Advertisement

The Influence of Maternal Metabolic State and Nutrition on Offspring Neurobehavioral Development: A Focus on Preclinical Models

  • AJ Mitchell
    Affiliations
    Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon

    Department of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon
    Search for articles by this author
  • Geoffrey A. Dunn
    Affiliations
    Department of Human Physiology, University of Oregon, Eugene, Oregon
    Search for articles by this author
  • Elinor L. Sullivan
    Correspondence
    Address correspondence to Elinor L. Sullivan, Ph.D.
    Affiliations
    Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon

    Department of Psychiatry, Oregon Health & Science University, Portland, Oregon

    Department of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon

    Department of Human Physiology, University of Oregon, Eugene, Oregon
    Search for articles by this author
Published:December 13, 2021DOI:https://doi.org/10.1016/j.bpsc.2021.11.014

      Abstract

      The prevalence of both obesity and neurodevelopmental disorders has increased substantially over the last several decades. Early environmental factors, including maternal nutrition and metabolic state during gestation, influence offspring neurodevelopment. Both human and preclinical models demonstrate a link between poor maternal nutrition, altered metabolic state, and risk of behavioral abnormalities in offspring. This review aims to highlight evidence from the current literature connecting maternal nutrition and the associated metabolic changes with neural and behavioral outcomes in the offspring, as well as identify possible mechanisms underlying these neurodevelopmental outcomes. Owing to the highly correlated nature of poor nutrition and obesity in humans, preclinical animal models are important in distinguishing the unique effects of maternal nutrition and metabolic state on offspring brain development. We use a translational lens to highlight results from preclinical animal models of maternal obesogenic diet related to alterations in behavioral and neurodevelopmental outcomes in offspring. Specifically, we aim to highlight results that resemble behavioral phenotypes described in the diagnostic criteria of neurodevelopmental conditions in humans. Finally, we examine the proinflammatory nature of maternal obesity and consumption of a high-fat diet as a mechanism for neurodevelopmental alterations that may alter offspring behavior later in life. It is important that future studies examine potential therapeutic interventions and prevention strategies to interrupt the transgenerational transmission of the disease. Given the tremendous risk to the next generation, changes need to be made to ensure that all pregnant people have access to nutritious food and are informed about the optimal diet for their developing child.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Xu G.
        • Strathearn L.
        • Liu B.
        • Yang B.
        • Bao W.
        Twenty-year trends in diagnosed attention-deficit/hyperactivity disorder among US children and adolescents, 1997–2016.
        JAMA Netw Open. 2018; 1e181471
        • Zablotsky B.
        • Black L.I.
        • Maenner M.J.
        • Schieve L.A.
        • Danielson M.L.
        • Bitsko R.H.
        • et al.
        Prevalence and trends of developmental disabilities among children in the United States: 2009–2017.
        Pediatrics. 2019; 144e20190811
        • Driscoll A.K.
        • Gregory E.C.W.
        Increases in prepregnancy obesity: United States, 2016–2019.
        NCHS Data Brief (392), 2020: 1-8
        • Heslehurst N.
        • Vieira R.
        • Akhter Z.
        • Bailey H.
        • Slack E.
        • Ngongalah L.
        • et al.
        The association between maternal body mass index and child obesity: A systematic review and meta-analysis.
        PLoS Med. 2019; 16e1002817
        • Ghandour R.M.
        • Sherman L.J.
        • Vladutiu C.J.
        • Ali M.M.
        • Lynch S.E.
        • Bitsko R.H.
        • Blumberg S.J.
        Prevalence and treatment of depression, anxiety, and conduct problems in US children.
        J Pediatr. 2019; 206: 256-267.e3
        • Bitsko R.H.
        • Holbrook J.R.
        • Ghandour R.M.
        • Blumberg S.J.
        • Visser S.N.
        • Perou R.
        • Walkup J.T.
        Epidemiology and impact of health care provider-diagnosed anxiety and depression among US children.
        J Dev Behav Pediatr. 2018; 39: 395-403
        • Sullivan E.L.
        • Nousen E.K.
        • Chamlou K.A.
        Maternal high fat diet consumption during the perinatal period programs offspring behavior.
        Physiol Behav. 2014; 123: 236-242
        • Buehler M.R.
        A proposed mechanism for autism: An aberrant neuroimmune response manifested as a psychiatric disorder.
        Med Hypotheses. 2011; 76: 863-870
        • van der Burg J.W.
        • Sen S.
        • Chomitz V.R.
        • Seidell J.C.
        • Leviton A.
        • Dammann O.
        The role of systemic inflammation linking maternal BMI to neurodevelopment in children.
        Pediatr Res. 2016; 79: 3-12
        • Dunn G.A.
        • Loftis J.M.
        • Sullivan E.L.
        Neuroinflammation in psychiatric disorders: An introductory primer.
