The structural connectome and internalizing and externalizing symptoms at 7 and 13 years in individuals born very preterm and full-term.

  • Courtney P. Gilchrist
    Correspondence
    Corresponding author pre-publication: Courtney P. Gilchrist,
    Affiliations
    School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia

    Victorian Infant Brain Studies, Murdoch Children’s Research Institute, Melbourne, Australia

    Developmental Imaging, Murdoch Children’s Research Institute, Melbourne, Australia
    Search for articles by this author
  • Deanne K. Thompson
    Affiliations
    Victorian Infant Brain Studies, Murdoch Children’s Research Institute, Melbourne, Australia

    Developmental Imaging, Murdoch Children’s Research Institute, Melbourne, Australia

    Department of Paediatrics, University of Melbourne, Melbourne, Australia
    Search for articles by this author
  • Claire E. Kelly
    Affiliations
    Victorian Infant Brain Studies, Murdoch Children’s Research Institute, Melbourne, Australia

    Developmental Imaging, Murdoch Children’s Research Institute, Melbourne, Australia

    Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
    Search for articles by this author
  • Richard Beare
    Affiliations
    Developmental Imaging, Murdoch Children’s Research Institute, Melbourne, Australia

    Department of Medicine, Monash University, Clayton, Australia
    Search for articles by this author
  • Christopher Adamson
    Affiliations
    Developmental Imaging, Murdoch Children’s Research Institute, Melbourne, Australia

    Department of Electrical Engineering, University of Melbourne, Australia
    Search for articles by this author
  • Thijs Dhollander
    Affiliations
    Developmental Imaging, Murdoch Children’s Research Institute, Melbourne, Australia
    Search for articles by this author
  • Katherine Lee
    Affiliations
    Victorian Infant Brain Studies, Murdoch Children’s Research Institute, Melbourne, Australia

    Department of Paediatrics, University of Melbourne, Melbourne, Australia

    Clinical Epidemiology and Biostatistics Unit, Murdoch Children’s Research Institute, Melbourne, Australia
    Search for articles by this author
  • Karli Treyvaud
    Affiliations
    Victorian Infant Brain Studies, Murdoch Children’s Research Institute, Melbourne, Australia

    Department of Psychology and Counselling, La Trobe University, Melbourne, Australia

    Newborn Research, Royal Women's Hospital, Melbourne, Victoria, Australia
    Search for articles by this author
  • Lillian G. Matthews
    Affiliations
    Victorian Infant Brain Studies, Murdoch Children’s Research Institute, Melbourne, Australia

    Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia

    Brigham and Women’s Hospital, Harvard Medical School, Boston, USA

    Monash Biomedical Imaging, Monash University, Melbourne, Australia
    Search for articles by this author
  • Mary Tolcos
    Affiliations
    School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
    Search for articles by this author
  • Jeanie L.Y. Cheong
    Affiliations
    Victorian Infant Brain Studies, Murdoch Children’s Research Institute, Melbourne, Australia

    Newborn Research, Royal Women's Hospital, Melbourne, Victoria, Australia

    Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Australia
    Search for articles by this author
  • Terrie E. Inder
    Affiliations
    Victorian Infant Brain Studies, Murdoch Children’s Research Institute, Melbourne, Australia

    Monash Biomedical Imaging, Monash University, Melbourne, Australia
    Search for articles by this author
  • Lex W. Doyle
    Affiliations
    Victorian Infant Brain Studies, Murdoch Children’s Research Institute, Melbourne, Australia

    Department of Paediatrics, University of Melbourne, Melbourne, Australia

    Newborn Research, Royal Women's Hospital, Melbourne, Victoria, Australia

    Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Australia
    Search for articles by this author
  • Author Footnotes
    ∗ AC and PJA should be considered joint senior authors
    Angela Cumberland
    Footnotes
    ∗ AC and PJA should be considered joint senior authors
    Affiliations
    School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
    Search for articles by this author
  • Author Footnotes
    ∗ AC and PJA should be considered joint senior authors
    Peter J. Anderson
    Correspondence
    Corresponding author for post-publication: Peter J. Anderson, Turner Institute for Brain and Mental Health, 18 Innovation Walk, Monash University, Clayton, VIC 3800, Australia. , T: +61 3 9905 9889.
    Footnotes
    ∗ AC and PJA should be considered joint senior authors
    Affiliations
    Victorian Infant Brain Studies, Murdoch Children’s Research Institute, Melbourne, Australia

    Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
    Search for articles by this author
  • Author Footnotes
    ∗ AC and PJA should be considered joint senior authors
Published:October 13, 2021DOI:https://doi.org/10.1016/j.bpsc.2021.10.003

      ABSTRACT

      Background

      Children born very preterm (VP) are at higher risk of emotional and behavioral problems compared with full-term (FT) children. We investigated the neurobiological basis of internalizing and externalizing symptoms in individuals born VP and FT by applying a graph theory approach.

      Methods

      Structural and diffusion MRI data were combined to generate structural connectomes and calculate measures of network integration and segregation at 7 (VP:72; FT:17) and 13 years (VP:125; FT:44). Internalizing and externalizing were assessed at 7 and 13 years using the Strengths and Difficulties Questionnaire. Linear regression models were used to relate network measures and internalizing and externalizing symptoms concurrently at 7 and 13 years.

      Results

      Lower network integration (characteristic path length and global efficiency) was associated with higher internalizing symptoms in VP and FT children at 7 years, but not at 13 years. The association between network integration (characteristic path length) and externalizing symptoms at 7 years was weaker, but there was some evidence for differential associations between groups, with lower integration in the VP and higher integration in the FT group associated with higher externalizing symptoms. At 13 years, there was some evidence that associations between network segregation (average clustering coefficient, transitivity, local efficiency) and externalizing differed between the VP and FT groups, with stronger positive associations in the VP group.

      Conclusions

      This study provides insights into the neurobiological basis of emotional and behavioral problems following preterm birth, highlighting the role of the structural connectome in internalizing and externalizing symptoms in childhood and adolescence.

