Advertisement

Understanding the Error in Psychopathology: Notable Intraindividual Differences in Neural Variability of Performance Monitoring

Published:November 02, 2021DOI:https://doi.org/10.1016/j.bpsc.2021.10.016

      Abstract

      Background

      Abnormal performance monitoring is a possible transdiagnostic marker of psychopathology. Research on neural indices of performance monitoring, including the error-related negativity (ERN), typically examines group and interindividual (between-person) differences in mean/average scores. Intraindividual (within-person) variability in activity captures the capacity to dynamically adjust from moment to moment, and excessive variability appears maladaptive. Intraindividual variability in ERN represents a unique and largely unexamined dimension that might impact functioning. We tested whether psychopathology group differences (major depressive disorder, generalized anxiety disorder, obsessive-compulsive disorder) or corresponding psychiatric symptoms account for intraindividual variability in single-trial ERN scores.

      Methods

      High-density electroencephalogram was recorded during a semantic flanker task in 51 participants with major depressive disorder, 44 participants with generalized anxiety disorder, 31 participants with obsessive-compulsive disorder, and 56 psychiatrically healthy participants. Time-window mean ERN amplitude was scored 0–125 ms following participant response across four frontocentral sites. Multilevel location-scale models were used to simultaneously examine interindividual and intraindividual differences in ERN.

      Results

      Analyses indicated considerable intraindividual variability in ERN that was common across groups. However, we did not find strong evidence to support relationships between ERN and psychopathology groups or transdiagnostic symptoms.

