Adverse Prenatal Exposures and Fetal Brain Development: Insights from Advanced Fetal MRI

Published:November 27, 2021DOI:https://doi.org/10.1016/j.bpsc.2021.11.009

      Abstract

      Converging evidence from clinical and preclinical studies suggest fetal vulnerability to adverse prenatal exposures increase the risk for neuropsychiatric diseases such as autism spectrum disorders, schizophrenia, and depression. Recent advances in fetal magnetic resonance imaging (MRI) have allowed us to characterize typical fetal brain growth trajectories in vivo as well as to interrogate structural and functional alterations associated with intrauterine exposures such as maternal stress, environmental toxins, drugs, and obesity. Here, we review proposed mechanisms how prenatal influences disrupt neurodevelopment, including the role played by maternal and fetal inflammatory responses. We summarize insights from MRI research in fetuses, highlight recent discoveries in normative fetal development using quantitative MRI techniques (i.e., three-dimensional volumetry, proton magnetic resonance spectroscopy, placental diffusion imaging, and functional imaging), and discuss how baseline trajectories are shaped by prenatal exposures.

      Keywords

      To read this article in full you will need to make a payment

      References

        • Hagberg H.
        • Gressens P.
        • Mallard C.
        Inflammation during fetal and neonatal life: implications for neurologic and neuropsychiatric disease in children and adults.
        Ann Neurol. 2012; 71: 444-457
        • Burd I.
        • Balakrishnan B.
        • Kannan S.
        Models of fetal brain injury, intrauterine inflammation, and preterm birth.
        Am J Reprod Immunol. 2012; 67: 287-294
        • Kim C.J.
        • Romero R.
        • Chaemsaithong P.
        • Kim J.-S.
        Chronic inflammation of the placenta: definition, classification, pathogenesis, and clinical significance.
        Am J Obstet Gynecol. 2015; 213: S53-69
        • Jung E.
        • Romero R.
        • Yeo L.
        • Diaz-Primera R.
        • Marin-Concha J.
        • Para R.
        • et al.
        The fetal inflammatory response syndrome: the origins of a concept, pathophysiology, diagnosis, and obstetrical implications.
        Semin Fetal Neonatal Med. 2020; 25: 101146
        • Gotsch F.
        • Romero R.
        • Kusanovic J.P.
        • Mazaki-Tovi S.
        • Pineles B.L.
        • Erez O.
        • et al.
        The fetal inflammatory response syndrome.
        Clin Obstet Gynecol. 2007; 50: 652-683
        • Volpe J.J.
        Placental assessment provides insight into mechanisms and timing of neonatal hypoxic-ischemic encephalopathy.
        Journal of Neonatal-Perinatal Medicine. 2019; 12: 113-116
        • Shi Z.
        • Ma L.
        • Luo K.
        • Bajaj M.
        • Chawla S.
        • Natarajan G.
        • et al.
        Chorioamnionitis in the development of cerebral palsy: A meta-analysis and systematic review.
        Pediatrics. 2017; 139https://doi.org/10.1542/peds.2016-3781
        • Narang K.
        • Cheek E.H.
        • Enninga E.A.L.
        • Theiler R.N.
        Placental immune responses to viruses: Molecular and histo-pathologic perspectives.
        Int J Mol Sci. 2021; 22: 2921
        • Chudnovets A.
        • Liu J.
        • Narasimhan H.
        • Liu Y.
        • Burd I.
        Role of Inflammation in Virus Pathogenesis during Pregnancy.
        J Virol. 2020; 95: e01381
        • Baker B.C.
        • Heazell A.E.P.
        • Sibley C.
        • Wright R.
        • Bischof H.
        • Beards F.
        • et al.
        Hypoxia and oxidative stress induce sterile placental inflammation in vitro.
        Sci Rep. 2021; 11: 7281
        • Barron A.
        • McCarthy C.M.
        • O’Keeffe G.W.
        Preeclampsia and neurodevelopmental outcomes: Potential pathogenic roles for inflammation and oxidative stress?.
        Mol Neurobiol. 2021; 58: 2734-2756
        • Khanam R.
        • Kumar I.
        • Oladapo-Shittu O.
        • Twose C.
        • Islam A.A.
        • Biswal S.S.
        • et al.
        Prenatal environmental metal exposure and preterm birth: A scoping review.
        Int J Environ Res Public Health. 2021; 18: 573
        • Antonson A.M.
        • Evans M.V.
        • Galley J.D.
        • Chen H.J.
        • Rajesekera T.A.
        • Lammers S.M.
        • et al.
        May 29): Unique maternal immune and functional microbial profiles during prenatal stress.
        BioRxiv. bioRxiv. 2020; https://doi.org/10.1101/2020.05.26.116574
        • Bronson S.L.