      Keywords

      To read this article in full you will need to make a payment

      References

        • Spittle A.J.
        • Treyvaud K.
        • Doyle L.W.
        • Roberts G.
        • Lee K.J.
        • Inder T.E.
        • et al.
        Early emergence of behavior and social-emotional problems in very preterm infants.
        J Am Acad Child Adolesc Psychiatry. 2009; 48: 909-918
        • Linsell L.
        • Johnson S.
        • Wolke D.
        • Morris J.
        • Kurinczuk J.J.
        • Marlow N.
        Trajectories of behavior, attention, social and emotional problems from childhood to early adulthood following extremely preterm birth: a prospective cohort study.
        Eur Child Adolesc Psychiatry. 2019; 28: 531-542
        • Hall J.
        • Wolke D.
        A comparison of prematurity and small for gestational age as risk factors for age 6–13 year emotional problems.
        Early Hum Dev. 2012; 88: 797-804
        • Samuelsson M.
        • Holsti A.
        • Adamsson M.
        • Serenius F.
        • Hägglöf B.
        • Farooqi A.
        Behavioral patterns in adolescents born at 23 to 25 weeks of gestation.
        Pediatrics. 2017; 140
        • Mathewson K.J.
        • Chow C.H.
        • Dobson K.G.
        • Pope E.I.
        • Schmidt L.A.
        • Van Lieshout R.J.
        Mental health of extremely low birth weight survivors: A systematic review and meta-analysis.
        Psychol Bull. 2017; 143: 347-383
        • Robinson R.
        • Lahti-Pulkkinen M.
        • Schnitzlein D.
        • Voit F.
        • Girchenko P.
        • Wolke D.
        • et al.
        Mental health outcomes of adults born very preterm or with very low birth weight: A systematic review.
        Semin Fetal Neonatal Med. 2020; 25: 101113
        • Pyhälä R.
        • Wolford E.
        • Kautiainen H.
        • Andersson S.
        • Bartmann P.
        • Baumann N.
        • et al.
        Self-reported mental health problems among adults born preterm: a meta-analysis.
        Pediatrics. 2017; 139
        • Lean R.E.
        • Lessov‐Shlaggar C.N.
        • Gerstein E.D.
        • Smyser T.A.
        • Paul R.A.
        • Smyser C.D.
        • et al.
        Maternal and family factors differentiate profiles of psychiatric impairments in very preterm children at age 5‐years.
        J Child Psychol Psyc. 2020; 61: 157-166
        • Rogers C.E.
        • Lenze S.N.
        • Luby J.L.
        Late preterm birth, maternal depression, and risk of preschool psychiatric disorders.
        J Am Acad Child Psy. 2013; 52: 309-318
        • Hack M.
        • Youngstrom E.A.
        • Cartar L.
        • Schluchter M.
        • Taylor G.H.
        • Flannery D.J.
        • et al.
        Predictors of internalizing symptoms among very low birth weight young women.
        J Devl Behav Pediatr. 2005; 26: 93-104
        • Treyvaud K.
        • Doyle L.W.
        • Lee K.J.
        • Roberts G.
        • Cheong J.L.
        • Inder T.E.
        • et al.
        Family functioning, burden and parenting stress 2 years after very preterm birth.
        Early Hum Dev. 2011; 87: 427-431
        • Treyvaud K.
        • Ure A.
        • Doyle L.W.
        • Lee K.J.
        • Rogers C.E.
        • Kidokoro H.
        • et al.
        Psychiatric outcomes at age seven for very preterm children: rates and predictors.
        J Child Psychol Psyc. 2013; 54: 772-779
        • Van den Bergh B.R.H.
        • Van den Heuvel M.I.
        • Lahti M.
        • Braeken M.
        • de Rooij S.R.
        • Entringer S.
        • et al.
        Prenatal developmental origins of behavior and mental health: The influence of maternal stress in pregnancy.
        Neurosci Biobehav Rev. 2020; 117: 26-64
        • Williams J.H.
        • Ross L.
        Consequences of prenatal toxin exposure for mental health in children and adolescents: a systematic review.
        Eur Child Adolesc Psychiatry. 2007; 16: 243-253
        • Volpe J.J.
        Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances.
        Lancet Neurol. 2009; 8: 110-124
        • Inder T.E.
        • Warfield S.K.
        • Wang H.
        • Huppi P.S.
        • Volpe J.J.
        Abnormal cerebral structure is present at term in premature infants.
        Pediatrics. 2005; 115: 286-294
        • de Kieviet J.F.
        • Zoetebier L.
        • van Elburg R.M.
        • Vermeulen R.J.
        • Oosterlaan J.
        Brain development of very preterm and very low-birthweight children in childhood and adolescence: a meta-analysis.
        Dev Med Child Neurol. 2012; 54: 313-323
        • Young J.M.
        • Vandewouw M.M.
        • Morgan B.R.
        • Smith M.L.
        • Sled J.G.
        • Taylor M.J.
        Altered white matter development in children born very preterm.
        Brain Struct Funct. 2018; 223: 2129-2141
        • Eikenes L.
        • Lohaugen G.C.
        • Brubakk A.M.
        • Skranes J.
        • Haberg A.K.
        Young adults born preterm with very low birth weight demonstrate widespread white matter alterations on brain DTI.
        Neuroimage. 2011; 54: 1774-1785
        • Brenner R.G.
        • Smyser C.D.
        • Lean R.E.
        • Kenley J.K.
        • Smyser T.A.
        • Cyr P.E.P.
        • et al.
        Microstructure of the Dorsal Anterior Cingulum Bundle in Very Preterm Neonates Predicts the Preterm Behavioral Phenotype at 5 Years of Age.
        Biol Psychiatry. 2020; 89: 433-442
        • Constable R.T.
        • Ment L.R.
        • Vohr B.R.