        Pharmacol Biochem Behav. 2020; 196: 172981
        • Trayhurn P.
        • Wood I.S.
        Adipokines: Inflammation and the pleiotropic role of white adipose tissue.
        Br J Nutr. 2004; 92: 347-355
        • Ellulu M.S.
        • Patimah I.
        • Khaza’ai H.
        • Rahmat A.
        • Abed Y.
        Obesity and inflammation: The linking mechanism and the complications.
        Arch Med Sci. 2017; 13: 851-863
        • Shook L.L.
        • Kislal S.
        • Edlow A.G.
        Fetal brain and placental programming in maternal obesity: A review of human and animal model studies.
        Prenat Diagn. 2020; 40: 1126-1137
        • Rodriguez A.
        • Miettunen J.
        • Henriksen T.B.
        • Olsen J.
        • Obel C.
        • Taanila A.
        • et al.
        Maternal adiposity prior to pregnancy is associated with ADHD symptoms in offspring: Evidence from three prospective pregnancy cohorts.
        Int J Obes (Lond). 2008; 32: 550-557
        • Rodriguez A.
        Maternal pre-pregnancy obesity and risk for inattention and negative emotionality in children.
        J Child Psychol Psychiatry. 2010; 51: 134-143
        • Chen Q.
        • Sjölander A.
        • Långström N.
        • Rodriguez A.
        • Serlachius E.
        • D’Onofrio B.M.
        • et al.
        Maternal pre-pregnancy body mass index and offspring attention deficit hyperactivity disorder: A population-based cohort study using a sibling-comparison design.
        Int J Epidemiol. 2014; 43: 83-90
        • Andersen C.H.
        • Thomsen P.H.
        • Nohr E.A.
        • Lemcke S.
        Maternal body mass index before pregnancy as a risk factor for ADHD and autism in children.
        Eur Child Adolesc Psychiatry. 2018; 27: 139-148
        • Pugh S.J.
        • Hutcheon J.A.
        • Richardson G.A.
        • Brooks M.M.
        • Himes K.P.
        • Day N.L.
        • Bodnar L.M.
        Gestational weight gain, prepregnancy body mass index and offspring attention-deficit hyperactivity disorder symptoms and behaviour at age 10.
        BJOG. 2016; 123: 2094-2103
        • Buss C.
        • Entringer S.
        • Wadhwa P.D.
        Fetal programming of brain development: Intrauterine stress and susceptibility to psychopathology.
        Sci Signal. 2012; 5: pt7
        • Krakowiak P.
        • Walker C.K.
        • Bremer A.A.
        • Baker A.S.
        • Ozonoff S.
        • Hansen R.L.
        • Hertz-Picciotto I.
        Maternal metabolic conditions and risk for autism and other neurodevelopmental disorders.
        Pediatrics. 2012; 129: e1121-e1128
        • Van Lieshout R.J.
        • Robinson M.
        • Boyle M.H.
        Maternal pre-pregnancy body mass index and internalizing and externalizing problems in offspring.
        Can J Psychiatry. 2013; 58: 151-159
        • Little L.M.
        • Dean E.
        • Tomchek S.
        • Dunn W.
        Sensory processing patterns in autism, attention deficit hyperactivity disorder, and typical development.
        Phys Occup Ther Pediatr. 2018; 38: 243-254
        • Neufeld J.
        • Hagström A.
        • Van’t Westeinde A.
        • Lundin K.
        • Cauvet É
        • Willfors C.
        • et al.
        Global and local visual processing in autism—A co-twin-control study.
        J Child Psychol Psychiatry. 2020; 61: 470-479
        • Kamath M.S.
        • Dahm C.R.
        • Tucker J.R.
        • Huang-Pollock C.L.
        • Etter N.M.
        • Neely K.A.
        Sensory profiles in adults with and without ADHD.
        Res Dev Disabil. 2020; 104: 103696
        • Bijlenga D.
        • Tjon-Ka-Jie J.Y.M.
        • Schuijers F.
        • Kooij J.J.S.
        Atypical sensory profiles as core features of adult ADHD, irrespective of autistic symptoms.
        Eur Psychiatry. 2017; 43: 51-57
        • Panagiotidi M.
        • Overton P.G.
        • Stafford T.
        The relationship between ADHD traits and sensory sensitivity in the general population.
        Compr Psychiatry. 2018; 80: 179-185
        • Danielson M.L.
        • Bitsko R.H.
        • Ghandour R.M.
        • Holbrook J.R.
        • Kogan M.D.
        • Blumberg S.J.
        Prevalence of parent-reported ADHD diagnosis and associated treatment among U.S. children and adolescents, 2016.
        J Clin Child Adolesc Psychol. 2018; 47: 199-212
        • Young S.
        • Natamba B.
        • Luwedde F.
        • Nyafwono D.