        • Bale T.L.
        Prenatal stress-induced increases in placental inflammation and offspring hyperactivity are male-specific and ameliorated by maternal antiinflammatory treatment.
        Endocrinology. 2014; 155: 2635-2646
        • Marques A.H.
        • Bjørke-Monsen A.-L.
        • Teixeira A.L.
        • Silverman M.N.
        Maternal stress, nutrition and physical activity: Impact on immune function, CNS development and psychopathology.
        Brain Res. 2015; 1617: 28-46
        • Clouchoux C.
        • Guizard N.
        • Evans A.C.
        • du Plessis A.J.
        • Limperopoulos C.
        Normative fetal brain growth by quantitative in vivo magnetic resonance imaging.
        Am J Obstet Gynecol. 2012; 206: 173.e1-173.e8
        • Andescavage N.N.
        • du Plessis A.
        • McCarter R.
        • Serag A.
        • Evangelou I.
        • Vezina G.
        • et al.
        Complex Trajectories of Brain Development in the Healthy Human Fetus.
        Cereb Cortex. 2017; 27: 5274-5283
        • Zun Z.
        • Kapse K.
        • Quistorff J.
        • Andescavage N.
        • Gimovsky A.C.
        • Ahmadzia H.
        • Limperopoulos C.
        Feasibility of QSM in the human placenta.
        Magn Reson Med. 2021; 85: 1272-1281
        • Peyvandi S.
        • Xu D.
        • Wang Y.
        • Hogan W.
        • Moon-Grady A.
        • Barkovich A.J.
        • et al.
        Fetal cerebral oxygenation is impaired in congenital heart disease and shows variable response to maternal hyperoxia.
        J Am Heart Assoc. 2021; 10e018777
        • Wu J.
        • Awate S.P.
        • Licht D.J.
        • Clouchoux C.
        • du Plessis A.J.
        • Avants B.B.
        • et al.
        Assessment of MRI-based automated fetal cerebral cortical folding measures in prediction of gestational age in the third trimester.
        AJNR Am J Neuroradiol. 2015; 36: 1369-1374
        • Clouchoux C.
        • Kudelski D.
        • Gholipour A.
        • Warfield S.K.
        • Viseur S.
        • Marine B.-K.
        • et al.
        Quantitative in vivo MRI measurement of cortical development in the fetus.
        Brain Struct Funct. 2012; 217: 127-139
        • Pradhan S.
        • Kapse K.
        • Jacobs M.
        • Niforatos-Andescavage N.
        • Quistorff J.L.
        • Lopez C.
        • et al.
        Non-invasive measurement of biochemical profiles in the healthy fetal brain.
        Neuroimage. 2020; 219: 117016
      1. De Asis-Cruz J, Andersen N, Kapse K, Khrisnamurthy D, Quistorff J, Lopez C, et al. (2021): Global Network Organization of the Fetal Functional Connectome. Cereb Cortex. https://doi.org/10.1093/cercor/bhaa410

        • Schöpf V.
        • Kasprian G.
        • Brugger P.C.
        • Prayer D.
        Watching the fetal brain at “rest.
        Int J Dev Neurosci. 2012; 30: 11-17
        • Tsuchiya K.
        • Katase S.
        • Seki T.
        • Mizutani Y.
        • Hachiya J.
        Short communication: MR imaging of fetal brain abnormalities using a HASTE sequence.
        Br J Radiol. 1996; 69: 668-670
        • Yamashita Y.
        • Namimoto T.
        • Abe Y.
        • Takahashi M.
        • Iwamasa J.
        • Miyazaki K.
        • Okamura H.
        MR imaging of the fetus by a HASTE sequence.
        AJR Am J Roentgenol. 1997; 168: 513-519
        • Fitzgibbon S.P.
        • Harrison S.J.
        • Jenkinson M.
        • Baxter L.
        • Robinson E.C.
        • Bastiani M.
        • et al.
        The developing Human Connectome Project (dHCP) automated resting-state functional processing framework for newborn infants.
        Neuroimage. 2020; 223: 117303
      2. Scheinost D, Onofrey JA, Kwon SH, Cross SN, Sze G, Ment LR, Papademetris X (2018): A fetal fMRI specific motion correction algorithm using 2nd order edge features. 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) 1288–1292.

        • De Asis-Cruz J.
        • Kapse K.
        • Basu S.K.
        • Said M.
        • Scheinost D.
        • Murnick J.
        • et al.
        Functional brain connectivity in ex utero premature infants compared to in utero fetuses.
        Neuroimage. 2020; 219: 117043
        • Fogtmann M.
        • Seshamani S.
        • Kroenke C.
        • Cheng Xi
        • Chapman T.
        • Wilm J.