        • Kesler S.R.
        • Fulbright R.K.
        • Lacadie C.
        • et al.
        Prematurely born children demonstrate white matter microstructural differences at 12 years of age, relative to term control subjects: an investigation of group and gender effects.
        Pediatrics. 2008; 121: 306-316
        • Pannek K.
        • Fripp J.
        • George J.M.
        • Fiori S.
        • Colditz P.B.
        • Boyd R.N.
        • et al.
        Fixel-based analysis reveals alterations is brain microstructure and macrostructure of preterm-born infants at term equivalent age.
        Neuroimage Clin. 2018; 18: 51-59
        • Kelly C.E.
        • Thompson D.K.
        • Genc S.
        • Chen J.
        • Yang J.Y.
        • Adamson C.
        • et al.
        Long-term development of white matter fibre density and morphology up to 13 years after preterm birth: A fixel-based analysis.
        Neuroimage. 2020; 220: 117068
        • Thompson D.K.
        • Matthews L.G.
        • Alexander B.
        • Lee K.J.
        • Kelly C.E.
        • Adamson C.L.
        • et al.
        Tracking regional brain growth up to age 13 in children born term and very preterm.
        Nat Commun. 2020; 11: 696
        • Cismaru A.L.
        • Gui L.
        • Vasung L.
        • Lejeune F.
        • Barisnikov K.
        • Truttmann A.
        • et al.
        Altered Amygdala Development and Fear Processing in Prematurely Born Infants.
        Front Neuroanat. 2016; 10: 55
        • Peterson B.S.
        • Vohr B.
        • Staib L.H.
        • Cannistraci C.J.
        • Dolberg A.
        • Schneider K.C.
        • et al.
        Regional brain volume abnormalities and long-term cognitive outcome in preterm infants.
        JAMA. 2000; 284: 1939-1947
        • Omizzolo C.
        • Thompson D.K.
        • Scratch S.E.
        • Stargatt R.
        • Lee K.J.
        • Cheong J.
        • et al.
        Hippocampal volume and memory and learning outcomes at 7 years in children born very preterm.
        J Int Neuropsychol Soc. 2013; 19: 1065-1075
        • Nosarti C.
        • Al‐Asady M.H.
        • Frangou S.
        • Stewart A.L.
        • Rifkin L.
        • Murray R.M.
        Adolescents who were born very preterm have decreased brain volumes.
        Brain. 2002; 125: 1616-1623
        • Bullmore E.
        • Sporns O.
        Complex brain networks: graph theoretical analysis of structural and functional systems.
        Nat Rev Neurosci. 2009; 10: 186-198
        • Bullmore E.
        • Sporns O.
        The economy of brain network organization.
        Nat Rev Neurosci. 2012; 13: 336-349
        • Rubinov M.
        • Sporns O.
        Complex network measures of brain connectivity: uses and interpretations.
        Neuroimage. 2010; 52: 1059-1069
        • Griffa A.
        • Baumann P.S.
        • Thiran J.P.
        • Hagmann P.
        Structural connectomics in brain diseases.
        Neuroimage. 2013; 80: 515-526
        • Basser P.J.
        Inferring microstructural features and the physiological state of tissues from diffusion‐weighted images.
        NMR Biomed. 1995; 8: 333-344
        • Basser P.J.
        • Mattiello J.
        • LeBihan D.
        Estimation of the effective self-diffusion tensor from the NMR spin echo.
        J Magn Reson, Series B. 1994; 103: 247-254
        • Zhang H.
        • Schneider T.
        • Wheeler-Kingshott C.A.
        • Alexander D.C.
        NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain.
        Neuroimage. 2012; 61: 1000-1016
        • Raffelt D.
        • Tournier J.D.
        • Rose S.
        • Ridgway G.R.
        • Henderson R.
        • Crozier S.
        • et al.
        Apparent Fibre Density: a novel measure for the analysis of diffusion-weighted magnetic resonance images.
        Neuroimage. 2012; 59: 3976-3994
        • Tournier J.D.
        • Yeh C.H.
        • Calamante F.
        • Cho K.H.
        • Connelly A.
        • Lin C.P.
        Resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data.
        Neuroimage. 2008; 42: 617-625
        • Tournier J.-D.
        • Calamante F.
        • Connelly A.
        Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution.
        Neuroimage. 2007; 35: 1459-1472
        • Watts D.J.
        • Strogatz S.H.
        Collective dynamics of ‘small-world’networks.
        Nature. 1998; 393: 440
        • Achard S.
        • Bullmore E.
        Efficiency and cost of economical brain functional networks.
        PLoS Comput Biol. 2007; 3: e17
        • Bassett D.S.
        • Bullmore E.
        Small-world brain networks.
        Neuroscientist. 2006; 12: 512-523
        • Latora V.
        • Marchiori M.
        Efficient behavior of small-world networks.
        Phys Rev Lett. 2001; 87: 198701
        • Fortunato S.
        Community detection in graphs.
        Phys Rep. 2010; 486: 75-174
        • van den Heuvel M.P.
        • Kahn R.S.
        • Goni J.
        • Sporns O.
        High-cost, high-capacity backbone for global brain communication.
        Proc Natl Acad Sci U S A. 2012; 109: 11372-11377
        • van den Heuvel M.P.
        • Sporns O.
        Rich-Club Organization of the Human Connectome.
        J Neurosci. 2011; 31: 15775-15786
        • Ball G.
        • Aljabar P.
        • Zebari S.
        • Tusor N.
        • Arichi T.
        • Merchant N.
        • et al.
        Rich-club organization of the newborn human brain.
        Proc Natl Acad Sci U S A. 2014; 111: 7456-7461
        • Karolis V.R.
