Interoception Underlies Therapeutic Effects of Mindfulness Meditation for Posttraumatic Stress Disorder: A Randomized Clinical Trial

Published:October 21, 2021DOI:



      Mindfulness-based interventions have proven efficacy in treating posttraumatic stress disorder (PTSD), but the neurobiological mechanism underlying the therapeutic effects is unknown. As mindfulness meditation cultivates attention to the present moment and bodily sensations, neural functions related to interoception (i.e., central processes of bodily signals) might be such a mechanism.


      We conducted a clinical trial in which veterans with PTSD were randomly assigned to receive an 8-week mindfulness-based stress reduction (MBSR) intervention (n = 47) or an active control intervention (present-centered group therapy; n = 51). We assessed pre- and postintervention PTSD symptoms and electroencephalography measures of neural outcomes, including spontaneous brain activity, cognitive task–related brain responses, and interoceptive brain responses (heartbeat-evoked brain responses). We conducted statistical causal mediation analyses using treatment type as a predictor, pre- and postintervention measures of symptom severity as treatment response, and the neural outcomes as mediators.


      Compared with the control group, the MBSR group had greater improvements in PTSD symptoms and increases in spontaneous alpha power (8–13 Hz), task-related frontal theta power (4–7 Hz in 140–220 ms after stimulus), and frontal theta heartbeat-evoked brain responses (3–5 Hz and 265–336 ms after R peak). The mediation analysis using latent difference score modeling revealed that only changes in frontal theta heartbeat-evoked brain responses mediated the MBSR treatment effect.


      Mindfulness meditation improves brain functions of attentional control and resting brain states reflective of internally oriented relaxation. However, interoceptive neural functions enhanced by MBSR seem to be a primary cerebral mechanism that improves symptoms of PTSD.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


