Pathogenesis of Schizophrenia.
        Arch Gen Psychiatry. 1987; 44: 660-669
        • McGlashan T.H.
        • Hoffman R.E.
        Schizophrenia as a disorder of developmentally reduced synaptic connectivity.
        Arch Gen Psychiatry. 2000; 57
        • Sidman R.L.
        • Rakic P.
        Neuronal migration, with special reference to developing human brain: a review.
        Brain Res. 1973; 62: 1-35
        • Jones E.Q.
        Cortical development and thalamic pathology in schizophrenia.
        Schizophr Bull. 1997; 23: 483-501
        • Stephan K.E.
        • Friston K.J.
        • Frith C.D.
        Dysconnection in Schizophrenia: From abnormal synaptic plasticity to failures of self-monitoring.
        Schizophr Bull. 2009; 35: 509-527
        • Samartzis L.
        • Dima D.
        • Fusar-Poli P.
        • Kyriakopoulos M.
        White matter alterations in early stages of schizophrenia: A systematic review of diffusion tensor imaging studies.
        J Neuroimaging. 2014; 24: 101-110
        • Tamnes C.K.
        • Østby Y.
        • Fjell A.M.
        • Westlye L.T.
        • Due-Tønnessen P.
        • Walhovd K.B.
        Brain maturation in adolescence and young adulthood: Regional age-related changes in cortical thickness and white matter volume and microstructure.
        Cereb Cortex. 2010; 20: 534-548
        • Giedd J.N.
        • Lalonde F.M.
        • Celano M.J.
        • White S.L.
        • Wallace G.L.
        • Lee N.R.
        • Lenroot R.K.
        Anatomical brain magnetic resonance imaging of typically developing children and adolescents.
        J Am Acad Child Adolesc Psychiatry. 2009; 48: 465-470
        • Lenroot R.K.
        • Gogtay N.
        • Greenstein D.K.
        • Wells E.M.
        • Wallace G.L.
        • Clasen L.S.
        • et al.
        Sexual dimorphism of brain developmental trajectories during childhood and adolescence.
        Neuroimage. 2007; 36: 1065-1073
        • Asato M.R.
        • Terwilliger R.
        • Woo J.
        • Luna B.
        White matter development in adolescence: A DTI study.
        Cereb Cortex. 2010; 20: 2122-2131
        • Blakemore S.J.
        • Choudhury S.
        Development of the adolescent brain: Implications for executive function and social cognition.
        J Child Psychol Psychiatry Allied Discip. 2006; 47: 296-312
        • Lenroot R.K.
        • Giedd J.N.
        Sex differences in the adolescent brain.
        Brain Cogn. 2010; 72: 46-55
        • Aleman A.
        • Kahn R.S.
        • Selten J.-P.
        Sex differences in the risk of schizophrenia: evidence from meta-analysis.
        Arch Gen Psychiatry. 2003; 60: 565-571
        • Lisman J.E.
        • Pi H.J.
        • Zhang Y.
        • Otmakhova N.A.
        A Thalamo-Hippocampal-Ventral Tegmental Area Loop May Produce the Positive Feedback that Underlies the Psychotic Break in Schizophrenia.
        Biol Psychiatry. 2010; 68: 17-24
        • Keshavan M.S.
        Development, disease and degeneration in schizophrenia: A unitary pathophysiological model.
        J Psychiatr Res. 1999; 33: 513-521
        • Xiao Y.
        • Sun H.
        • Shi S.
        • Jiang D.
        • Tao B.
        • Zhao Y.
        • et al.
        White matter abnormalities in never-treated patients with long-term schizophrenia.
        Am J Psychiatry. 2018; 175: 1129-1136
        • Wilkinson M.
        • Kane T.
        • Wang R.
        • Takahashi E.
        Migration pathways of thalamic neurons and development of thalamocortical connections in humans revealed by diffusion MR tractography.
        Cereb Cortex. 2017; 27: 5683-5695
        • Calkins M.E.
        • Moore T.M.
        • Merikangas K.R.
        • Burstein M.
        • Satterthwaite T.D.
        • Bilker W.B.
        • et al.
        The psychosis spectrum in a young U.S. community sample: Findings from the Philadelphia Neurodevelopmental Cohort.
        World Psychiatry. 2014; 13: 296-305
        • Van Os J.
        • Linscott R.J.
        • Myin-Germeys I.