        • Froudist-Walsh S.
        • Brittain P.J.
        • Kroll J.
        • Ball G.
        • Edwards A.D.
        • et al.
        Reinforcement of the Brain's Rich-Club Architecture Following Early Neurodevelopmental Disruption Caused by Very Preterm Birth.
        Cereb Cortex. 2016; 26: 1322-1335
        • Fischi-Gomez E.
        • Munoz-Moreno E.
        • Vasung L.
        • Griffa A.
        • Borradori-Tolsa C.
        • Monnier M.
        • et al.
        Brain network characterization of high-risk preterm-born school-age children.
        Neuroimage Clin. 2016; 11: 195-209
        • Fischi-Gómez E.
        • Vasung L.
        • Meskaldji D.E.
        • Lazeyras F.
        • Borradori-Tolsa C.
        • Hagmann P.
        • et al.
        Structural brain connectivity in school-age preterm infants provides evidence for impaired networks relevant for higher order cognitive skills and social cognition.
        Cereb Cortex. 2015; 25: 2793-2805
        • van den Heuvel M.P.
        • Kersbergen K.J.
        • de Reus M.A.
        • Keunen K.
        • Kahn R.S.
        • Groenendaal F.
        • et al.
        The Neonatal Connectome During Preterm Brain Development.
        Cereb Cortex. 2015; 25: 3000-3013
        • Lee J.Y.
        • Park H.K.
        • Lee H.J.
        Accelerated Small-World Property of Structural Brain Networks in Preterm Infants at Term-Equivalent Age.
        Neonatology. 2019; 115: 99-107
        • Thompson D.K.
        • Chen J.
        • Beare R.
        • Adamson C.L.
        • Ellis R.
        • Ahmadzai Z.M.
        • et al.
        Structural connectivity relates to perinatal factors and functional impairment at 7 years in children born very preterm.
        Neuroimage. 2016; 134: 328-337
        • Zhao T.
        • Mishra V.
        • Jeon T.
        • Ouyang M.
        • Peng Q.
        • Chalak L.
        • et al.
        Structural network maturation of the preterm human brain.
        Neuroimage. 2019; 185: 699-710
        • Hagmann P.
        • Sporns O.
        • Madan N.
        • Cammoun L.
        • Pienaar R.
        • Wedeen V.J.
        • et al.
        White matter maturation reshapes structural connectivity in the late developing human brain.
        Proc Natl Acad Sci U S A. 2010; 107: 19067-19072
        • Fair D.A.
        • Cohen A.L.
        • Power J.D.
        • Dosenbach N.U.
        • Church J.A.
        • Miezin F.M.
        • et al.
        Functional brain networks develop from a "local to distributed" organization.
        PLoS Comput Biol. 2009; 5e1000381
        • Lebel C.
        • Walker L.
        • Leemans A.
        • Phillips L.
        • Beaulieu C.
        Microstructural maturation of the human brain from childhood to adulthood.
        Neuroimage. 2008; 40: 1044-1055
        • Collin G.
        • van den Heuvel M.P.
        The ontogeny of the human connectome: development and dynamic changes of brain connectivity across the life span.
        Neuroscientist. 2013; 19: 616-628
        • Vollmer B.
        • Lundequist A.
        • Mårtensson G.
        • Nagy Z.
        • Lagercrantz H.
        • Smedler A.-C.
        • et al.
        Correlation between white matter microstructure and executive functions suggests early developmental influence on long fibre tracts in preterm born adolescents.
        PLoS One. 2017; 12e0178893
        • de Kieviet J.F.
        • Lustenhouwer R.
        • Königs M.
        • van Elburg R.M.
        • Pouwels P.J.
        • Oosterlaan
        Altered structural connectome and motor problems of very preterm born children at school-age.
        Early Hum Dev. 2021; 152: 105274
        • Goodman A.
        • Goodman R.
        Strengths and difficulties questionnaire as a dimensional measure of child mental health.
        J Am Acad Child Psych. 2009; 48: 400-403
        • Goodman A.
        • Lamping D.L.
        • Ploubidis G.B.
        When to use broader internalising and externalising subscales instead of the hypothesised five subscales on the Strengths and Difficulties Questionnaire (SDQ): data from British parents, teachers and children.
        J Abnorm Child Psychol. 2010; 38: 1179-1191
        • Roberts G.
        • Howard K.
        • Spittle A.J.
        • Brown N.C.
        • Anderson P.J.
        • Doyle L.W.
        Rates of early intervention services in very preterm children with developmental disabilities at age 2 years.
        J Paediatr Child Health. 2008; 44: 276-280
        • Whitaker A.H.
        • Feldman J.F.
        • Van Rossem R.
        • Schonfeld I.S.
        • Pinto-Martin J.A.
        • Torre C.
        • et al.
        Neonatal cranial ultrasound abnormalities in low birth weight infants: relation to cognitive outcomes at six years of age.
        Pediatrics. 1996; 98: 719-729
        • Hack M.
        • Breslau N.
        • Aram D.
        • Weissman B.
        • Klein N.
        • Borawski-Clark
        • et al.
        The effect of very low birth weight and social risk on neurocognitive abilities at school age.
        J Dev. Behav. 1992; 13: 412-420
        • Tustison N.J.
        • Avants B.B.
        • Cook P.A.
        • Zheng Y.
        • Egan A.
        • Yushkevich P.A.
        • et al.
        N4ITK: improved N3 bias correction.
        IEEE Trans Med Imaging. 2010; 29: 1310-1320
      1. Jenkinson M, Pechaud M, Smith S. (2005): BET2: MR-based estimation of brain, skull and scalp surfaces. Proceedings of the Eleventh Annual Meeting of the Organization for Human Brain Mapping, Toronto Canada.