        • Okia B.
        • Osterbauer B.
        • et al.
        “I have remained strong because of that food”: Acceptability and use of lipid-based nutrient supplements among pregnant HIV-infected Ugandan women receiving combination antiretroviral therapy.
        AIDS Behav. 2015; 19: 1535-1547
        • Fuemmeler B.F.
        • Zucker N.
        • Sheng Y.
        • Sanchez C.E.
        • Maguire R.
        • Murphy S.K.
        • et al.
        Pre-pregnancy weight and symptoms of attention deficit hyperactivity disorder and executive functioning behaviors in preschool children.
        Int J Environ Res Public Health. 2019; 16: 667
        • Musser E.D.
        • Willoughby M.T.
        • Wright S.
        • Sullivan E.L.
        • Stadler D.D.
        • Olson B.F.
        • et al.
        Maternal prepregnancy body mass index and offspring attention-deficit/hyperactivity disorder: A quasi-experimental sibling-comparison, population-based design.
        J Child Psychol Psychiatry. 2017; 58: 240-247
        • Tanda R.
        • Salsberry P.J.
        Racial differences in the association between maternal prepregnancy obesity and children’s behavior problems.
        J Dev Behav Pediatr. 2014; 35: 118-127
        • Gustafsson H.C.
        • Sullivan E.L.
        • Nousen E.K.
        • Sullivan C.A.
        • Huang E.
        • Rincon M.
        • et al.
        Maternal prenatal depression predicts infant negative affect via maternal inflammatory cytokine levels.
        Brain Behav Immun. 2018; 73: 470-481
        • Gustafsson H.C.
        • Sullivan E.L.
        • Battison E.A.J.
        • Holton K.F.
        • Graham A.M.
        • Karalunas S.L.
        • et al.
        Evaluation of maternal inflammation as a marker of future offspring ADHD symptoms: A prospective investigation.
        Brain Behav Immun. 2020; 89: 350-356
        • Djelantik A.A.A.M.J.
        • Kunst A.E.
        • van der Wal M.F.
        • Smit H.A.
        • Vrijkotte T.G.M.
        Contribution of overweight and obesity to the occurrence of adverse pregnancy outcomes in a multi-ethnic cohort: Population attributive fractions for Amsterdam.
        BJOG. 2012; 119: 283-290
        • Gavard J.A.
        • Artal R.
        The association of gestational weight gain with birth weight in obese pregnant women by obesity class and diabetic status: A population-based historical cohort study.
        Matern Child Health J. 2014; 18: 1038-1047
        • Nohr E.A.
        • Vaeth M.
        • Baker J.L.
        • Sørensen TIa
        • Olsen J.
        • Rasmussen K.M.
        Combined associations of prepregnancy body mass index and gestational weight gain with the outcome of pregnancy [published correction appears in Am J Clin Nutr 2008; 88:1705].
        Am J Clin Nutr. 2008; 87: 1750-1759
        • Colman I.
        • Ataullahjan A.
        • Naicker K.
        • Van Lieshout R.J.
        Birth weight, stress, and symptoms of depression in adolescence: Evidence of fetal programming in a national Canadian cohort.
        Can J Psychiatry. 2012; 57: 422-428
        • Rizzo T.A.
        • Silverman B.L.
        • Metzger B.E.
        • Cho N.H.
        Behavioral adjustment in children of diabetic mothers.
        Acta Paediatr. 1997; 86: 969-974
        • Herva A.
        • Pouta A.
        • Hakko H.
        • Läksy K.
        • Joukamaa M.
        • Veijola J.
        Birth measures and depression at age 31 years: The Northern Finland 1966 Birth Cohort Study.
        Psychiatry Res. 2008; 160: 263-270
        • Simon G.E.
        • Von Korff M.
        • Saunders K.
        • Miglioretti D.L.
        • Crane P.K.
        • van Belle G.
        • Kessler R.C.
        Association between obesity and psychiatric disorders in the US adult population.
        Arch Gen Psychiatry. 2006; 63: 824-830
        • Gustafsson H.C.
        • Holton K.F.
        • Anderson A.N.
        • Nousen E.K.
        • Sullivan C.A.
        • Loftis J.M.
        • et al.
        Increased maternal prenatal adiposity, inflammation, and lower omega-3 fatty acid levels influence child negative affect.
        Front Neurosci. 2019; 13: 1035
        • Rothbart M.K.
        • Ahadi S.A.
        • Evans D.E.
        Temperament and personality: Origins and outcomes.
        J Pers Soc Psychol. 2000; 78: 122-135
        • Bradley R.H.
        • Corwyn R.F.
        Infant temperament, parenting, and externalizing behavior in first grade: A test of the differential susceptibility hypothesis.
        J Child Psychol Psychiatry. 2008; 49: 124-131
        • Burgess K.B.
        • Marshall P.J.