        • et al.
        A unified approach to diffusion direction sensitive slice registration and 3-D DTI reconstruction from moving fetal brain anatomy.
        IEEE Trans Med Imaging. 2014; 33: 272-289
        • Kainz B.
        • Steinberger M.
        • Wein W.
        • Kuklisova-Murgasova M.
        • Malamateniou C.
        • Keraudren K.
        • et al.
        Fast Volume Reconstruction From Motion Corrupted Stacks of 2D Slices.
        IEEE Trans Med Imaging. 2015; 34: 1901-1913
        • Gholipour A.
        • Estroff J.A.
        • Warfield S.K.
        Robust super-resolution volume reconstruction from slice acquisitions: application to fetal brain MRI.
        IEEE Trans Med Imaging. 2010; 29: 1739-1758
        • Habas P.A.
        • Kim K.
        • Corbett-Detig J.M.
        • Rousseau F.
        • Glenn O.A.
        • Barkovich A.J.
        • Studholme C.
        A spatiotemporal atlas of MR intensity, tissue probability and shape of the fetal brain with application to segmentation.
        Neuroimage. 2010; 53: 460-470
      3. Serag A, Kyriakopoulou V, Rutherford MA (2012): A multi-channel 4D probabilistic atlas of the developing brain: application to fetuses and neonates. Annals of the British. Retrieved from http://www.researchgate.net/profile/Ahmed_Serag/publication/225039334_A_Multi-channel_4D_Probabilistic_Atlas_of_the_Developing_Brain_Application_to_Fetuses_and_Neonates/links/0c960515dfad308a58000000.pdf

        • Gholipour A.
        • Rollins C.K.
        • Velasco-Annis C.
        • Ouaalam A.
        • Akhondi-Asl A.
        • Afacan O.
        • et al.
        A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth.
        Sci Rep. 2017; 7https://doi.org/10.1038/s41598-017-00525-w
        • Khan S.
        • Vasung L.
        • Marami B.
        • Rollins C.K.
        • Afacan O.
        • Ortinau C.M.
        • et al.
        Fetal brain growth portrayed by a spatiotemporal diffusion tensor MRI atlas computed from in utero images.
        Neuroimage. 2019; 185: 593-608
      4. Salehi SSM, Hashemi SR, Velasco-Annis C, Ouaalam A, Estroff JA, Erdogmus D, et al. (2018): Real-time automatic fetal brain extraction in fetal MRI by deep learning. 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). presented at the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), IEEE. https://doi.org/10.1109/isbi.2018.8363675

      5. Li H, Yan G, Luo W, Liu T, Wang Y, Liu R, et al. (2020, May 11): Mapping fetal brain development based on automated segmentation and 4D brain atlasing. Cold Spring Harbor Laboratory. p 2020.05.10.085381.

        • Rusterholz C.
        • Hahn S.
        • Holzgreve W.
        Role of placentally produced inflammatory and regulatory cytokines in pregnancy and the etiology of preeclampsia.
        Semin Immunopathol. 2007; 29: 151-162
        • Redman C.W.G.
        • Sargent I.L.
        Pre-eclampsia, the placenta and the maternal systemic inflammatory response--a review.
        Placenta. 2003; 24: S21-S27
        • Raghupathy R.
        • Al Mutawa E.
        • Makhseed M.
        • Azizieh F.
        • Szekeres-Bartho J.
        Modulation of cytokine production by dydrogesterone in lymphocytes from women with recurrent miscarriage.
        BJOG. 2005; 112: 1096-1101
        • Goldstein J.A.
        • Gallagher K.
        • Beck C.
        • Kumar R.
        • Gernand A.D.
        Maternal-fetal inflammation in the placenta and the developmental origins of health and disease.
        Front Immunol. 2020; 11: 531543
        • Amgalan A.
        • Andescavage N.
        • Limperopoulos C.
        Prenatal origins of neuropsychiatric diseases.
        Acta Paediatr. 2021; 110: 1741-1749
        • Andescavage N.
        • Limperopoulos C.
        Emerging placental biomarkers of health and disease through advanced magnetic resonance imaging (MRI).
        Exp Neurol. 2021; 347: 113868
        • Chiriboga C.A.
        Fetal alcohol and drug effects.
        Neurologist. 2003; 9: 267-279
        • Pascual M.
        • Montesinos J.
        • Montagud-Romero S.
        • Forteza J.
        • Rodríguez-Arias M.
        • Miñarro J.
        • Guerri C.
        TLR4 response mediates ethanol-induced neurodevelopment alterations in a model of fetal alcohol spectrum disorders.
        J Neuroinflammation. 2017; 14https://doi.org/10.1186/s12974-017-0918-2
        • Jantzie L.L.
        • Maxwell J.R.