        • Desikan R.S.
        • Segonne F.
        • Fischl B.
        • Quinn B.T.
        • Dickerson B.C.
        • Blacker D.
        • et al.
        An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest.
        Neuroimage. 2006; 31: 968-980
        • Fischl B.
        • Salat D.H.
        • Busa E.
        • Albert M.
        • Dieterich M.
        • Haselgrove C.
        • et al.
        Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain.
        Neuron. 2002; 33: 341-355
        • Fischl B.
        FreeSurfer. Neuroimage. 2012; 62: 774-781
        • Tournier J.D.
        • Smith R.
        • Raffelt D.
        • Tabbara R.
        • Dhollander T.
        • Pietsch M.
        • et al.
        MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation.
        Neuroimage. 2019; 202: 116137
        • Jenkinson M.
        • Beckmann C.F.
        • Behrens T.E.
        • Woolrich M.W.
        • Smith S.M.
        Fsl. Neuroimage. 2012; 62: 782-790
        • Kellner E.
        • Dhital B.
        • Kiselev V.G.
        • Reisert M.
        Gibbs‐ringing artifact removal based on local subvoxel‐shifts.
        Magn Reson Med. 2016; 76: 1574-1581
        • Andersson J.L.R.
        • Graham M.S.
        • Drobnjak I.
        • Zhang H.
        • Filippini N.
        • Bastiani M.
        Towards a comprehensive framework for movement and distortion correction of diffusion MR images: Within volume movement.
        Neuroimage. 2017; 152: 450-466
        • Andersson J.L.R.
        • Graham M.S.
        • Zsoldos E.
        • Sotiropoulos S.N.
        Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images.
        Neuroimage. 2016; 141: 556-572
        • Andersson J.L.R.
        • Sotiropoulos S.N.
        An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging.
        Neuroimage. 2016; 125: 1063-1078
        • Schilling K.G.
        • Blaber J.
        • Hansen C.
        • Cai L.
        • Rogers B.
        • Anderson A.W.
        • et al.
        Distortion correction of diffusion weighted MRI without reverse phase-encoding scans or field-maps.
        PLoS One. 2020; 15e0236418
        • Bastiani M.
        • Cottaar M.
        • Fitzgibbon S.P.
        • Suri S.
        • Alfaro-Almagro F.
        • Sotiropoulos S.N.
        • et al.
        Automated quality control for within and between studies diffusion MRI data using a non-parametric framework for movement and distortion correction.
        Neuroimage. 2019; 184: 801-812
      2. Dhollander T, Mito, R. Raffelt, D. Connelly, A. (2019): Improved white matter response function estimation for 3-tissue constrained spherical deconvolution. Proceedings of the 27th International Society of Magnetic Resonance in Medicine, Montréal, Québec, Canada.