      Conclusions

      These findings point to important methodological implications for studies of performance monitoring in healthy and clinical populations—the common assumption of fixed intraindividual variability (i.e., residual variance) may be inappropriate for ERN studies. Implementation of multilevel location-scale models in future research can leverage between-person differences in intraindividual variability in performance monitoring to gain a rich understanding of trial-to-trial performance monitoring dynamics.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Dotson V.M.
        • McClintock S.M.
        • Verhaeghen P.
        • Kim J.U.
        • Draheim A.A.
        • Syzmkowicz S.M.
        • et al.
        Depression and cognitive control across the lifespan: A systematic review and meta-analysis.
        Neuropsychol Rev. 2020; 30: 461-476
        • Fitzgerald K.D.
        • Schroder H.S.
        • Marsh R.
        Cognitive control in pediatric obsessive-compulsive and anxiety disorders: Brain-Behavioral targets for early intervention.
        Biol Psychiatry. 2021; 89: 697-706
        • Waschke L.
        • Kloosterman N.A.
        • Obleser J.
        • Garrett D.D.
        Behavior needs neural variability.
        Neuron. 2021; 109: 751-766
        • Renart A.
        • Machens C.K.
        Variability in neural activity and behavior.
        Curr Opin Neurobiol. 2014; 25: 211-220
        • Dinstein I.
        • Heeger D.J.
        • Behrmann M.
        Neural variability: Friend or foe?.
        Trends Cogn Sci. 2015; 19: 322-328
        • Trenado C.
        • González-Ramírez A.
        • Lizárraga-Cortés V.
        • Pedroarena Leal N.
        • Manjarrez E.
        • Ruge D.
        The potential of trial-by-trial variabilities of ongoing-EEG, evoked potentials, event related potentials and fMRI as diagnostic markers for neuropsychiatric disorders.
        Front Neurosci. 2019; 12: 850
        • David N.
        • Schneider T.R.
        • Peiker I.
        • Al-Jawahiri R.
        • Engel A.K.
        • Milne E.
        Variability of cortical oscillation patterns: A possible endophenotype in autism spectrum disorders?.
        Neurosci Biobehav Rev. 2016; 71: 590-600
        • Haigh S.M.
        Variable sensory perception in autism.
        Eur J Neurosci. 2018; 47: 602-609
        • Magnuson J.R.
        • Iarocci G.
        • Doesburg S.M.
        • Moreno S.
        Increased intra-subject variability of reaction times and single-trial event-related potential components in children with autism spectrum disorder.
        Autism Res. 2020; 13: 221-229
        • Yang G.J.
        • Murray J.D.
        • Repovs G.
        • Cole M.W.
        • Savic A.
        • Glasser M.F.
        • et al.
        Altered global brain signal in schizophrenia.
        Proc Natl Acad Sci U S A. 2014; 111: 7438-7443
        • Clayson P.E.
        • Joshi Y.B.
        • Thomas M.L.
        • Tarasenko M.
        • Bismark A.
        • Sprock J.
        • et al.
        The viability of the frequency following response characteristics for use as biomarkers of cognitive therapeutics in schizophrenia [published online ahead of print Jun 26].
        Schizophr Res. 2021;
        • Clayson P.E.
        • Molina J.L.
        • Joshi Y.B.
        • Thomas M.L.
        • Sprock J.
        • Nungaray J.
        • et al.
        Evaluation of the frequency following response as a predictive biomarker of response to cognitive training in schizophrenia.
        Psychiatry Res. 2021; 305: 114239
        • Larson M.J.
        • Clayson P.E.
        • Clawson A.
        Making sense of all the conflict: A theoretical review and critique of conflict-related ERPs.
        Int J Psychophysiol. 2014; 93: 283-297
        • Gehring W.J.
        • Liu Y.
        • Orr J.M.
        • Carp J.
        The error-related negativity (ERN/Ne).
        in: Luck S.J. Kappenman E.S. Oxford Handbook of Event-Related Potential Components. Oxford University Press, Oxford, United Kingdom2012: 231-291
        • Gehring W.J.
        • Goss B.
        • Coles M.G.H.
        • Meyer D.E.
        • Donchin E.
        A neural system for error detection and compensation.
        Psychol Sci. 1993; 4: 385-390
        • Yeung N.
        • Botvinick M.M.
        • Cohen J.D.
        The neural basis of error detection: Conflict monitoring and the error-related negativity.
        Psychol Rev. 2004; 111: 931-959
        • Yeung N.
        • Nieuwenhuis S.
        Dissociating response conflict and error likelihood in anterior cingulate cortex.
        J Neurosci. 2009; 29: 14506-14510
        • Weinberg A.
        • Dieterich R.
        • Riesel A.
        Error-related brain activity in the age of RDoC: A review of the literature.
        Int J Psychophysiol. 2015; 98: 276-299
        • Weinberg A.
        • Meyer A.
        • Hale-Rude E.
        • Perlman G.
        • Kotov R.