        • Newville J.C.
        • Yellowhair T.R.
        • Kitase Y.
        • Madurai N.
        • et al.
        Prenatal opioid exposure: The next neonatal neuroinflammatory disease.
        Brain Behav Immun. 2020; 84: 45-58
        • Newville J.
        • Maxwell J.R.
        • Kitase Y.
        • Robinson S.
        • Jantzie L.L.
        Perinatal Opioid Exposure Primes the Peripheral Immune System Toward Hyperreactivity.
        Front Pediatr. 2020; 8: 272
        • Luchicchi A.
        • Lecca S.
        • Melis M.
        • De Felice M.
        • Cadeddu F.
        • Frau R.
        • et al.
        Maternal immune activation disrupts dopamine system in the offspring.
        Int J Neuropsychopharmacol. 2016; 19https://doi.org/10.1093/ijnp/pyw007
        • Muneoka K.
        • Ogawa T.
        • Kamei K.
        • Muraoka S.
        • Tomiyoshi R.
        • Mimura Y.
        • et al.
        Prenatal nicotine exposure affects the development of the central serotonergic system as well as the dopaminergic system in rat offspring: involvement of route of drug administrations.
        Brain Res Dev Brain Res. 1997; 102: 117-126
        • Changeux J.-P.
        Nicotine addiction and nicotinic receptors: lessons from genetically modified mice.
        Nat Rev Neurosci. 2010; 11: 389-401
        • Radhakrishnan R.
        • Brown B.P.
        • Haas D.M.
        • Zang Y.
        • Sparks C.
        • Sadhasivam S.
        Pilot study of fetal brain development and morphometry in prenatal opioid exposure and smoking on fetal MRI.
        J Neuroradiol. 2021; https://doi.org/10.1016/j.neurad.2020.12.004
        • Yuan Q.
        • Rubic M.
        • Seah J.
        • Rae C.
        • Wright I.M.R.
        • Kaltenbach K.
        • et al.
        Do maternal opioids reduce neonatal regional brain volumes? A pilot study.
        J Perinatol. 2014; 34: 909-913
        • Walhovd K.B.
        • Moe V.
        • Slinning K.
        • Due-Tønnessen P.
        • Bjørnerud A.
        • Dale A.M.
        • et al.
        Volumetric cerebral characteristics of children exposed to opiates and other substances in utero.
        Neuroimage. 2007; 36: 1331-1344
        • Roza S.J.
        • Verburg B.O.
        • Jaddoe V.W.V.
        • Hofman A.
        • Mackenbach J.P.
        • Steegers E.A.P.
        • et al.
        Effects of maternal smoking in pregnancy on prenatal brain development. The Generation R Study.
        Eur J Neurosci. 2007; 25: 611-617
        • Stoodley C.J.
        • Schmahmann J.D.
        Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies.
        Neuroimage. 2009; 44: 489-501
        • Anblagan D.
        • Jones N.W.
        • Costigan C.
        • Parker A.J.J.
        • Allcock K.
        • Aleong R.
        • et al.
        Maternal smoking during pregnancy and fetal organ growth: a magnetic resonance imaging study.
        PLoS One. 2013; 8e67223
        • Paus T.
        • Bernard M.
        • Chakravarty M.M.
        • Davey Smith G.
        • Gillis J.
        • Lourdusamy A.
        • et al.
        KCTD8 gene and brain growth in adverse intrauterine environment: A genome-wide association study.
        Cereb Cortex. 2012; 22: 2634-2642
        • Grandjean P.
        • Herz K.T.
        Trace elements as paradigms of developmental neurotoxicants: Lead, methylmercury and arsenic.
        J Trace Elem Med Biol. 2015; 31: 130-134
        • Nuttall J.R.
        The plausibility of maternal toxicant exposure and nutritional status as contributing factors to the risk of autism spectrum disorders.
        Nutr Neurosci. 2017; 20: 209-218
        • Bjørklund G.
        • Skalny A.V.
        • Rahman M.M.
        • Dadar M.
        • Yassa H.A.
        • Aaseth J.
        • et al.
        Toxic metal(loid)-based pollutants and their possible role in autism spectrum disorder.
        Environ Res. 2018; 166: 234-250
        • Thomason M.E.
        • Hect J.L.
        • Rauh V.A.
        • Trentacosta C.
        • Wheelock M.D.
        • Eggebrecht A.T.
        • et al.
        Prenatal lead exposure impacts cross-hemispheric and long-range connectivity in the human fetal brain.
        Neuroimage. 2019; 191: 186-192
        • Romero R.
        • Gotsch F.
        • Pineles B.
        • Kusanovic J.P.
        Inflammation in pregnancy: its roles in reproductive physiology, obstetrical complications, and fetal injury.