      3. Dhollander T, Connelly, A. (2016): A novel iterative approach to reap the benefits of multi-tissue CSD from just single-shell (+b=0) diffusion MRI data. Proceedings of the 24th International Society of Magnetic Resonance in Medicine, Singapore.

        • Dhollander T.
        • Tabbara R.
        • Rosnarho-Tornstrand J.
        • Tournier J.D.
        • Raffelt D.
        • Connelly A.
        Multi-tissue log-domain intensity and inhomogeneity normalisation for quantitative apparent fibre density.
        Proceedings of the 29th International Society of Magnetic Resonance in Medicine. 2021;
        • Jenkinson M.
        • Bannister P.
        • Brady M.
        • Smith S.
        Improved optimization for the robust and accurate linear registration and motion correction of brain images.
        Neuroimage. 2002; 17: 825-841
        • Avants B.B.
        • Epstein C.L.
        • Grossman M.
        • Gee J.C.
        Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain.
        Med Image Anal. 2008; 12: 26-41
      4. Tournier JD, Calamante F, Connelly A. (2010): Improved probabilistic streamlines tractography by 2nd order integration over fibre orientation distributions. Proceedings of the International Society for Magnetic Resonance in Medicine, Stockholm, Sweden.

        • Hagmann P.
        • Cammoun L.
        • Gigandet X.
        • Meuli R.
        • Honey C.J.
        • Wedeen V.J.
        • et al.
        Mapping the structural core of human cerebral cortex.
        PLoS Biol. 2008; 6: e159
        • Smith R.E.
        • Tournier J.D.
        • Calamante F.
        • Connelly A.
        SIFT2: Enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography.
        Neuroimage. 2015; 119: 338-351
        • Wang Y.
        • Ghumare E.
        • Vandenberghe R.
        • Dupont P.
        Comparison of different generalizations of clustering coefficient and local efficiency for weighted undirected graphs.
        Neural Comput. 2017; 29: 313-331
        • Onnela J.-P.
        • Saramäki J.
        • Kertész J.
        • Kaski K.
        Intensity and coherence of motifs in weighted complex networks.
        Phys Rev. E. 2005; 71065103
        • Newman M.E.
        The structure and function of complex networks.
        SIAM Review. 2003; 45: 167-256
      5. Humphries MD, Gurney K. Network. (2008): 'small-world-ness': a quantitative method for determining canonical network equivalence. PLoS One 3(4):e0002051.