        • Tang Y.Y.
        • Hölzel B.K.
        • Posner M.I.
        The neuroscience of mindfulness meditation.
        Nat Rev Neurosci. 2015; 16: 213-225
        • Dahl C.J.
        • Lutz A.
        • Davidson R.J.
        Reconstructing and deconstructing the self: Cognitive mechanisms in meditation practice.
        Trends Cogn Sci. 2015; 19: 515-523
        • Sedlmeier P.
        • Eberth J.
        • Schwarz M.
        • Zimmermann D.
        • Haarig F.
        • Jaeger S.
        • Kunze S.
        The psychological effects of meditation: A meta-analysis.
        Psychol Bull. 2012; 138: 1139-1171
        • Kabat-Zinn J.
        Full Catastrophe Living: Using the Wisdom of Your Body and Mind to Face Stress, Pain, and Illness.
        Random House Publishing Group, New York1990
        • Baer R.A.
        Mindfulness training as a clinical intervention: A conceptual and empirical review.
        Clin Psychol Sci Pract. 2006; 10: 125-143
        • Kim S.H.
        • Schneider S.M.
        • Kravitz L.
        • Mermier C.
        • Burge M.R.
        Mind-body practices for posttraumatic stress disorder.
        J Investig Med. 2013; 61: 827-834
        • Polusny M.A.
        • Erbes C.R.
        • Thuras P.
        • Moran A.
        • Lamberty G.J.
        • Collins R.C.
        • et al.
        Mindfulness-based stress reduction for posttraumatic stress disorder among veterans: A randomized clinical trial.
        JAMA. 2015; 314: 456-465
        • Heffner K.L.
        • Crean H.F.
        • Kemp J.E.
        Meditation programs for veterans with posttraumatic stress disorder: Aggregate findings from a multi-site evaluation.
        Psychol Trauma. 2016; 8: 365-374
        • Fox K.C.R.
        • Nijeboer S.
        • Dixon M.L.
        • Floman J.L.
        • Ellamil M.
        • Rumak S.P.
        • et al.
        Is meditation associated with altered brain structure? A systematic review and meta-analysis of morphometric neuroimaging in meditation practitioners.
        Neurosci Biobehav Rev. 2014; 43: 48-73
        • Cahn B.R.
        • Polich J.
        Meditation states and traits: EEG, ERP, and neuroimaging studies.
        Psychol Bull. 2006; 132: 180-211
        • Lomas T.
        • Ivtzan I.
        • Fu C.H.Y.
        A systematic review of the neurophysiology of mindfulness on EEG oscillations.
        Neurosci Biobehav Rev. 2015; 57: 401-410
        • Critchley H.D.
        • Garfinkel S.N.
        Interoception and emotion.
        Curr Opin Psychol. 2017; 17: 7-14
        • Khalsa S.S.
        • Adolphs R.
        • Cameron O.G.
        • Critchley H.D.
        • Davenport P.W.
        • Feinstein J.S.
        • et al.
        Interoception and mental health: A roadmap.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2018; 3: 501-513
        • Farb N.A.S.
        • Segal Z.V.
        • Anderson A.K.
        Mindfulness meditation training alters cortical representations of interoceptive attention.
        Soc Cogn Affect Neurosci. 2013; 8: 15-26
        • Farb N.
        • Daubenmier J.
        • Price C.J.
        • Gard T.
        • Kerr C.
        • Dunn B.D.
        • et al.
        Interoception, contemplative practice, and health.
        Front Psychol. 2015; 6: 763
        • Gibson J.
        Mindfulness, interoception, and the body: A contemporary perspective.
        Front Psychol. 2019; 10: 2012
        • Solomonova E.
        • Fox K.C.R.
        • Nielsen T.
        Methodological considerations for the neurophenomenology of dreaming: Commentary on Windt’s “Reporting dream experience”.
        Front Hum Neurosci. 2014; 8: 317
        • Strigo I.A.
        • Craig A.D.
        Interoception, homeostatic emotions and sympathovagal balance.
        Philos Trans R Soc Lond B Biol Sci. 2016; 371: 20160010
        • Daubenmier J.
        • Sze J.
        • Kerr C.E.
        • Kemeny M.E.
        • Mehling W.
        Follow your breath: Respiratory interoceptive accuracy in experienced meditators.
        Psychophysiology. 2013; 50: 777-789
        • Schandry R.
        • Montoya P.
        Event-related brain potentials and the processing of cardiac activity.
        Biol Psychol. 1996; 42: 75-85
        • Montoya P.
        • Schandry R.
        • Müller A.
        Heartbeat evoked potentials (HEP): Topography and influence of cardiac awareness and focus of attention.
        Electroencephalogr Clin Neurophysiol. 1993; 88: 163-172
        • Petzschner F.H.
        • Weber L.A.
        • Wellstein K.V.
        • Paolini G.
        • Do C.T.
        • Stephan K.E.
        Focus of attention modulates the heartbeat evoked potential.
        Neuroimage. 2019; 186: 595-606
        • Kim J.
        • Park H.D.
        • Kim K.W.
        • Shin D.W.
        • Lim S.
        • Kwon H.
        • et al.
