Advertisement

Electroencephalographic Connectivity: A Fundamental Guide and Checklist for Optimal Study Design and Evaluation

Published:November 02, 2021DOI:https://doi.org/10.1016/j.bpsc.2021.10.017

      Abstract

      Brain connectivity can be estimated through many analyses applied to electroencephalography (EEG) data. However, substantial heterogeneity in the implementation of connectivity methods exists. Heterogeneity in conceptualization of connectivity measures, data collection, or data preprocessing may be associated with variability in robustness of measurement. While it is difficult to compare the results of studies using different EEG connectivity measures, standardization of processing and reporting may facilitate the task. We discuss how factors such as referencing, epoch length and number, controls for volume conduction, artifact removal, and statistical control of multiple comparisons influence the EEG connectivity estimate for connectivity measures, and what can be done to control for potential confounds associated with these factors. Based on the results reported in previous literature, this article presents recommendations and a novel checklist developed for quality assessment of EEG connectivity studies. This checklist and its recommendations are made in an effort to draw attention to factors that may influence connectivity estimates and factors that need to be improved in future research. Standardization of procedures and reporting in EEG connectivity may lead to EEG connectivity studies being made more synthesizable and comparable despite variations in the methodology underlying connectivity estimates.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Anderson R.J.
        • Hoy K.E.
        • Daskalakis Z.J.
        • Fitzgerald P.B.
        Repetitive transcranial magnetic stimulation for treatment resistant depression: Re-establishing connections.
        Clin Neurophysiol. 2016; 127: 3394-3405
        • Jackson A.F.
        • Bolger D.J.
        The neurophysiological bases of EEG and EEG measurement: A review for the rest of us.
        Psychophysiology. 2014; 51: 1061-1071
      1. Michel C.M. Koenig T. Brandeis D. Gianotti L.R.R. Wackermann J. Electrical Neuroimaging. Cambridge University Press, Cambridge2009
        • Cohen M.X.
        Analysing Neural Time Series Data: Theory and Practice.
        The MIT Press, Cambridge, MA2014
        • Friston K.J.
        Functional and effective connectivity: A review.
        Brain Connect. 2011; 1: 13-36
        • Wang L.
        • Hermens D.F.
        • Hickie I.B.
        • Lagopoulos J.
        A systematic review of resting-state functional-MRI studies in major depression.
        J Affect Disord. 2012; 142: 6-12
        • Sakkalis V.
        Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG.
        Comput Biol Med. 2011; 41: 1110-1117
        • Bakhshayesh H.
        • Fitzgibbon S.P.
        • Janani A.S.
        • Grummett T.S.
        • Pope K.J.
        Detecting synchrony in EEG: A comparative study of functional connectivity measures.
        Comput Biol Med. 2019; 105: 1-15
        • Mamashli F.
        • Hämäläinen M.
        • Ahveninen J.
        • Kenet T.
        • Khan S.
        Permutation statistics for connectivity analysis between regions of interest in EEG and MEG data.
        Sci Rep. 2019; 9: 7942
        • Wu Y.
        • Gan J.Q.
        • Wang H.
        Identifying intrinsic phase lag in EEG signals from the perspective of Wilcoxon signed-rank test.
        in: Liu D. Xie S. Li Y. Zhao D. El-Alfy E.M. Neural Information Processing: 24th International Conference, ICONIP 2017, Guangzhou, China, November 14–18, 2017, Proceedings, Part III. Lecture Notes in Computer Science, vol. 10636. Springer, Cham, Germany2017: 709-717
        • Bastos A.M.
        • Schoffelen J.M.
        A tutorial review of functional connectivity analysis methods and their interpretational pitfalls.
        Front Syst Neurosci. 2016; 9: 175
        • Zaveri H.P.
        • Duckrow R.B.
        • Spencer S.S.
        The effect of a scalp reference signal on coherence measurements of intracranial electroencephalograms.
        Clin Neurophysiol. 2000; 111: 1293-1299
        • Gabard-Durnam L.J.
        • Mendez Leal A.S.
        • Wilkinson C.L.
        • Levin A.R.
        The Harvard Automated Processing Pipeline for Electroencephalography (HAPPE): Standardized processing software for developmental and high-artifact data.
        Front Neurosci. 2018; 12: 97
        • Delorme A.
        • Sejnowski T.
        • Makeig S.
        Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis.
        Neuroimage. 2007; 34: 1443-1449
        • Pester B.
        • Ligges C.
        Does independent component analysis influence EEG connectivity analyses?.
        Annu Int Conf IEEE Eng Med Biol Soc. 2018; 2018: 1007-1010
        • Chang C.Y.
        • Hsu S.H.
        • Pion-Tonachini L.
        • Jung T.P.
        Evaluation of artifact subspace reconstruction for automatic artifact components removal in multi-channel EEG recordings.
        IEEE Trans Bio Med Eng. 2020; 67: 1114-1121
        • Somers B.
        • Francart T.
        • Bertrand A.
        A generic EEG artifact removal algorithm based on the multi-channel Wiener filter.