        • Rubin K.H.
        • Fox N.A.
        Infant attachment and temperament as predictors of subsequent externalizing problems and cardiac physiology.
        J Child Psychol Psychiatry. 2003; 44: 819-831
        • Robertson A.E.
        • Simmons D.R.
        The relationship between sensory sensitivity and autistic traits in the general population.
        J Autism Dev Disord. 2013; 43: 775-784
        • Maenner M.J.
        • Shaw K.A.
        • Baio J.
        • Washington A.
        • Patrick M.
        • et al.
        • EdS1
        Prevalence of autism spectrum disorder among children aged 8 years - Autism and Developmental Disabilities Monitoring Network, 11 sites, United States, 2016.
        MMWR Surveill Summ. 2020; 69: 1-12
        • Bilder D.A.
        • Bakian A.V.
        • Viskochil J.
        • Clark E.A.S.
        • Botts E.L.
        • Smith K.R.
        • et al.
        Maternal prenatal weight gain and autism spectrum disorders.
        Pediatrics. 2013; 132: e1276-e1283
        • Moss B.G.
        • Chugani D.C.
        Increased risk of very low birth weight, rapid postnatal growth, and autism in underweight and obese mothers.
        Am J Health Promot. 2014; 28: 181-188
        • Reynolds L.C.
        • Inder T.E.
        • Neil J.J.
        • Pineda R.G.
        • Rogers C.E.
        Maternal obesity and increased risk for autism and developmental delay among very preterm infants.
        J Perinatol. 2014; 34: 688-692
        • Dodds L.
        • Fell D.B.
        • Shea S.
        • Armson B.A.
        • Allen A.C.
        • Bryson S.
        The role of prenatal, obstetric and neonatal factors in the development of autism.
        J Autism Dev Disord. 2011; 41: 891-902
        • Matĕjů J.
        • Kratochvíl L.
        • Pavelková Z.
        • Pavelková Ričánková V.
        • Vohralík V.
        • Nĕmec P.
        Absolute, not relative brain size correlates with sociality in ground squirrels.
        Proc Biol Sci. 2016; 283: 20152725
        • Connolly N.
        • Anixt J.
        • Manning P.
        • Ping-I Lin D.
        • Marsolo K.A.
        • Bowers K.
        Maternal metabolic risk factors for autism spectrum disorder-An analysis of electronic medical records and linked birth data.
        Autism Res. 2016; 9: 829-837
        • Li M.
        • Fallin M.D.
        • Riley A.
        • Landa R.
        • Walker S.O.
        • Silverstein M.
        • et al.
        The association of maternal obesity and diabetes with autism and other developmental disabilities.
        Pediatrics. 2016; 137e20152206
        • Lei X.Y.
        • Li Y.J.
        • Ou J.J.
        • Li Y.M.
        Association between parental body mass index and autism spectrum disorder: A systematic review and meta-analysis.
        Eur Child Adolesc Psychiatry. 2019; 28: 933-947
        • Madan J.C.
        • Davis J.M.
        • Craig W.Y.
        • Collins M.
        • Allan W.
        • Quinn R.
        • Dammann O.
        Maternal obesity and markers of inflammation in pregnancy.
        Cytokine. 2009; 47: 61-64
        • Sullivan E.L.
        • Grayson B.
        • Takahashi D.
        • Robertson N.
        • Maier A.
        • Bethea C.L.
        • et al.
        Chronic consumption of a high-fat diet during pregnancy causes perturbations in the serotonergic system and increased anxiety-like behavior in nonhuman primate offspring.
        J Neurosci. 2010; 30: 3826-3830
        • Sullivan E.L.
        • Nousen E.K.
        • Chamlou K.A.
        • Grove K.L.
        The impact of maternal high-fat diet consumption on neural development and behavior of offspring.
        Int J Obes Suppl. 2012; 2: S7-S13
        • Sullivan E.L.
        • Riper K.M.
        • Lockard R.
        • Valleau J.C.
        Maternal high-fat diet programming of the neuroendocrine system and behavior.
        Horm Behav. 2015; 76: 153-161
        • Sullivan E.L.
        • Smith M.S.
        • Grove K.L.
        Perinatal exposure to high-fat diet programs energy balance, metabolism and behavior in adulthood.
        Neuroendocrinology. 2011; 93: 1-8
        • DeCapo M.
        • Thompson J.R.
        • Dunn G.
        • Sullivan E.L.
        Perinatal nutrition and programmed risk for neuropsychiatric disorders: A focus on animal models.
        Biol Psychiatry. 2019; 85: 122-134
        • Hintze K.J.
        • Benninghoff A.D.
        • Cho C.E.
        • Ward R.E.
        Modeling the western diet for preclinical investigations.
        Adv Nutr. 2018; 9: 263-271
        • Speakman J.R.