        Nutr Rev. 2007; 65: S194-202
        • Andrade J.Q.
        • Bunduki V.
        • Curti S.P.
        • Figueiredo C.A.
        • de Oliveira M.I.
        • Zugaib M.
        Rubella in pregnancy: intrauterine transmission and perinatal outcome during a Brazilian epidemic.
        J Clin Virol. 2006; 35: 285-291
        • Parisot S.
        • Droulle P.
        • Feldmann M.
        • Pinaud P.
        • Marchal C.
        Unusual encephaloclastic lesions with paraventricular calcification in congenital rubella.
        Pediatr Radiol. 1991; 21: 229-230
        • Wu W.-L.
        • Hsiao E.Y.
        • Yan Z.
        • Mazmanian S.K.
        • Patterson P.H.
        The placental interleukin-6 signaling controls fetal brain development and behavior.
        Brain Behav Immun. 2017; 62: 11-23
        • Graham A.M.
        • Rasmussen J.M.
        • Rudolph M.D.
        • Heim C.M.
        • Gilmore J.H.
        • Styner M.
        • et al.
        Maternal Systemic Interleukin-6 During Pregnancy Is Associated With Newborn Amygdala Phenotypes and Subsequent Behavior at 2 Years of Age.
        Biol Psychiatry. 2018; 83: 109-119
        • Wei H.
        • Zou H.
        • Sheikh A.M.
        • Malik M.
        • Dobkin C.
        • Brown W.T.
        • Li X.
        IL-6 is increased in the cerebellum of autistic brain and alters neural cell adhesion, migration and synaptic formation.
        J Neuroinflammation. 2011; 8: 52
        • Lawrence S.M.
        • Wynn J.L.
        Chorioamnionitis, IL-17A, and fetal origins of neurologic disease.
        Am J Reprod Immunol. 2018; 79e12803
        • Ponzio N.M.
        • Servatius R.
        • Beck K.
        • Marzouk A.
        • Kreider T.
        Cytokine levels during pregnancy influence immunological profiles and neurobehavioral patterns of the offspring.
        Ann N Y Acad Sci. 2007; 1107: 118-128
        • Mazina V.
        • Gerdts J.
        • Trinh S.
        • Ankenman K.
        • Ward T.
        • Dennis M.Y.
        • et al.
        Epigenetics of autism-related impairment.
        J Dev Behav Pediatr. 2015; 36: 61-67
        • Melo AS. de O.
        • Chimelli L.
        • Tanuri A.
        Congenital Zika virus infection: Beyond neonatal microcephaly-reply.
        JAMA Neurol. 2017; 74: 610-611
        • Muller W.J.
        Treatment of perinatal viral infections to improve neurologic outcomes.
        Pediatr Res. 2017; 81: 162-169
        • Ostrander B.
        • Bale J.F.
        Congenital and perinatal infections.
        Handb Clin Neurol. 2019; 162: 133-153
        • Toledo G.
        • Côté H.C.F.
        • Adler C.
        • Thorne C.
        • Goetghebuer T.
        Neurological development of children who are HIV-exposed and uninfected.
        Dev Med Child Neurol. 2021; https://doi.org/10.1111/dmcn.14921
        • Ajaykumar A.
        • Zhu M.
        • Kakkar F.
        • Brophy J.
        • Bitnun A.
        • Alimenti A.
        • et al.
        Elevated blood mitochondrial DNA in early life among uninfected children exposed to human immunodeficiency virus and combination antiretroviral therapy in utero.
        J Infect Dis. 2021; 223: 621-631
        • Monnin A.
        • Nagot N.
        • Eymard-Duvernay S.
        • Meda N.
        • Tumwine J.K.
        • Tylleskär T.
        • et al.
        Health outcomes at school age among children who are HIV-exposed but uninfected with detected mitochondrial DNA depletion at one year.
        J Clin Med. 2020; 9: 3680
        • Thorne C.
        • Newell M.-L.
        Antenatal and neonatal antiretroviral therapy in HIV-infected women and their infants: a review of safety issues.
        Med Wieku Rozwoj. 2003; 7: 425-436
        • Baud D.
        • Greub G.
        Intracellular bacteria and adverse pregnancy outcomes.
        Clin Microbiol Infect. 2011; 17: 1312-1322
        • Diogo M.C.
        • Glatter S.
        • Binder J.
        • Kiss H.
        • Prayer D.
        The MRI spectrum of congenital cytomegalovirus infection.
        Prenat Diagn. 2020; 40: 110-124
        • Grinberg A.
        • Katorza E.
        • Hoffman D.
        • Ber R.
        • Mayer A.
        • Lipitz S.
        Volumetric MRI Study of the Brain in Fetuses with Intrauterine Cytomegalovirus Infection and Its Correlation to Neurodevelopmental Outcome.