        J Neural Eng. 2018; 15036007
        • Issa M.F.
        • Juhasz Z.
        Improved EOG artifact removal using wavelet enhanced independent component analysis.
        Brain Sci. 2019; 9: 355
        • Castellanos N.P.
        • Makarov V.A.
        Recovering EEG brain signals: Artifact suppression with wavelet enhanced independent component analysis.
        J Neurosci Methods. 2006; 158: 300-312
        • Huang Y.
        • Benesty J.
        • Chen J.
        Analysis and comparison of multichannel noise reduction methods in a common framework.
        IEEE Trans Aud Speech Lang Process. 2008; 16: 957-968
        • van Diessen E.
        • Numan T.
        • van Dellen E.
        • van der Kooi A.W.
        • Boersma M.
        • Hofman D.
        • et al.
        Opportunities and methodological challenges in EEG and MEG resting state functional brain network research.
        Clin Neurophysiol. 2015; 126: 1468-1481
        • Khadem A.
        • Hossein-Zadeh G.A.
        Quantification of the effects of volume conduction on the EEG/MEG connectivity estimates: An index of sensitivity to brain integrations.
        Physiol Meas. 2014; 35: 2149-2164
        • Dominguez L.G.
        • Wennberg R.
        • Perez Velazquez J.L.
        • Erra R.G.
        Enhanced measured synchronization of unsynchronized sources: Inspecting the physiological significance of synchronization analysis of whole brain electrophysiological recordings.
        Int J Phys Sci. 2007; 2: 305-317
        • Schoffelen J.M.
        • Gross J.
        Source connectivity analysis with MEG and EEG.
        Hum Brain Mapp. 2009; 30: 1857-1865
        • Brunner C.
        • Billinger M.
        • Seeber M.
        • Mullen T.R.
        • Makeig S.
        Volume conduction influences scalp-based connectivity estimates.
        Front Comput Neurosci. 2016; 10: 121
        • Lai M.
        • Demuru M.
        • Hillebrand A.
        • Fraschini M.
        A comparison between scalp- and source-reconstructed EEG networks.
        Sci Rep. 2018; 8: 12269
        • Cao C.
        • Slobounov S.
        Alteration of cortical functional connectivity as a result of traumatic brain injury revealed by graph theory, ICA, and sLORETA analyses of EEG signals.
        IEEE Trans Neural Syst Rehabil Eng. 2010; 18: 11-19
        • Hassan M.
        • Dufor O.
        • Merlet I.
        • Berrou C.
        • Wendling F.
        EEG source connectivity analysis: From dense array recordings to brain networks.
        PLoS One. 2014; 9e105041
        • Pascual-Marqui R.D.
        Instantaneous and lagged measures of linear and nonlinear dependence between groups of multivariate time series: Frequency decomposition.
        arXiv. 2007;
        • Kovach C.K.
        A biased look at phase locking: Brief critical review and proposed remedy.
        IEEE Trans Signal Process. 2017; 65: 4468-4480
        • Srinivasan R.
        • Winter W.R.
        • Ding J.
        • Nunez P.L.
        EEG and MEG coherence: Measures of functional connectivity at distinct spatial scales of neocortical dynamics.
        J Neurosci Methods. 2007; 166: 41-52
        • Cohen M.X.
        Effects of time lag and frequency matching on phase-based connectivity.
        J Neurosci Methods. 2015; 250: 137-146
        • Chella F.
        • Pizzella V.
        • Zappasodi F.
        • Marzetti L.
        Impact of the reference choice on scalp EEG connectivity estimation.
        J Neural Eng. 2016; 13036016
        • Strahnen D.
        • Kapanaiah S.K.T.
        • Bygrave A.M.
        • Kätzel D.
        Lack of redundancy between electrophysiological measures of long-range neuronal communication.
        BMC Biol. 2021; 19: 24
        • Qin Y.
        • Xu P.
        • Yao D.
        A comparative study of different references for EEG default mode network: The use of the infinity reference.
        Clin Neurophysiol. 2010; 121: 1981-1991
        • Lei X.
        • Liao K.
        Understanding the influences of EEG reference: A large-scale brain network perspective.
        Front Neurosci. 2017; 11: 205
        • Lepage K.Q.
        • Kramer M.A.
        • Chu C.J.
        A statistically robust EEG re-referencing procedure to mitigate reference effect.
        J Neurosci Methods. 2014; 235: 101-116
        • Yao D.
        A method to standardize a reference of scalp EEG recordings to a point at infinity.
        Physiol Meas. 2001; 22: 693-711
        • Kayser J.
        • Tenke C.E.
        On the benefits of using surface Laplacian (current source density) methodology in electrophysiology.
        Int J Psychophysiol. 2015; 97: 171-173
        • Kayser J.
        • Tenke C.E.
        In search of the Rosetta Stone for scalp EEG: Converging on reference-free techniques.
        Clin Neurophysiol. 2010; 121: 1973-1975
        • Fraschini M.
        • Demuru M.
        • Crobe A.
        • Marrosu F.
        • Stam C.J.