        Use of high-fat diets to study rodent obesity as a model of human obesity.
        Int J Obes (Lond). 2019; 43: 1491-1492
        • Janthakhin Y.
        • Rincel M.
        • Costa A.M.
        • Darnaudéry M.
        • Ferreira G.
        Maternal high-fat diet leads to hippocampal and amygdala dendritic remodeling in adult male offspring.
        Psychoneuroendocrinology. 2017; 83: 49-57
        • Niculescu M.D.
        • Lupu D.S.
        High fat diet-induced maternal obesity alters fetal hippocampal development.
        Int J Dev Neurosci. 2009; 27: 627-633
        • Tozuka Y.
        • Kumon M.
        • Wada E.
        • Onodera M.
        • Mochizuki H.
        • Wada K.
        Maternal obesity impairs hippocampal BDNF production and spatial learning performance in young mouse offspring.
        Neurochem Int. 2010; 57: 235-247
        • Cordner Z.A.
        • Khambadkone S.G.
        • Boersma G.J.
        • Song L.
        • Summers T.N.
        • Moran T.H.
        • Tamashiro K.L.K.
        Maternal high-fat diet results in cognitive impairment and hippocampal gene expression changes in rat offspring.
        Exp Neurol. 2019; 318: 92-100
        • Wolfrum C.
        • Peleg-Raibstein D.
        Maternal overnutrition leads to cognitive and neurochemical abnormalities in C57BL/6 mice.
        Nutr Neurosci. 2019; 22: 688-699
        • Madore C.
        • Leyrolle Q.
        • Morel L.
        • Rossitto M.
        • Greenhalgh A.D.
        • Delpech J.C.
        • et al.
        Essential omega-3 fatty acids tune microglial phagocytosis of synaptic elements in the mouse developing brain.
        Nat Commun. 2020; 11: 6133
        • Rincel M.
        • Lépinay A.L.
        • Janthakhin Y.
        • Soudain G.
        • Yvon S.
        • Da Silva S.
        • et al.
        Maternal high-fat diet and early life stress differentially modulate spine density and dendritic morphology in the medial prefrontal cortex of juvenile and adult rats.
        Brain Struct Funct. 2018; 223: 883-895
        • Sarker G.
        • Peleg-Raibstein D.
        Maternal overnutrition induces long-term cognitive deficits across several generations.
        Nutrients. 2018; 11: 7
        • Lin C.
        • Lin Y.
        • Luo J.
        • Yu J.
        • Cheng Y.
        • Wu X.
        • et al.
        Maternal high-fat diet multigenerationally impairs hippocampal synaptic plasticity and memory in male rat offspring.
        Endocrinology. 2021; 162: bqaa214
        • Peleg-Raibstein D.
        Understanding the link between maternal overnutrition, cardio-metabolic dysfunction and cognitive aging.
        Front Neurosci. 2021; 15: 645569
        • Kim T.W.
        • Park H.S.
        Physical exercise improves cognitive function by enhancing hippocampal neurogenesis and inhibiting apoptosis in male offspring born to obese mother.
        Behav Brain Res. 2018; 347: 360-367
        • Erbas O.
        • Erdogan M.A.
        • Khalilnezhad A.
        • Gürkan F.T.
        • Yiğittürk G.
        • Meral A.
        • Taskiran D.
        Neurobehavioral effects of long-term maternal fructose intake in rat offspring.
        Int J Dev Neurosci. 2018; 69: 68-79
        • Yamazaki M.
        • Yamada H.
        • Munetsuna E.
        • Ishikawa H.
        • Mizuno G.
        • Mukuda T.
        • et al.
        Excess maternal fructose consumption impairs hippocampal function in offspring via epigenetic modification of BDNF promoter.
        FASEB J. 2018; 32: 2549-2562
        • Dellapiazza F.
        • Michelon C.
        • Vernhet C.
        • Muratori F.
        • Blanc N.
        • Picot M.C.
        • et al.
        Sensory processing related to attention in children with ASD, ADHD, or typical development: Results from the ELENA cohort.
        Eur Child Adolesc Psychiatry. 2021; 30: 283-291
        • Marco E.J.
        • Hinkley L.B.N.
        • Hill S.S.
        • Nagarajan S.S.
        Sensory processing in autism: A review of neurophysiologic findings.
        Pediatr Res. 2011; 69: 48R-54R
        • Rossignol R.
        • Ranchon-Cole I.
        • Pâris A.
        • Herzine A.
        • Perche A.
        • Laurenceau D.
        • et al.
        Visual sensorial impairments in neurodevelopmental disorders: Evidence for a retinal phenotype in fragile X syndrome.
        PLoS One. 2014; 9e105996
        • Balasco L.
        • Provenzano G.
        • Bozzi Y.
        Sensory abnormalities in autism spectrum disorders: A focus on the tactile domain, from genetic mouse models to the clinic.