        • Klein D.N.
        • Hajcak G.
        Error-related negativity (ERN) and sustained threat: Conceptual framework and empirical evaluation in an adolescent sample.
        Psychophysiology. 2016; 53: 372-385
        • Hajcak G.
        • Klawohn J.
        • Meyer A.
        The utility of event-related potentials in clinical psychology.
        Annu Rev Clin Psychol. 2019; 15: 71-95
        • Meyer A.
        A biomarker of anxiety in children and adolescents: A review focusing on the error-related negativity (ERN) and anxiety across development.
        Dev Cogn Neurosci. 2017; 27: 58-68
        • Moran T.P.
        • Schroder H.S.
        • Kneip C.
        • Moser J.S.
        Meta-analysis and psychophysiology: A tutorial using depression and action-monitoring event-related potentials.
        Int J Psychophysiol. 2017; 111: 17-32
        • Clayson P.E.
        • Carbine K.A.
        • Larson M.J.
        A registered report of error-related negativity and reward positivity as biomarkers of depression: P-curving the evidence.
        Int J Psychophysiol. 2020; 150: 50-72
        • Riesel A.
        • Klawohn J.
        • Grützmann R.
        • Kaufmann C.
        • Heinzel S.
        • Bey K.
        • et al.
        Error-related brain activity as a transdiagnostic endophenotype for obsessive-compulsive disorder, anxiety and substance use disorder.
        Psychol Med. 2019; 49: 1207-1217
        • Riesel A.
        The erring brain: Error-related negativity as an endophenotype for OCD-A review and meta-analysis.
        Psychophysiology. 2019; 56e13348
        • Clayson P.E.
        • Kappenman E.S.
        • Gehring W.J.
        • Miller G.A.
        • Larson M.J.
        A commentary on establishing norms for error-related brain activity during the arrow flanker task among young adults.
        Neuroimage. 2021; 234: 117932
        • Kozak M.J.
        • Cuthbert B.N.
        The NIMH Research Domain Criteria Initiative: Background, issues, and pragmatics.
        Psychophysiology. 2016; 53: 286-297
        • Cuthbert B.N.
        • Insel T.R.
        Toward the future of psychiatric diagnosis: The seven pillars of RDoC.
        BMC Med. 2013; 11: 126
        • Sheehan D.V.
        • Lecrubier Y.
        • Sheehan K.H.
        • Amorim P.
        • Janavs J.
        • Weiller E.
        • et al.
        The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10.
        J Clin Psychiatry. 1998; 59 (quiz 34–57): 22-33
        • Amorim P.
        Mini International Neuropsychiatric Interview (MINI): Validation of a short structured diagnostic psychiatric interview.
        Rev Bras Psiquiatr. 2000; 22: 106-115
        • Amorim P.
        • Lecrubier Y.
        • Weiller E.
        • Hergueta T.
        • Sheehan D.V.
        DSM-IH-R Psychotic Disorders: Procedural validity of the Mini International Neuropsychiatric Interview (MINI). Concordance and causes for discordance with the CIDI.
        Eur Psychiatry. 1998; 13: 26-34
        • de Azevedo Marques J.M.
        • Zuardi A.W.
        Validity and applicability of the Mini International Neuropsychiatric Interview administered by family medicine residents in primary health care in Brazil.
        Gen Hosp Psychiatry. 2008; 30: 303-310
        • Jones J.E.
        • Hermann B.P.
        • Barry J.J.
        • Gilliam F.
        • Kanner A.M.
        • Meador K.J.
        Clinical assessment of Axis I psychiatric morbidity in chronic epilepsy: A multicenter investigation.
        J Neuropsychiatry Clin Neurosci. 2005; 17: 172-179
        • Beck A.T.
        Beck Depression Inventory.
        The Psychological Corporation, San Antonio1996
        • Meyer T.J.
        • Miller M.L.
        • Metzger R.L.
        • Borkovec T.D.
        Development and validation of the Penn State Worry Questionnaire.
        Behav Res Ther. 1990; 28: 487-495
        • Goodman W.K.
        • Price L.H.
        • Rasmussen S.A.
        • Mazure C.
        • Fleischmann R.L.
        • Hill C.L.
        • et al.
        The Yale-Brown Obsessive Compulsive Scale. I. Development, use, and reliability.
        Arch Gen Psychiatry. 1989; 46: 1006-1011
        • Goodman W.K.
        • Price L.H.
        • Rasmussen S.A.
        • Mazure C.
        • Delgado P.
        • Heninger G.R.
        • Charney D.S.
        The Yale-Brown Obsessive Compulsive Scale. II. Validity.
        Arch Gen Psychiatry. 1989; 46: 1012-1016
        • Moser J.S.
        • Moran T.P.
        • Schroder H.S.
        • Donnellan M.B.
        • Yeung N.
        On the relationship between anxiety and error monitoring: A meta-analysis and conceptual framework.
        Front Hum Neurosci. 2013; 7: 466
        • Larson M.J.
        • Clayson P.E.
        • Kirwan C.B.
        • Weissman D.H.
        Event-related potential indices of congruency sequence effects without feature integration or contingency learning confounds.