        Sad faces increase the heartbeat-associated interoceptive information flow within the salience network: A MEG study.
        Sci Rep. 2019; 9: 430
        • Luft C.D.B.
        • Bhattacharya J.
        Aroused with heart: Modulation of heartbeat evoked potential by arousal induction and its oscillatory correlates.
        Sci Rep. 2015; 5: 15717
        • Gentsch A.
        • Sel A.
        • Marshall A.C.
        • Schütz-Bosbach S.
        Affective interoceptive inference: Evidence from heart-beat evoked brain potentials.
        Hum Brain Mapp. 2019; 40: 20-33
        • Babo-Rebelo M.
        • Richter C.G.
        • Tallon-Baudry C.
        Neural responses to heartbeats in the default network encode the self in spontaneous thoughts.
        J Neurosci. 2016; 36: 7829-7840
        • Park H.D.
        • Bernasconi F.
        • Bello-Ruiz J.
        • Pfeiffer C.
        • Salomon R.
        • Blanke O.
        Transient modulations of neural responses to heartbeats covary with bodily self-consciousness.
        J Neurosci. 2016; 36: 8453-8460
        • Coll M.P.
        • Hobson H.
        • Bird G.
        • Murphy J.
        Systematic review and meta-analysis of the relationship between the heartbeat-evoked potential and interoception.
        Neurosci Biobehav Rev. 2021; 122: 190-200
        • Park H.D.
        • Bernasconi F.
        • Salomon R.
        • Tallon-Baudry C.
        • Spinelli L.
        • Seeck M.
        • et al.
        Neural sources and underlying mechanisms of neural responses to heartbeats, and their role in bodily self-consciousness: An intracranial EEG study.
        Cereb Cortex. 2018; 28: 2351-2364
        • Blevins C.A.
        • Weathers F.W.
        • Davis M.T.
        • Witte T.K.
        • Domino J.L.
        The posttraumatic stress disorder checklist for DSM-5 (PCL-5): Development and initial psychometric evaluation.
        J Trauma Stress. 2015; 28: 489-498
        • Weathers F.W.
        • Ruscio A.M.
        • Keane T.M.
        Psychometric properties of nine scoring rules for the clinician-administered posttraumatic stress disorder scale.
        Psychol Assess. 1999; 11: 124-133
        • Resick P.A.
        • Wachen J.S.
        • Mintz J.
        • Young-McCaughan S.
        • Roache J.D.
        • Borah A.M.
        • et al.
        A randomized clinical trial of group cognitive processing therapy compared with group present-centered therapy for PTSD among active duty military personnel.
        J Consult Clin Psychol. 2015; 83: 1058-1068
        • Frost N.D.
        • Laska K.M.
        • Wampold B.E.
        The evidence for present-centered therapy as a treatment for posttraumatic stress disorder.
        J Trauma Stress. 2014; 27: 1-8
        • Metting van Rijn A.C.
        • Peper A.
        • Grimbergen C.A.
        High-quality recording of bioelectric events. Part 1. Interference reduction, theory and practice.
        Med Biol Eng Comput. 1990; 28: 389-397
        • Berger H.
        On the electroencephalogram of man. Second report.
        Electroencephalogr Clin Neurophysiol Suppl. 1969; 28: 75+
        • McDermott T.J.
        • Wiesman A.I.
        • Proskovec A.L.
        • Heinrichs-Graham E.
        • Wilson T.W.
        Spatiotemporal oscillatory dynamics of visual selective attention during a flanker task.
        Neuroimage. 2017; 156: 277-285
        • Cohen L.
        Time-Frequency Analysis.
        Prentice Hall PTR, Englewood Cliffs1995
        • Kriegeskorte N.
        • Simmons W.K.
        • Bellgowan P.S.F.
        • Baker C.I.
        Circular analysis in systems neuroscience: The dangers of double dipping.
        Nat Neurosci. 2009; 12: 535-540
        • Huynh H.
        • Feldt L.S.
        Estimation of the box correction for degrees of freedom from sample data in randomized block and split-plot designs.
        J Educ Stat. 1976; 1: 69-82
        • Maris E.
        • Oostenveld R.
        Nonparametric statistical testing of EEG- and MEG-data.
        J Neurosci Methods. 2007; 164: 177-190
        • McArdle J.J.
        • Hamagami F.
        Latent difference score structural models for linear dynamic analyses with incomplete longitudinal data.
        in: Collins L.M. Sayer A.G. New Methods for the Analysis of Change. American Psychological Association, Washington, DC2001: 139-175
        • McArdle J.J.
        • Nesselroade J.R.
        Using multivariate data to structure developmental change.
        in: Cohen S.H. Reese H.W. Life-Span Developmental Psychology: Methodological Contributions. Lawrence Erlbaum Associates, Inc., Hillsdale1994: 223-267
        • Finch W.H.
        • Shim S.S.
        A comparison of methods for estimating relationships in the change between two time points for latent variables.
        Educ Psychol Meas. 2018; 78: 232-252
      1. Muthén LK, Muthén BO (n.d.): Mplus User’s Guide, 8th ed. Los Angeles: Muthén & Muthén.