        Front Psychiatry. 2020; 10: 1016
        • Schulz S.E.
        • Stevenson R.A.
        Sensory hypersensitivity predicts repetitive behaviours in autistic and typically-developing children.
        Autism. 2019; 23: 1028-1041
        • Merle L.
        • Person O.
        • Bonnet P.
        • Grégoire S.
        • Soubeyre V.
        • Grosmaitre X.
        • Jarriault D.
        Maternal high fat high sugar diet disrupts olfactory behavior but not mucosa sensitivity in the offspring.
        Psychoneuroendocrinology. 2019; 104: 249-258
        • Kelly J.P.
        • Wrynn A.S.
        • Leonard B.E.
        The olfactory bulbectomized rat as a model of depression: An update.
        Pharmacol Ther. 1997; 74: 299-316
        • Choo E.
        • Wong L.
        • Chau P.
        • Bushnell J.
        • Dando R.
        Offspring of obese mice display enhanced intake and sensitivity for palatable stimuli, with altered expression of taste signaling elements.
        Sci Rep. 2020; 10: 12776
        • Song L.
        • Chen K.
        • Yan J.
        • Zhang Y.
        • Mao X.
        • Lu B.
        • Sun B.
        Maternal high-fat diet during gestation and lactation increases conditioned aversion threshold for sucrose and alters sweet taste receptors expression in taste buds in rat offspring.
        Physiol Behav. 2019; 212: 112709
        • Tsukano H.
        • Hou X.
        • Horie M.
        • Kitaura H.
        • Nishio N.
        • Hishida R.
        • et al.
        Reciprocal connectivity between secondary auditory cortical field and amygdala in mice.
        Sci Rep. 2019; 9: 19610
        • Mendes-da-Silva C.
        • Giriko C.Á
        • Mennitti L.V.
        • Hosoume L.F.
        • dos Santos Souto T.
        • da Silva A.V.
        Maternal high-fat diet during pregnancy or lactation changes the somatic and neurological development of the offspring.
        Arq Neuropsiquiatr. 2014; 72: 136-144
        • Russo S.J.
        • Nestler E.J.
        The brain reward circuitry in mood disorders [published correction appears in Nat Rev Neurosci 2013; 14:736].
        Nat Rev Neurosci. 2013; 14: 609-625
        • Koob G.F.
        • Robledo P.
        • Markou A.
        • Caine S.B.
        The mesocorticolimbic circuit in drug dependence and reward—A role for the extended amygdala?.
        in: Kalivas P.W. Barnes C.D. Limbic Motor Circuits and Neuropsychiatry. CRC Press, Boca Raton, FL2019: 289-310
        • Naef L.
        • Srivastava L.
        • Gratton A.
        • Hendrickson H.
        • Owens S.M.
        • Walker C.D.
        Maternal high fat diet during the perinatal period alters mesocorticolimbic dopamine in the adult rat offspring: Reduction in the behavioral responses to repeated amphetamine administration.
        Psychopharmacology (Berl). 2008; 197: 83-94
        • Vucetic Z.
        • Kimmel J.
        • Totoki K.
        • Hollenbeck E.
        • Reyes T.M.
        Maternal high-fat diet alters methylation and gene expression of dopamine and opioid-related genes.
        Endocrinology. 2010; 151: 4756-4764
        • Lippert R.N.
        • Hess S.
        • Klemm P.
        • Burgeno L.M.
        • Jahans-Price T.
        • Walton M.E.
        • et al.
        Maternal high-fat diet during lactation reprograms the dopaminergic circuitry in mice.
        J Clin Invest. 2020; 130: 3761-3776
        • Rivera H.M.
        • Kievit P.
        • Kirigiti M.A.
        • Bauman L.A.
        • Baquero K.
        • Blundell P.
        • et al.
        Maternal high-fat diet and obesity impact palatable food intake and dopamine signaling in nonhuman primate offspring.
        Obesity (Silver Spring). 2015; 23: 2157-2164
        • Peleg-Raibstein D.
        • Sarker G.
        • Litwan K.
        • Krämer S.D.
        • Ametamey S.M.
        • Schibli R.
        • Wolfrum C.
        Enhanced sensitivity to drugs of abuse and palatable foods following maternal overnutrition.
        Transl Psychiatry. 2016; 6e911
        • Sasaki A.
        • McGowan P.O.
        • Erb S.
        A study of the effects of maternal high fat diet on behavioural responses to acute and repeated administrations of cocaine in rat offspring.
        Neurosci Lett. 2018; 673: 157-162
        • Gawliński D.
        • Gawlińska K.
        • Frankowska M.
        • Filip M.
        Maternal diet influences the reinstatement of cocaine-seeking behavior and the expression of melanocortin-4 receptors in female offspring of rats.
        Nutrients. 2020; 12: 1462
        • Gawlińska K.