        • Delespaul P.
        • Krabbendam L.
        A systematic review and meta-analysis of the psychosis continuum: Evidence for a psychosis proneness-persistence-impairment model of psychotic disorder.
        Psychol Med. 2009; 39: 179-195
        • Linscott R.J.
        • Van Os J.
        An updated and conservative systematic review and meta-analysis of epidemiological evidence on psychotic experiences in children and adults: On the pathway from proneness to persistence to dimensional expression across mental disorders.
        Psychol Med. 2013; 43: 1133-1149
        • DeRosse P.
        • Karlsgodt K.H.
        Examining the Psychosis Continuum.
        Curr Behav Neurosci reports. 2015; 2: 80-89
        • Poulton R.
        • Caspi A.
        • Moffitt T.E.
        • Cannon M.
        • Murray R.
        • Harrington H.
        Children’s self-reported psychotic symptoms and adult schizophreniform disorder: a 15-year longitudinal study.
        Arch Gen Psychiatry. 2000; 57: 1053-1058
        • David A.S.
        • Ajnakina O.
        Psychosis as a continuous phenotype in the general population: the thin line between normality and pathology.
        World Psychiatry. 2016; 15: 129-130
        • Fusar-Poli P.
        • Bonoldi I.
        • Yung A.R.
        • Borgwardt S.
        • Kempton M.J.
        • Valmaggia L.
        • et al.
        Predicting psychosis: meta-analysis of transition outcomes in individuals at high clinical risk.
        Arch Gen Psychiatry. 2012; 69: 220-229
        • Kaczkurkin A.N.
        • Raznahan A.
        • Satterthwaite T.D.
        Sex differences in the developing brain: insights from multimodal neuroimaging.
        Neuropsychopharmacology. 2019; 44: 71-85
        • Gur R.C.
        • Richard J.
        • Hughett P.
        • Calkins M.E.
        • Macy L.
        • Bilker W.B.
        • et al.
        A cognitive neuroscience-based computerized battery for efficient measurement of individual differences: Standardization and initial construct validation.
        J Neurosci Methods. 2010; 187: 254-262
        • Moore T.M.
        • Reise S.P.
        • Gur R.E.
        • Hakonarson H.
        • Gur R.C.
        Psychometric properties of the penn computerized neurocognitive battery.
        Neuropsychology. 2015; 29: 235-246
        • Smith S.M.
        • Jenkinson M.
        • Woolrich M.W.
        • Beckmann C.F.
        • Behrens T.E.J.
        • Johansen-Berg H.
        • et al.
        Advances in functional and structural MR image analysis and implementation as FSL.
        Neuroimage. 2004; 23: 208-219
        • Dale A.M.
        • Fischl B.
        • Sereno M.I.
        Cortical Surface-Based Analysis.
        Neuroimage. 1999; 9: 179-194
        • Lebel C.
        • Walker L.
        • Leemans A.
        • Phillips L.
        • Beaulieu C.
        Microstructural maturation of the human brain from childhood to adulthood.
        Neuroimage. 2008; 40: 1044-1055
        • Lüders E.
        • Steinmetz H.
        • Jäncke L.
        Brain size and grey matter volume in the healthy human brain.
        Neuroreport. 2002; 13: 2371-2374
        • Van Hemmen J.
        • Saris I.M.J.
        • Cohen-Kettenis P.T.
        • Veltman D.J.
        • Pouwels P.J.W.
        • Bakker J.
        Sex Differences in White Matter Microstructure in the Human Brain Predominantly Reflect Differences in Sex Hormone Exposure.
        Cereb Cortex. 2017; 27: 2994-3001
        • Catani M.
        • Ffytche D.H.
        The rises and falls of disconnection syndromes.
        Brain. 2005; 128: 2224-2239
        • Perry A.
        • Roberts G.
        • Mitchell P.B.
        • Breakspear M.
        Connectomics of bipolar disorder: a critical review, and evidence for dynamic instabilities within interoceptive networks.
        Mol Psychiatry. 2019; 24: 1296-1318
        • Fernandes H.M.
        • Cabral J.
        • van Hartevelt T.J.
        • Lord L.D.
        • Gleesborg C.
        • Møller A.
        • et al.
        Disrupted brain structural connectivity in Pediatric Bipolar Disorder with psychosis.
        Sci Rep. 2019; 9: 1-14
        • Steullet P.