        Psychophysiology. 2016; 53: 814-822
        • Lopez-Calderon J.
        • Luck S.J.
        ERPLAB: An open-source toolbox for the analysis of event-related potentials.
        Front Hum Neurosci. 2014; 8: 213
        • Clayson P.E.
        • Larson M.J.
        The impact of recent and concurrent affective context on cognitive control: An ERP study of performance monitoring.
        Int J Psychophysiol. 2019; 143: 44-56
        • Perrin F.
        • Pernier J.
        • Bertrand O.
        • Echallier J.F.
        Spherical splines for scalp potential and current density mapping.
        Electroencephalogr Clin Neurophysiol. 1989; 72: 184-187
        • Clayson P.E.
        • Miller G.A.
        ERP Reliability Analysis (ERA) Toolbox: An open-source toolbox for analyzing the reliability of event-related brain potentials.
        Int J Psychophysiol. 2017; 111: 68-79
        • Clayson P.E.
        • Brush C.J.
        • Hajcak G.
        Data quality and reliability metrics for event-related potentials (ERPs): The utility of subject-level reliability.
        Int J Psychophysiol. 2021; 165: 121-136
        • Clayson P.E.
        • Miller G.A.
        Psychometric considerations in the measurement of event-related brain potentials: Guidelines for measurement and reporting.
        Int J Psychophysiol. 2017; 111: 57-67
        • Clayson P.E.
        • Carbine K.A.
        • Baldwin S.A.
        • Olsen J.A.
        • Larson M.J.
        Using generalizability theory and the ERP Reliability Analysis (ERA) Toolbox for assessing test-retest reliability of ERP scores Part 1: Algorithms, framework, and implementation.
        Int J Psychophysiol. 2021; 166: 174-187
        • Walters R.W.
        • Hoffman L.
        • Templin J.
        The power to detect and predict individual differences in intra-individual variability using the mixed-effects location-scale model.
        Multivariate Behav Res. 2018; 53: 360-374
        • Volpert-Esmond H.I.
        • Page-Gould E.
        • Bartholow B.D.
        Using multilevel models for the analysis of event-related potentials.
        Int J Psychophysiol. 2021; 162: 145-156
        • Brush C.J.
        • Ehmann P.J.
        • Hajcak G.
        • Selby E.A.
        • Alderman B.L.
        Using multilevel modeling to examine blunted neural responses to reward in major depression.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2018; 3: 1032-1039
        • Volpert-Esmond H.I.
        • Merkle E.C.
        • Levsen M.P.
        • Ito T.A.
        • Bartholow B.D.
        Using trial-level data and multilevel modeling to investigate within-task change in event-related potentials.
        Psychophysiology. 2018; 55e13044
        • R Development Core Team
        R: A Language and Environment for Statistical Computing.
        R Foundation for Statistical Computing, Vienna, Austria2020
        • Bürkner P.C.
        brms: An R package for Bayesian multilevel models using Stan.
        J Stat Soft. 2017; 80: 1-28
        • Bürkner P.C.
        Advanced Bayesian multilevel modeling with the R package brms.
        R J. 2018; 10: 395-411
        • Stan Development Team
        Stan Modeling Language Users Guide and Reference Manual, Version 2.26.1.
        (Scotts Valley: Stan Development Team.)
        • Vehtari A.
        • Gelman A.
        • Gabry J.
        Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC.
        Stat Comput. 2017; 27: 1413-1432
        • Williams D.R.
        • Martin S.R.
        • Rast P.
        Putting the individual into reliability: Bayesian testing of homogeneous within-person variance in hierarchical models [published online ahead of print Nov 23].
        Behav Res Methods. 2022;
        • McGinley M.J.
        • Vinck M.
        • Reimer J.
        • Batista-Brito R.
        • Zagha E.
        • Cadwell C.R.
        • et al.
        Waking state: Rapid variations modulate neural and behavioral responses.
        Neuron. 2015; 87: 1143-1161
        • Waschke L.
        • Wöstmann M.
        • Obleser J.
        States and traits of neural irregularity in the age-varying human brain.
        Sci Rep. 2017; 7: 17381
        • Tran T.T.
        • Rolle C.E.
        • Gazzaley A.
        • Voytek B.
        Linked sources of neural noise contribute to age-related cognitive decline.
        J Cogn Neurosci. 2020; 32: 1813-1822
        • McNair S.W.
        • Kayser S.J.
        • Kayser C.
        Consistent pre-stimulus influences on auditory perception across the lifespan.
        NeuroImage. 2019; 186: 22-32
        • Tops M.
        • Boksem M.A.S.
        A potential role of the inferior frontal gyrus and anterior insula in cognitive control, brain rhythms, and event-related potentials.
        Front Psychol. 2011; 2: 330
        • Larson M.J.
        • Gray A.C.
        • Clayson P.E.
        • Jones R.
        • Kirwan C.B.