        • Gawliński D.
        • Filip M.
        • Przegaliński E.
        Maternal feeding patterns affect the offspring’s brain: Focus on serotonin 5-HT2C and 5-HT2A receptors.
        Pharmacol Rep. 2021; 73: 1170-1178
        • Lin C.
        • Shao B.
        • Huang H.
        • Zhou Y.
        • Lin Y.
        Maternal high fat diet programs stress-induced behavioral disorder in adult offspring.
        Physiol Behav. 2015; 152: 119-127
        • Abuaish S.
        • Spinieli R.L.
        • McGowan P.O.
        Perinatal high fat diet induces early activation of endocrine stress responsivity and anxiety-like behavior in neonates.
        Psychoneuroendocrinology. 2018; 98: 11-21
        • Niu X.
        • Wu X.
        • Ying A.
        • Shao B.
        • Li X.
        • Zhang W.
        • et al.
        Maternal high fat diet programs hypothalamic-pituitary-adrenal function in adult rat offspring.
        Psychoneuroendocrinology. 2019; 102: 128-138
        • Thompson J.R.
        • Valleau J.C.
        • Barling A.N.
        • Franco J.G.
        • DeCapo M.
        • Bagley J.L.
        • Sullivan E.L.
        Exposure to a high-fat diet during early development programs behavior and impairs the central serotonergic system in juvenile non-human primates.
        Front Endocrinol (Lausanne). 2017; 8: 164
        • Sasaki A.
        • de Vega W.
        • Sivanathan S.
        • St-Cyr S.
        • McGowan P.O.
        Maternal high-fat diet alters anxiety behavior and glucocorticoid signaling in adolescent offspring.
        Neuroscience. 2014; 272: 92-101
        • Peleg-Raibstein D.
        • Luca E.
        • Wolfrum C.
        Maternal high-fat diet in mice programs emotional behavior in adulthood.
        Behav Brain Res. 2012; 233: 398-404
        • da Silva L.O.
        • da Silva Aragão R.
        • Duarte Barros M.D.L.
        • Nogueira Ferraz-Pereira K.
        • Lins Pinheiro I.
        • Galindo L.C.M.
        Maternal exposure to high-fat diet modifies anxiety-like/depression-like behaviors and compounds of serotonergic system in offspring: A preclinical systematic review.
        Int J Dev Neurosci. 2021; 81: 371-385
        • Gawlinska K.
        • Gawlinski D.
        • Przegalinski E.
        • Filip M.
        Maternal high-fat diet during pregnancy and lactation provokes depressive-like behavior and influences the irisin/brain-derived neurotrophic factor axis and inflammatory factors in male and female offspring in rats.
        J Physiol Pharmacol. 2019; 70
        • Gergely G.
        • Watson J.S.
        Early socio-emotional development: Contingency perception and the social-biofeedback model.
        in: Rochat P. Early Social Cognition: Understanding Others in the First Months of Life. Lawrence Erlbaum Associates, New York1999: 101-136
        • Itani J.
        On the acquisition and propagation of a new food habit in the natural group of the Japanese monkey at Takasaki-Yama.
        Primates. 1958; 1: 84-98
        • Parent C.I.
        • Meaney M.J.
        The influence of natural variations in maternal care on play fighting in the rat.
        Dev Psychobiol. 2008; 50: 767-776
        • Kougias D.G.
        • Cortes L.R.
        • Moody L.
        • Rhoads S.
        • Pan Y.X.
        • Juraska J.M.
        Effects of perinatal exposure to phthalates and a high-fat diet on maternal behavior and pup development and social play.
        Endocrinology. 2018; 159: 1088-1105
        • Rincel M.
        • Lépinay A.L.
        • Delage P.
        • Fioramonti J.
        • Théodorou V.S.
        • Layé S.
        • Darnaudéry M.
        Maternal high-fat diet prevents developmental programming by early-life stress.
        Transl Psychiatry. 2016; 6: e966
        • Hehar H.
        • Ma I.
        • Mychasiuk R.
        Effects of metabolic programming on juvenile play behavior and gene expression in the prefrontal cortex of rats.
        Dev Neurosci. 2016; 38: 96-104
        • Ferrari P.F.
        • Paukner A.
        • Ionica C.
        • Suomi S.J.
        Reciprocal face-to-face communication between rhesus macaque mothers and their newborn infants.
        Curr Biol. 2009; 19: 1768-1772
        • Mason G.J.
        Stereotypies: A critical review.
        Anim Behav. 1991; 41: 1015-1037
        • Thompson J.R.
        • Gustafsson H.C.
        • DeCapo M.
        • Takahashi D.L.
        • Bagley J.L.
        • Dean T.A.
        • et al.
        Maternal diet, metabolic state, and inflammatory response exert unique and long-lasting influences on offspring behavior in non-human primates.