        Thalamus-related anomalies as candidate mechanism-based biomarkers for psychosis.
        Schizophr Res. 2020; 226: 147-157
        • Cetin-Karayumak S.
        • Di Biase M.A.
        • Chunga N.
        • Reid B.
        • Somes N.
        • Lyall A.E.
        • et al.
        White matter abnormalities across the lifespan of schizophrenia: a harmonized multi-site diffusion MRI study.
        Mol Psychiatry. 2019; : 3208-3219
        • Kelly S.
        • Jahanshad N.
        • Zalesky A.
        • Kochunov P.
        • Agartz I.
        • Alloza C.
        • et al.
        Widespread white matter microstructural differences in schizophrenia across 4322 individuals: Results from the ENIGMA Schizophrenia DTI Working Group.
        Mol Psychiatry. 2018; 23: 1261-1269
        • Bohlken M.M.
        • Brouwer R.M.
        • Mandl R.C.W.
        • Van Den Heuvel M.P.
        • Hedman A.M.
        • De Hert M.
        • et al.
        Structural brain connectivity as a genetic marker for schizophrenia.
        JAMA Psychiatry. 2016; 73: 11-19
        • Bernard J.A.
        • Orr J.M.
        • Mittal V.A.
        Abnormal hippocampal-thalamic white matter tract development and positive symptom course in individuals at ultra-high risk for psychosis.
        npj Schizophr. 2015; 1: 1-6
        • Ho B.-C.
        • Andreasen N.C.
        • Nopoulos P.
        • Arndt S.
        • Magnotta V.
        • Flaum M.
        Progressive Structural Brain Abnormalities and Their Relationship to Clinical Outcome.
        Arch Gen Psychiatry. 2003; 60: 585
        • Karlsgodt K.H.
        Diffusion Imaging of White Matter In Schizophrenia: Progress and Future Directions.
        Biol psychiatry Cogn Neurosci neuroimaging. 2016; 1: 209-217
        • Peters B.D.
        • Szeszko P.R.
        • Radua J.
        • Ikuta T.
        • Gruner P.
        • Derosse P.
        • et al.
        White matter development in adolescence: Diffusion tensor imaging and meta-analytic results.
        Schizophr Bull. 2012; 38: 1308-1317
        • Peters B.D.
        • Karlsgodt K.H.
        White matter development in the early stages of psychosis.
        Schizophr Res. 2015; 161: 61-69
        • Goudriaan A.
        • De Leeuw C.
        • Ripke S.
        • Hultman C.M.
        • Sklar P.
        • Sullivan P.F.
        • et al.
        Specific glial functions contribute to Schizophrenia susceptibility.
        Schizophr Bull. 2014; 40: 925-935
        • Nave K.A.
        • Ehrenreich H.
        Myelination and oligodendrocyte functions in psychiatric diseases.
        JAMA Psychiatry. 2014; 71: 582-584
        • Roussos P.
        • Haroutunian V.
        Schizophrenia: susceptibility genes and oligodendroglial and myelin related abnormalities.
        Front Cell Neurosci. 2014; 8: 5
        • Takahashi N.
        • Sakurai T.
        • Davis K.L.
        • Buxbaum J.D.
        Linking oligodendrocyte and myelin dysfunction to neurocircuitry abnormalities in schizophrenia.
        Prog Neurobiol. 2011; 93: 13-24
        • Irani F.
        • Brensinger C.M.
        • Richard J.
        • Calkins M.E.
        • Moberg P.J.
        • Bilker W.
        • et al.
        Computerized neurocognitive test performance in schizophrenia: a lifespan analysis.
        Am J Geriatr Psychiatry. 2012; 20: 41-52
        • Roalf D.R.
        • Ruparel K.
        • Verma R.
        • Elliott M.A.
        • Gur R.E.
        • Gur R.C.
        White matter organization and neurocognitive performance variability in schizophrenia.
        Schizophr Res. 2013; 143: 172-178
        • Yang M.
        • Gao S.
        • Zhang X.
        Cognitive deficits and white matter abnormalities in never-treated first-episode schizophrenia.
        Transl Psychiatry. 2020; 10https://doi.org/10.1038/s41398-020-01049-0
        • Subramaniam K.
        • Gill J.
        • Fisher M.
        • Mukherjee P.
        • Nagarajan S.
        • Vinogradov S.
        White matter microstructure predicts cognitive training-induced improvements in attention and executive functioning in schizophrenia.