        AJNR Am J Neuroradiol. 2019; 40: 353-358
        • Werner H.
        • Daltro P.
        • Fazecas T.
        • Zare Mehrjardi M.
        • Araujo Júnior E.
        Neuroimaging Findings of Congenital Toxoplasmosis, Cytomegalovirus, and Zika Virus Infections: A Comparison of Three Cases.
        J Obstet Gynaecol Can. 2017; 39: 1150-1155
        • Maisonneuve E.
        • Garel C.
        • Friszer S.
        • Pénager C.
        • Carbonne B.
        • Pernot F.
        • et al.
        Fetal brain injury associated with Parvovirus B19 congenital infection requiring intrauterine transfusion.
        Fetal Diagn Ther. 2019; 46: 1-11
        • Wadhwa P.D.
        • Entringer S.
        • Buss C.
        • Lu M.C.
        The contribution of maternal stress to preterm birth: issues and considerations.
        Clin Perinatol. 2011; 38: 351-384
        • Rieger M.
        • Pirke K.-M.
        • Buske-Kirschbaum A.
        • Wurmser H.
        • Papousek M.
        • Hellhammer D.H.
        Influence of stress during pregnancy on HPA activity and neonatal behavior.
        Ann N Y Acad Sci. 2004; 1032: 228-230
        • Davis E.P.
        • Glynn L.M.
        • Schetter C.D.
        • Hobel C.
        • Chicz-Demet A.
        • Sandman C.A.
        Prenatal exposure to maternal depression and cortisol influences infant temperament.
        J Am Acad Child Adolesc Psychiatry. 2007; 46: 737-746
        • O’Connor T.G.
        • Heron J.
        • Golding J.
        • Glover V.
        • ALSPAC Study Team
        Maternal antenatal anxiety and behavioural/emotional problems in children: a test of a programming hypothesis.
        J Child Psychol Psychiatry. 2003; 44: 1025-1036
        • Glover V.
        Prenatal stress and its effects on the fetus and the child: possible underlying biological mechanisms.
        Adv Neurobiol. 2015; 10: 269-283
        • Pearson R.M.
        • Evans J.
        • Kounali D.
        • Lewis G.
        • Heron J.
        • Ramchandani P.G.
        • et al.
        Maternal depression during pregnancy and the postnatal period: risks and possible mechanisms for offspring depression at age 18 years.
        JAMA Psychiatry. 2013; 70: 1312-1319
        • Schulz K.M.
        • Andrud K.M.
        • Burke M.B.
        • Pearson J.N.
        • Kreisler A.D.
        • Stevens K.E.
        • et al.
        The effects of prenatal stress on alpha4 beta2 and alpha7 hippocampal nicotinic acetylcholine receptor levels in adult offspring.
        Dev Neurobiol. 2013; 73: 806-814
        • Hantsoo L.
        • Kornfield S.
        • Anguera M.C.
        • Epperson C.N.
        Inflammation: A Proposed Intermediary Between Maternal Stress and Offspring Neuropsychiatric Risk.
        Biol Psychiatry. 2019; 85: 97-106
        • Smith S.E.P.
        • Li J.
        • Garbett K.
        • Mirnics K.
        • Patterson P.H.
        Maternal immune activation alters fetal brain development through interleukin-6.
        J Neurosci. 2007; 27: 10695-10702
        • Wu Y.
        • Lu Y.-C.
        • Jacobs M.
        • Pradhan S.
        • Kapse K.
        • Zhao L.
        • et al.
        Association of Prenatal Maternal Psychological Distress With Fetal Brain Growth, Metabolism, and Cortical Maturation.
        JAMA Netw Open. 2020; 3e1919940
        • Wu Y.
        • Kapse K.
        • Jacobs M.
        • Niforatos-Andescavage N.
        • Donofrio M.T.
        • Krishnan A.
        • et al.
        Association of Maternal Psychological Distress With In Utero Brain Development in Fetuses With Congenital Heart Disease.
        JAMA Pediatr. 2020; 174e195316
        • Lu Y.-C.
        • Kapse K.
        • Andersen N.
        • Quistorff J.
        • Lopez C.
        • Fry A.
        • et al.
        Association between socioeconomic status and in utero fetal brain development.
        JAMA Netw Open. 2021; 4e213526
        • Barbeau E.M.
        • Krieger N.
        • Soobader M.-J.
        Working class matters: socioeconomic disadvantage, race/ethnicity, gender, and smoking in NHIS 2000.
        Am J Public Health. 2004; 94: 269-278
        • Sorensen G.
        • Barbeau E.
        • Hunt M.K.
        • Emmons K.
        Reducing social disparities in tobacco use: a social-contextual model for reducing tobacco use among blue-collar workers.