        What are the influences of orthogonally-manipulated valence and arousal on performance monitoring processes? The effects of affective state.
        Int J Psychophysiol. 2013; 87: 327-339
        • Clayson P.E.
        • Clawson A.
        • Larson M.J.
        The effects of induced state negative affect on performance monitoring processes.
        Soc Cogn Affect Neurosci. 2012; 7: 677-688
        • Larson M.J.
        • Clayson P.E.
        The relationship between cognitive performance and electrophysiological indices of performance monitoring.
        Cogn Affect Behav Neurosci. 2011; 11: 159-171
        • Coleman J.R.
        • Watson J.M.
        • Strayer D.L.
        Working memory capacity and task goals modulate error-related ERPs.
        Psychophysiology. 2018; 55e12805
        • Miller A.E.
        • Watson J.M.
        • Strayer D.L.
        Individual differences in working memory capacity predict action monitoring and the error-related negativity.
        J Exp Psychol Learn Mem Cogn. 2012; 38: 757-763
        • Larson M.J.
        • Clayson P.E.
        • Baldwin S.A.
        Performance monitoring following conflict: Internal adjustments in cognitive control?.
        Neuropsychologia. 2012; 50: 426-433
        • Morris S.E.
        • Yee C.M.
        • Nuechterlein K.H.
        Electrophysiological analysis of error monitoring in schizophrenia.
        J Abnorm Psychol. 2006; 115: 239-250
        • Proudfit G.H.
        • Inzlicht M.
        • Mennin D.S.
        Anxiety and error monitoring: The importance of motivation and emotion.
        Front Hum Neurosci. 2013; 7: 636
        • Weinberg A.
        • Kotov R.
        • Proudfit G.H.
        Neural indicators of error processing in generalized anxiety disorder, obsessive-compulsive disorder, and major depressive disorder.
        J Abnorm Psychol. 2015; 124: 172-185
        • Weinberg A.
        • Klein D.N.
        • Hajcak G.
        Increased error-related brain activity distinguishes generalized anxiety disorder with and without comorbid major depressive disorder.
        J Abnorm Psychol. 2012; 121: 885-896
        • Moser J.S.
        • Moran T.P.
        • Kneip C.
        • Schroder H.S.
        • Larson M.J.
        Sex moderates the association between symptoms of anxiety, but not obsessive compulsive disorder, and error-monitoring brain activity: A meta-analytic review.
        Psychophysiology. 2016; 53: 21-29
        • Moran T.P.
        • Taylor D.
        • Moser J.S.
        Sex moderates the relationship between worry and performance monitoring brain activity in undergraduates.
        Int J Psychophysiol. 2012; 85: 188-194
        • Clayson P.E.
        • Baldwin S.A.
        • Rocha H.A.
        • Larson M.J.
        The data-processing multiverse of event-related potentials (ERPs): A roadmap for the optimization and standardization of ERP processing and reduction pipelines.
        Neuroimage. 2021; 245: 118712
        • Schmidt J.R.
        • Weissman D.H.
        Congruency sequence effects without feature integration or contingency learning confounds.
        PLoS One. 2014; 9e102337
        • Clayson P.E.
        Moderators of the internal consistency of error-related negativity scores: A meta-analysis of internal consistency estimates.
        Psychophysiology. 2020; 57e13583
        • Williams D.R.
        • Mulder J.
        • Rouder J.N.
        • Rast P.
        Beneath the surface: Unearthing within-person variability and mean relations with Bayesian mixed models.
        Psychol Methods. 2021; 26: 74-89
        • Weinberg A.
        • Riesel A.
        • Hajcak G.
        Integrating multiple perspectives on error-related brain activity: The ERN as a neural indicator of trait defensive reactivity.
        Motiv Emot. 2012; 36: 84-100
        • Leckie G.
        runmixregls: A Program to Run the MIXREGLS Mixed-Effects Location Scale Software from within Stata.
        J Stat Soft. 2014; 59: 1-41
        • Leckie G.
        • French R.
        • Charlton C.
        • Browne W.
        Modeling heterogeneous variance–covariance components in two-level models.
        J Educ Behav Stat. 2014; 39: 307-332
        • Williams D.R.
        • Martin S.R.
        • DeBolt M.
        • Oakes L.
        • Rast P.
        A fine-tooth comb for measurement reliability: Predicting true score and error variance in hierarchical models.
        PsyArXiv. 2020; https://doi.org/10.31234/osf.io/2ux7t
        • Hajcak G.
        • Meyer A.
        • Kotov R.
        Psychometrics and the neuroscience of individual differences: Internal consistency limits between-subjects effects.
        J Abnorm Psychol. 2017; 126: 823-834
        • Garrett-Ruffin S.
        • Hindash A.C.
        • Kaczkurkin A.N.
        • Mears R.P.
        • Morales S.
        • Paul K.
        • et al.
        Open science in psychophysiology: An overview of challenges and emerging solutions.
        Int J Psychophysiol. 2021; 162: 69-78