        Schizophr Res. 2018; 193: 276-283
        • Kochunov P.
        • Coyle T.R.
        • Rowland L.M.
        • Jahanshad N.
        • Thompson P.M.
        • Kelly S.
        • et al.
        Association of white matter with core cognitive deficits in patients with schizophrenia.
        JAMA Psychiatry. 2017; 74: 958-966
        • Nagy Z.
        • Westerberg H.
        • Klingberg T.
        Maturation of white matter is associated with the development of cognitive functions during childhood.
        J Cogn Neurosci. 2004; 16: 1227-1233
        • Turken A.U.
        • Whitfield-Gabrieli S.
        • Bammer R.
        • Baldo J.V.
        • Dronkers N.F.
        • Gabrieli J.D.E.
        Cognitive processing speed and the structure of white matter pathways: Convergent evidence from normal variation and lesion studies.
        Neuroimage. 2008; 42: 1032-1044
        • Gold B.T.
        • Powell D.K.
        • Xuan L.
        • Jiang Y.
        • Hardy P.A.
        Speed of lexical decision correlates with diffusion anisotropy in left parietal and frontal white matter: Evidence from diffusion tensor imaging.
        Neuropsychologia. 2007; 45: 2439-2446
        • Boespflug E.L.
        • Storrs J.
        • Sadat-Hossieny S.
        • Eliassen J.
        • Shidler M.
        • Norris M.
        • Krikorian R.
        Full diffusion characterization implicates regionally disparate neuropathology in Mild Cognitive Impairment.
        Brain Struct Funct. 2014; 219: 367-379
        • Schmithorst V.J.
        • Wilkes M.
        • Dardzinski B.J.
        • Holland S.K.
        Cognitive functions correlate with white matter architecture in a normal pediatric population: A diffusion tensor HRI study.
        Hum Brain Mapp. 2005; 26: 139-147
        • Luna B.
        Developmental Changes in Cognitive Control through Adolescence.
        Adv Child Dev Behav. (Vol. 37), Elsevier. 2009; https://doi.org/10.1016/S0065-2407(09)03706-9
        • Thomas M.B.
        • Raghava J.M.
        • Pantelis C.
        • Rostrup E.
        • Nielsen M.Ø.
        • Jensen M.H.
        • et al.
        Associations between cognition and white matter microstructure in first-episode antipsychotic-naïve patients with schizophrenia and healthy controls: A multivariate pattern analysis.
        Cortex. 2021; : 1-16
        • Fair
        Maturing thalamocortical functional connectivity across development.
        Front Syst Neurosci. 2010; 4: 1-10
        • Catalan A.
        • Salazar De Pablo G.
        • Aymerich C.
        • Damiani S.
        • Sordi V.
        • Radua J.
        • et al.
        Neurocognitive Functioning in Individuals at Clinical High Risk for Psychosis: A Systematic Review and Meta-analysis.
        JAMA Psychiatry. 2021; 78: 859-867
        • Huttenlocher P.R.
        Synaptic density in human frontal cortex - developmental changes and effects of aging.
        Brain Res. 1979; 163: 195-205
        • Huttenlocher P.R.
        • de Courten C.
        • Garey L.J.
        • Van der Loos H.
        Synaptogenesis in human visual cortex--evidence for synapse elimination during normal development.
        Neurosci Lett. 1982; 33: 247-252
        • Huttenlocher P.R.
        • Dabholkar A.S.
        Regional differences in synaptogenesis in human cerebral cortex.
        J Comp Neurol. 1997; 387: 167-178
        • Casey B.J.
        • Tottenham N.
        • Liston C.
        • Durston S.
        Imaging the developing brain: What have we learned about cognitive development?.
        Trends Cogn Sci. 2005; 9: 104-110
        • Feinberg I.
        Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence?.
        J Psychiatr Res. 1982; 17: 319-334
        • Sellgren C.M.
        • Gracias J.
        • Watmuff B.
        • Biag J.D.
        • Thanos J.M.
        • Whittredge P.B.
        • et al.
        Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning.
        Nat Neurosci. 2019; 22: 374-385
        • Sekar A.
        • Bialas A.R.
        • De Rivera H.
        • Davis A.
        • Hammond T.R.
        • Kamitaki N.
        • et al.
        Schizophrenia risk from complex variation of complement component 4.