        • Hillebrand A.
        The effect of epoch length on estimated EEG functional connectivity and brain network organisation.
        J Neural Eng. 2016; 13036015
        • Chu C.J.
        • Kramer M.A.
        • Pathmanathan J.
        • Bianchi M.T.
        • Westover M.B.
        • Wizon L.
        • Cash S.S.
        Emergence of stable functional networks in long-term human electroencephalography.
        J Neurosci. 2012; 32: 2703-2713
        • Haartsen R.
        • van der Velde B.
        • Jones E.J.H.
        • Johnson M.H.
        • Kemner C.
        Using multiple short epochs optimises the stability of infant EEG connectivity parameters.
        Sci Rep. 2020; 10: 12703
        • Kuntzelman K.
        • Miskovic V.
        Reliability of graph metrics derived from resting-state human EEG.
        Psychophysiology. 2017; 54: 51-61
        • Vinck M.
        • Oostenveld R.
        • van Wingerden M.
        • Battaglia F.
        • Pennartz C.M.A.
        An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias.
        Neuroimage. 2011; 55: 1548-1565
        • Sporns O.
        The human connectome: A complex network.
        Ann N Y Acad Sci. 2011; 1224: 109-125
        • Peeples M.A.
        • Roberts J.M.
        To binarize or not to binarize: Relational data and the construction of archaeological networks.
        J Archaeol Sci. 2013; 40: 3001-3010
        • Bassett D.S.
        • Bullmore E.
        Small-world brain networks.
        Neuroscientist. 2006; 12: 512-523
        • Sun S.
        • Li X.
        • Zhu J.
        • Wang Y.
        • La R.
        • Zhang X.
        • et al.
        Graph theory analysis of functional connectivity in major depression disorder with high-density resting state EEG data.
        IEEE Trans Neural Syst Rehabil Eng. 2019; 27: 429-439
        • Sanz-Arigita E.J.
        • Schoonheim M.M.
        • Damoiseaux J.S.
        • Rombouts S.A.R.B.
        • Maris E.
        • Barkhof F.
        • et al.
        Loss of ‘small-world’ networks in Alzheimer’s disease: Graph analysis of fMRI resting-state functional connectivity.
        PLoS One. 2010; 5e13788
        • van Wijk B.C.M.
        • Stam C.J.
        • Daffertshofer A.
        Comparing brain networks of different size and connectivity density using graph theory.
        PLoS One. 2010; 5e13701
        • Stam C.J.
        • Tewarie P.
        • Van Dellen E.
        • van Straaten E.C.W.
        • Hillebrand A.
        • Van Mieghem P.
        The trees and the forest: Characterization of complex brain networks with minimum spanning trees.
        Int J Psychophysiol. 2014; 92: 129-138
        • De Vico Fallani F.
        • Latora V.
        • Chaves M.
        A toical criterion for filtering information in complex brain networks.
        PLoS Comput Biol. 2017; 13e1005305
        • Rubinov M.
        • Sporns O.
        Complex network measures of brain connectivity: Uses and interpretations.
        Neuroimage. 2010; 52: 1059-1069
        • Zalesky A.
        • Fornito A.
        • Bullmore E.T.
        Network-based statistic: Identifying differences in brain networks.
        Neuroimage. 2010; 53: 1197-1207
        • Maris E.
        • Oostenveld R.
        Nonparametric statistical testing of EEG- and MEG-data.
        J Neurosci Methods. 2007; 164: 177-190
        • Han C.E.
        • Yoo S.W.
        • Seo S.W.
        • Na D.L.
        • Seong J.K.
        Cluster-based statistics for brain connectivity in correlation with behavioral measures.
        PLoS One. 2013; 8e72332
        • Langer N.
        • Pedroni A.
        • Jäncke L.
        The problem of thresholding in small-world network analysis.
        PLoS One. 2013; 8e53199
        • Flandin G.
        • Friston K.J.
        Analysis of family-wise error rates in statistical parametric mapping using random field theory.
        Hum Brain Mapp. 2019; 40: 2052-2054
        • Theiler J.
        • Eubank S.
        • Longtin A.
        • Galdrikian B.
        • Farmer J.D.
        Testing for nonlinearity in time series: the method of surrogate data.
        Physica D Nonlinear Phenomena. 1992; 58: 1-4
        • Larson M.J.
        • Carbine K.A.
        Sample size calculations in human electrophysiology (EEG and ERP) studies: A systematic review and recommendations for increased rigor.
        Int J Psychophysiol. 2017; 111: 33-41
        • Thorlund K.
        • Imberger G.
        • Walsh M.
        • Chu R.
        • Gluud C.
        • Wetterslev J.
        • et al.
        The number of patients and events required to limit the risk of overestimation of intervention effects in meta-analysis – A simulation study.
        PLoS One. 2011; 6e25491
        • Keil A.
        • Debener S.
        • Gratton G.
        • Junghöfer M.
        • Kappenman E.S.
        • Luck S.J.
        • et al.
        Committee report: Publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography.
        Psychophysiology. 2014; 51: 1-21