        • Kern M.
        • Aertsen A.
        • Schulze-Bonhage A.
        • Ball T.
        Heart cycle-related effects on event-related potentials, spectral power changes, and connectivity patterns in the human ECoG.
        Neuroimage. 2013; 81: 178-190
        • Schulz S.M.
        Neural correlates of heart-focused interoception: A functional magnetic resonance imaging meta-analysis.
        Philos Trans R Soc Lond B Biol Sci. 2016; 371: 20160018
        • Young K.S.
        • van der Velden A.M.
        • Craske M.G.
        • Pallesen K.J.
        • Fjorback L.
        • Roepstorff A.
        • Parsons C.E.
        The impact of mindfulness-based interventions on brain activity: A systematic review of functional magnetic resonance imaging studies.
        Neurosci Biobehav Rev. 2018; 84: 424-433
        • Wang X.
        • Wu Q.
        • Egan L.
        • Gu X.
        • Liu P.
        • Gu H.
        • et al.
        Anterior insular cortex plays a critical role in interoceptive attention.
        Elife. 2019; 8e42265
        • Kim J.
        • Jeong B.
        Heartbeat induces a cortical theta-synchronized network in the resting state.
        eNeuro. 2019; 6 (ENEURO.0200-19.2019)
        • Cavanagh J.F.
        • Frank M.J.
        Frontal theta as a mechanism for cognitive control.
        Trends Cogn Sci. 2014; 18: 414-421
        • Neru A.
        • Assisi C.
        Theta oscillations gate the transmission of reliable sequences in the medial entorhinal cortex.
        eNeuro. 2021; 8 (ENEURO.0059-20.2021)
        • Nigbur R.
        • Ivanova G.
        • Stürmer B.
        Theta power as a marker for cognitive interference.
        Clin Neurophysiol. 2011; 122: 2185-2194
        • Jo H.G.
        • Malinowski P.
        • Schmidt S.
        Frontal theta dynamics during response conflict in long-term mindfulness meditators.
        Front Hum Neurosci. 2017; 11: 299
        • van den Hurk P.A.M.
        • Giommi F.
        • Gielen S.C.
        • Speckens A.E.M.
        • Barendregt H.P.
        Greater efficiency in attentional processing related to mindfulness meditation.
        Q J Exp Psychol (Hove). 2010; 63: 1168-1180
        • Jo H.G.
        • Schmidt S.
        • Inacker E.
        • Markowiak M.
        • Hinterberger T.
        Meditation and attention: A controlled study on long-term meditators in behavioral performance and event-related potentials of attentional control.
        Int J Psychophysiol. 2016; 99: 33-39
        • Alderman B.L.
        • Olson R.L.
        • Brush C.J.
        • Shors T.J.
        MAP training: Combining meditation and aerobic exercise reduces depression and rumination while enhancing synchronized brain activity.
        Transl Psychiatry. 2016; 6: e726
        • Schoenberg P.L.A.
        • Speckens A.E.M.
        Modulation of induced frontocentral theta (Fm-θ) event-related (de-)synchronisation dynamics following mindfulness-based cognitive therapy in major depressive disorder.
        Cogn Neurodyn. 2014; 8: 373-388
        • Shaw J.C.
        Intention as a component of the alpha-rhythm response to mental activity.
        Int J Psychophysiol. 1996; 24: 7-23
        • Kerr C.E.
        • Sacchet M.D.
        • Lazar S.W.
        • Moore C.I.
        • Jones S.R.
        Mindfulness starts with the body: Somatosensory attention and top-down modulation of cortical alpha rhythms in mindfulness meditation.
        Front Hum Neurosci. 2013; 7: 12
        • Lagopoulos J.
        • Xu J.
        • Rasmussen I.
        • Vik A.
        • Malhi G.S.
        • Eliassen C.F.
        • et al.
        Increased theta and alpha EEG activity during nondirective meditation.
        J Altern Complement Med. 2009; 15: 1187-1192
        • Yu X.
        • Fumoto M.
        • Nakatani Y.
        • Sekiyama T.
        • Kikuchi H.
        • Seki Y.
        • et al.
        Activation of the anterior prefrontal cortex and serotonergic system is associated with improvements in mood and EEG changes induced by Zen meditation practice in novices.
        Int J Psychophysiol. 2011; 80: 103-111
        • Milz P.
        • Faber P.L.
        • Lehmann D.
        • Kochi K.
        • Pascual-Marqui R.D.
        sLORETA intracortical lagged coherence during breath counting in meditation-naïve participants.
        Front Hum Neurosci. 2014; 8: 303
        • Kasamatsu A.
        • Hirai T.
        An electroencephalographic study on the zen meditation (Zazen).
        Folia Psychiatr Neurol Jpn. 1966; 20: 315-336
        • Kazdin A.E.
        Mediators and mechanisms of change in psychotherapy research.
        Annu Rev Clin Psychol. 2007; 3: 1-27
        • Gaynor S.T.
        Temporal precedence in the identification of mediators of change: A brief comment on “Mediators of change in the child/adolescent multimodal treatment study” (Kendall et al., 2016).
        J Consult Clin Psychol. 2017; 85: 77-79
        • Hopper J.W.
        • Frewen P.A.
        • van der Kolk B.A.
        • Lanius R.A.
        Neural correlates of reexperiencing, avoidance, and dissociation in PTSD: Symptom dimensions and emotion dysregulation in responses to script-driven trauma imagery.
        J Trauma Stress. 2007; 20: 713-725
        • Brudey C.
        • Park J.
        • Wiaderkiewicz J.
        • Kobayashi I.
        • Mellman T.A.
        • Marvar P.J.
        Autonomic and inflammatory consequences of posttraumatic stress disorder and the link to cardiovascular disease.
        Am J Physiol Regul Integr Comp Physiol. 2015; 309: R315-R321
        • Blechert J.
        • Michael T.
        • Grossman P.
        • Lajtman M.
        • Wilhelm F.H.
        Autonomic and respiratory characteristics of posttraumatic stress disorder and panic disorder.
        Psychosom Med. 2007; 69: 935-943
        • Fenster R.J.
        • Lebois L.A.M.
        • Ressler K.J.
        • Suh J.
        Brain circuit dysfunction in post-traumatic stress disorder: From mouse to man.
        Nat Rev Neurosci. 2018; 19: 535-551
        • Sherin J.E.
        • Nemeroff C.B.
        Post-traumatic stress disorder: The neurobiological impact of psychological trauma.
        Dial Clin Neurosci. 2011; 13: 263-278
        • Williamson J.B.
        • Porges E.C.
        • Lamb D.G.
        • Porges S.W.
        Maladaptive autonomic regulation in PTSD accelerates physiological aging.
        Front Psychol. 2014; 5: 1571
        • Tang Y.Y.
        • Ma Y.
        • Fan Y.
        • Feng H.
        • Wang J.
        • Feng S.
        • et al.
        Central and autonomic nervous system interaction is altered by short-term meditation.
        Proc Natl Acad Sci U S A. 2009; 106: 8865-8870