        Am J Public Health. 2004; 94: 230-239
        • De Asis-Cruz J.
        • Krishnamurthy D.
        • Zhao L.
        • Kapse K.
        • Vezina G.
        • Andescavage N.
        • et al.
        Association of Prenatal Maternal Anxiety With Fetal Regional Brain Connectivity.
        JAMA Netw Open. 2020; 3e2022349
        • van den Heuvel M.I.
        • Hect J.L.
        • Smarr B.L.
        • Qawasmeh T.
        • Kriegsfeld L.J.
        • Barcelona J.
        • et al.
        Maternal stress during pregnancy alters fetal cortico-cerebellar connectivity in utero and increases child sleep problems after birth.
        Sci Rep. 2021; 11: 2228
        • Basatemur E.
        • Gardiner J.
        • Williams C.
        • Melhuish E.
        • Barnes J.
        • Sutcliffe A.
        Maternal prepregnancy BMI and child cognition: a longitudinal cohort study.
        Pediatrics. 2013; 131: 56-63
        • Edlow A.G.
        Maternal obesity and neurodevelopmental and psychiatric disorders in offspring.
        Prenat Diagn. 2017; 37: 95-110
        • Sullivan E.L.
        • Nousen E.K.
        • Chamlou K.A.
        Maternal high fat diet consumption during the perinatal period programs offspring behavior.
        Physiol Behav. 2014; 123: 236-242
        • Rivera H.M.
        • Christiansen K.J.
        • Sullivan E.L.
        The role of maternal obesity in the risk of neuropsychiatric disorders.
        Front Neurosci. 2015; 9: 194
        • Menting M.D.
        • van de Beek C.
        • Mintjens S.
        • Wever K.E.
        • Korosi A.
        • Ozanne S.E.
        • et al.
        The link between maternal obesity and offspring neurobehavior: A systematic review of animal experiments.
        Neurosci Biobehav Rev. 2019; 98: 107-121
        • Kelly A.C.
        • Powell T.L.
        • Jansson T.
        Placental function in maternal obesity.
        Clin Sci (Lond). 2020; 134: 961-984
        • Grayson B.E.
        • Levasseur P.R.
        • Williams S.M.
        • Smith M.S.
        • Marks D.L.
        • Grove K.L.
        Changes in melanocortin expression and inflammatory pathways in fetal offspring of nonhuman primates fed a high-fat diet.
        Endocrinology. 2010; 151: 1622-1632
        • Zhang Q.
        • Chen H.
        • Wang Y.
        • Zhang C.
        • Tang Z.
        • Li H.
        • et al.
        Severe vitamin D deficiency in the first trimester is associated with placental inflammation in high-risk singleton pregnancy.
        Clin Nutr. 2019; 38: 1921-1926
        • Norr M.E.
        • Hect J.L.
        • Lenniger C.J.
        • Van den Heuvel M.
        • Thomason M.E.
        An examination of maternal prenatal BMI and human fetal brain development.
        J Child Psychol Psychiatry. 2021; 62: 458-469
        • Basu S.
        • Kumar D.
        • Anupurba S.
        • Verma A.
        • Kumar A.
        Effect of maternal iron deficiency anemia on fetal neural development.
        J Perinatol. 2018; 38: 233-239
        • Denison F.C.
        • Macnaught G.
        • Semple S.I.K.
        • Terris G.
        • Walker J.
        • Anblagan D.
        • et al.
        Brain Development in Fetuses of Mothers with Diabetes: A Case-Control MR Imaging Study.
        AJNR Am J Neuroradiol. 2017; 38: 1037-1044
        • Donofrio M.T.
        • Bremer Y.A.
        • Schieken R.M.
        • Gennings C.
        • Morton L.D.
        • Eidem B.W.
        • et al.
        Autoregulation of cerebral blood flow in fetuses with congenital heart disease: the brain sparing effect.
        Pediatr Cardiol. 2003; 24: 436-443
        • Guo R.
        • Hou W.
        • Dong Y.
        • Yu Z.
        • Stites J.
        • Weiner C.P.
        Brain injury caused by chronic fetal hypoxemia is mediated by inflammatory cascade activation.
        Reprod Sci. 2010; 17: 540-548
        • McClendon E.
        • Shaver D.C.
        • Degener-O’Brien K.
        • Gong X.
        • Nguyen T.
        • Hoerder-Suabedissen A.
        • et al.
        Transient hypoxemia chronically disrupts maturation of preterm fetal Ovine subplate neuron arborization and activity.
        J Neurosci. 2017; 37: 11912-11929
        • Segal M.
        Dendritic spines, synaptic plasticity and neuronal survival: activity shapes dendritic spines to enhance neuronal viability.