        • Carlin J.B.
        • Gurrin L.C.
        • Sterne J.A.
        • Morley R.
        • Dwyer T.
        Regression models for twin studies: a critical review.
        Int J Epidemiol. 2005; 34: 1089-1099
        • Benjamini Y.
        • Yekutieli D.
        The control of the false discovery rate in multiple testing under dependency.
        The Annals of Statistics. 2001; 29: 1165-1188
        • Makovac E.
        • Mancini M.
        • Fagioli S.
        • Watson D.R.
        • Meeten F.
        • Rae C.L.
        • et al.
        Network abnormalities in generalized anxiety pervade beyond the amygdala-pre-frontal cortex circuit: Insights from graph theory.
        Psychiatric Res. Neuroimaging. 2018; 281: 107-116
        • Chen V.C.
        • Shen C.Y.
        • Liang S.H.
        • Li Z.H.
        • Hsieh M.H.
        • Tyan Y.S.
        • et al.
        Assessment of brain functional connectome alternations and correlation with depression and anxiety in major depressive disorders.
        PeerJ. 2017; 5: e3147
        • Lebel C.
        • Beaulieu C.
        Longitudinal development of human brain wiring continues from childhood into adulthood.
        J Neurosci. 2011; 31: 10937-10947
        • Genc S.
        • Malpas C.B.
        • Gulenc A.
        • Sciberras E.
        • Efron D.
        • Silk T.J.
        • et al.
        Longitudinal patterns of white matter fibre density and morphology in children are associated with age and pubertal stage.
        Dev Cogn Neurosci. 2020; 45: 100853
        • Herting M.M.
        • Maxwell E.C.
        • Irvine C.
        • Nagel B.J.
        The impact of sex, puberty, and hormones on white matter microstructure in adolescents.
        Cereb Cortex. 2012; 22: 1979-1992
        • Menzies L.
        • Goddings A.L.
        • Whitaker K.J.
        • Blakemore S.J.
        • Viner R.M.
        The effects of puberty on white matter development in boys.
        Dev Cogn Neurosci. 2015; 11: 116-128
        • Loe I.M.
        • Lee E.S.
        • Feldman H.M.
        Attention and internalizing behaviors in relation to white matter in children born preterm.
        J Dev Behav Pediatr. 2013; 34: 156-164
        • Cao Q.
        • Shu N.
        • An L.
        • Wang P.
        • Sun L.
        • Xia M.R.
        • et al.
        Probabilistic diffusion tractography and graph theory analysis reveal abnormal white matter structural connectivity networks in drug-naive boys with attention deficit/hyperactivity disorder.
        J Neurosci. 2013; 33: 10676-10687
        • Beare R.
        • Adamson C.
        • Bellgrove M.A.
        • Vilgis V.
        • Vance A.
        • Seal M.L.
        • et al.
        Altered structural connectivity in ADHD: a network based analysis.
        Brain Imaging Behav. 2017; 11: 846-858
        • Supekar K.
        • Musen M.
        • Menon V.
        Development of large-scale functional brain networks in children.
        PLoS Biol. 2009; 7e1000157
        • Bassett D.S.
        • Brown J.A.
        • Deshpande V.
        • Carlson J.M.
        • Grafton S.T.
        Conserved and variable architecture of human white matter connectivity.
        Neuroimage. 2011; 54: 1262-1279
        • Zalesky A.
        • Fornito A.
        • Harding I.H.
        • Cocchi L.
        • Yucel M.
        • Pantelis C.
        • et al.
        Whole-brain anatomical networks: does the choice of nodes matter?.
        Neuroimage. 2010; 50: 970-983