        Nature. 2016; 530: 177-183
        • Trotman H.D.
        • Holtzman C.W.
        • Ryan A.T.
        • Shapiro D.I.
        • MacDonald A.N.
        • Goulding S.M.
        • et al.
        The development of psychotic disorders in adolescence: A potential role for hormones.
        Horm Behav. 2013; 64: 411-419
        • Sakai J.
        Core Concept: How synaptic pruning shapes neural wiring during development and, possibly, in disease.
        Proc Natl Acad Sci U S A. 2020; 117: 16096-16099
        • Selemon L.D.
        • Rajkowska G.
        • Goldman-Rakic P.S.
        Abnormally high neuronal density in the schizophrenic cortex. A morphometric analysis of prefrontal area 9 and occipital area 17.
        Arch Gen Psychiatry. 1995; 52 (discussion 819-20): 805-818
        • Glantz L.A.
        • Lewis D a
        Reduction of synaptophysin immunoreactivity in the prefrontal cortex of subjects with schizophrenia. Regional and diagnostic specificity.
        Arch Gen Psychiatry. 1997; 54: 943-952
        • Garey L.J.
        • Ong W.Y.
        • Patel T.S.
        • Kanani M.
        • Davis A.
        • Mortimer A.M.
        • et al.
        Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia.
        J Neurol Neurosurg Psychiatry. 1998; 65: 446-453
        • Giedd J.N.
        • Blumenthal J.
        • Jeffries N.O.
        • Castellanos F.X.
        • Liu H.
        • Zijdenbos A.
        • et al.
        Brain development during childhood and adolescence: a longitudinal MRI study.
        Nat Neurosci. 1999; 2: 861-863
        • van Haren N.E.M.
        • Pol H.E.H.
        • Schnack H.G.
        • Cahn W.
        • Brans R.
        • Carati I.
        • et al.
        Progressive Brain Volume Loss in Schizophrenia Over the Course of the Illness: Evidence of Maturational Abnormalities in Early Adulthood.
        Biol Psychiatry. 2008; 63: 106-113
        • Sporn A.L.
        • Greenstein D.K.
        • Gogtay N.
        • Jeffries N.O.
        • Lenane M.
        • Gochman P.
        • et al.
        Progressive brain volume loss during adolescence in childhood-onset schizophrenia.
        Am J Psychiatry. 2003; 160: 2181-2189
        • Prasad K.M.
        • Burgess A.M.
        • Keshavan M.S.
        • Nimgaonkar V.L.
        • Stanley J.A.
        Neuropil pruning in Early-Course Schizophrenia: Immunological, Clinical, and Neurocognitive Correlates.
        Biol psychiatry Cogn Neurosci neuroimaging. 2016; 1: 528-538
        • Wilson S.
        • Pietsch M.
        • Cordero-Grande L.
        • Price A.N.
        • Hutter J.
        • Xiao J.
        • et al.
        Development of human white matter pathways in utero over the second and third trimester.
        Proc Natl Acad Sci. 2021; 118e2023598118
        • Fraile S.C.
        • Ruíz P.C.
        • Peinado A.G.
        Prenatal Infections and Schizophrenia.
        Eur Psychiatry. 2015; 30: 1700
        • Salazar De Pablo G.
        • Radua J.
        • Pereira J.
        • Bonoldi I.
        • Arienti V.
        • Besana F.
        • et al.
        Probability of Transition to Psychosis in Individuals at Clinical High Risk: An Updated Meta-analysis.
        JAMA Psychiatry. 2021; 1–9
        • van der Weijden C.W.J.
        • García D.V.
        • Borra R.J.H.
        • Thurner P.
        • Meilof J.F.
        • van Laar P.J.
        • et al.
        Myelin quantification with MRI: A systematic review of accuracy and reproducibility.
        Neuroimage. 2021; 226https://doi.org/10.1016/j.neuroimage.2020.117561
        • Pasternak O.
        • Kelly S.
        • Sydnor V.J.
        • Shenton M.E.
        Advances in microstructural diffusion neuroimaging for psychiatric disorders.
        Neuroimage. 2018; 182: 259-282
        • Baum G.L.
        • Roalf D.R.
        • Cook P.A.
        • Ciric R.
        • Rosen A.F.G.
        • Xia C.
        • et al.
        The impact of in-scanner head motion on structural connectivity derived from diffusion MRI.
        Neuroimage. 2018; 173: 275-286