        Eur J Neurosci. 2010; 31: 2178-2184
        • Wood C.E.
        • Keller-Wood M.
        Current paradigms and new perspectives on fetal hypoxia: implications for fetal brain development in late gestation.
        Am J Physiol Regul Integr Comp Physiol. 2019; 317: R1-R13
        • Volpe J.J.
        Primary neuronal dysmaturation in preterm brain: Important and likely modifiable.
        J Neonatal Perinatal Med. 2021; 14: 1-6
        • Maulik D.
        • Frances Evans J.
        • Ragolia L.
        Fetal growth restriction: pathogenic mechanisms.
        Clin Obstet Gynecol. 2006; 49: 219-227
        • Knuesel I.
        • Chicha L.
        • Britschgi M.
        • Schobel S.A.
        • Bodmer M.
        • Hellings J.A.
        • et al.
        Maternal immune activation and abnormal brain development across CNS disorders.
        Nat Rev Neurol. 2014; 10: 643-660
        • Andescavage N.
        • You W.
        • Jacobs M.
        • Kapse K.
        • Quistorff J.
        • Bulas D.
        • et al.
        Exploring in vivo placental microstructure in healthy and growth-restricted pregnancies through diffusion-weighted magnetic resonance imaging.
        Placenta. 2020; 93: 113-118
        • Andescavage N.
        • Dahdouh S.
        • Jacobs M.
        • Yewale S.
        • Bulas D.
        • Iqbal S.
        • et al.
        In vivo textural and morphometric analysis of placental development in healthy & growth-restricted pregnancies using magnetic resonance imaging.
        Pediatr Res. 2019; 85: 974-981
        • Dahdouh S.
        • Andescavage N.
        • Yewale S.
        • Yarish A.
        • Lanham D.
        • Bulas D.
        • et al.
        In vivo placental MRI shape and textural features predict fetal growth restriction and postnatal outcome.
        J Magn Reson Imaging. 2018; 47: 449-458
        • Limperopoulos C.
        • Tworetzky W.
        • B M.D.
        • Newburger J.W.
        • Brown D.W.
        • Robertson R.L.
        • et al.
        Brain volume and metabolism in fetuses with congenital heart disease: evaluation with quantitative magnetic resonance imaging and spectroscopy.
        Circulation. 2010; 121: 26-33
        • Clouchoux C.
        • du Plessis A.J.
        • M B- K.
        • Tworetzky W.
        • Db M.
        • Brown D.W.
        • et al.
        Delayed cortical development in fetuses with complex congenital heart disease.
        Cereb Cortex. 2013; 23: 2932-2943
        • You W.
        • Andescavage N.N.
        • Kapse K.
        • Donofrio M.T.
        • Jacobs M.
        • Limperopoulos C.
        Hemodynamic Responses of the Placenta and Brain to Maternal Hyperoxia in Fetuses with Congenital Heart Disease by Using Blood Oxygen–Level Dependent MRI.
        Radiology. 2020; 294: 141-148
        • Mandal C.
        • Halder D.
        • Jung K.H.
        • Chai Y.G.
        Utero Alcohol Exposure and the Alteration of Histone Marks in the Developing Fetus: An Epigenetic Phenomenon of Maternal Drinking.
        Int J Biol Sci. 2017; 13: 1100-1108
        • Zhang C.R.
        • Ho M.-F.
        • Vega M.C.S.
        • Burne T.H.J.
        • Chong S.
        Prenatal ethanol exposure alters adult hippocampal VGLUT2 expression with concomitant changes in promoter DNA methylation, H3K4 trimethylation and miR-467b-5p levels.
        Epigenetics Chromatin. 2015; 8: 40
        • Role L.W.
        • Berg D.K.
        Nicotinic receptors in the development and modulation of CNS synapses.
        Neuron. 1996; 16: 1077-1085
        • Cohen G.
        • Roux J.-C.
        • Grailhe R.
        • Malcolm G.
        • Changeux J.-P.
        • Lagercrantz H.
        Perinatal exposure to nicotine causes deficits associated with a loss of nicotinic receptor function.
        Proc Natl Acad Sci U S A. 2005; 102: 3817-3821
        • Lawrence K.M.
        • McGovern P.E.
        • Mejaddam A.
        • Rossidis A.C.
        • Baumgarten H.
        • Kim A.
        • et al.
        Chronic intrauterine hypoxia alters neurodevelopment in fetal sheep.
        J Thorac Cardiovasc Surg. 2019; 157: 1982-1991
        • Weissman M.M.
        • Berry O.O.
        • Warner V.
        • Gameroff M.J.
        • Skipper J.
        • Talati A.
        • et al.
        A 30-year study of 3 generations at high risk and low risk for depression.
        JAMA Psychiatry. 2016; 73: 970-977