        Front Endocrinol (Lausanne). 2018; 9: 161
        • Ander S.E.
        • Diamond M.S.
        • Coyne C.B.
        Immune responses at the maternal-fetal interface.
        Sci Immunol. 2019; 4eaat6114
        • Paredes S.D.
        • Barriga C.
        • Reiter R.J.
        • Rodríguez A.B.
        Assessment of the potential role of tryptophan as the precursor of serotonin and melatonin for the aged sleep-wake cycle and immune function: Streptopelia risoria as a model.
        Int J Tryptophan Res. 2009; 2: 23-36
        • Daws L.C.
        • Gould G.G.
        Ontogeny and regulation of the serotonin transporter: Providing insights into human disorders.
        Pharmacol Ther. 2011; 131: 61-79
        • Kannan S.
        • Saadani-Makki F.
        • Balakrishnan B.
        • Dai H.
        • Chakraborty P.K.
        • Janisse J.
        • et al.
        Decreased cortical serotonin in neonatal rabbits exposed to endotoxin in utero.
        J Cereb Blood Flow Metab. 2011; 31: 738-749
        • Migliarini S.
        • Pacini G.
        • Pelosi B.
        • Lunardi G.
        • Pasqualetti M.
        Lack of brain serotonin affects postnatal development and serotonergic neuronal circuitry formation.
        Mol Psychiatry. 2013; 18: 1106-1118
        • Velasquez J.C.
        • Goeden N.
        • Bonnin A.
        Placental serotonin: Implications for the developmental effects of SSRIs and maternal depression.
        Front Cell Neurosci. 2013; 7: 47
        • Challier J.C.
        • Basu S.
        • Bintein T.
        • Minium J.
        • Hotmire K.
        • Catalano P.M.
        • Hauguel-de Mouzon S.
        Obesity in pregnancy stimulates macrophage accumulation and inflammation in the placenta.
        Placenta. 2008; 29: 274-281
        • Frias A.E.
        • Morgan T.K.
        • Evans A.E.
        • Rasanen J.
        • Oh K.Y.
        • Thornburg K.L.
        • Grove K.L.
        Maternal high-fat diet disturbs uteroplacental hemodynamics and increases the frequency of stillbirth in a nonhuman primate model of excess nutrition.
        Endocrinology. 2011; 152: 2456-2464
        • Bar J.
        • Schreiber L.
        • Saruhanov E.
        • Ben-Haroush A.
        • Golan A.
        • Kovo M.
        Placental histopathological findings in obese and nonobese women with complicated and uncomplicated pregnancies.
        Arch Gynecol Obstet. 2012; 286: 1343-1347
        • Aye I.L.M.H.
        • Lager S.
        • Ramirez V.I.
        • Gaccioli F.
        • Dudley D.J.
        • Jansson T.
        • Powell T.L.
        Increasing maternal body mass index is associated with systemic inflammation in the mother and the activation of distinct placental inflammatory pathways.
        Biol Reprod. 2014; 90: 129
        • Roberts K.A.
        • Riley S.C.
        • Reynolds R.M.
        • Barr S.
        • Evans M.
        • Statham A.
        • et al.
        Placental structure and inflammation in pregnancies associated with obesity.
        Placenta. 2011; 32: 247-254
        • Kim D.W.
        • Young S.L.
        • Grattan D.R.
        • Jasoni C.L.
        Obesity during pregnancy disrupts placental morphology, cell proliferation, and inflammation in a sex-specific manner across gestation in the mouse.
        Biol Reprod. 2014; 90: 130
        • Wang Q.
        • Liu D.
        • Song P.
        • Zou M.H.
        Tryptophan-kynurenine pathway is dysregulated in inflammation, and immune activation.
        Front Biosci (Landmark Ed). 2015; 20: 1116-1143
        • Goeden N.
        • Velasquez J.
        • Arnold K.A.
        • Chan Y.
        • Lund B.T.
        • Anderson G.M.
        • Bonnin A.
        Maternal inflammation disrupts fetal neurodevelopment via increased placental output of serotonin to the fetal brain.
        J Neurosci. 2016; 36: 6041-6049
        • Williams M.
        • Zhang Z.
        • Nance E.
        • Drewes J.L.
        • Lesniak W.G.
        • Singh S.
        • et al.
        Maternal inflammation results in altered tryptophan metabolism in rabbit placenta and fetal brain.
        Dev Neurosci. 2017; 39: 399-412
        • Aaltonen R.
        • Heikkinen T.
        • Hakala K.
        • Laine K.
        • Alanen A.
        Transfer of proinflammatory cytokines across term placenta.
        Obstet Gynecol. 2005; 106: 802-807
        • Zaretsky M.V.
        • Alexander J.M.
        • Byrd W.
        • Bawdon R.E.
        Transfer of inflammatory cytokines across the placenta.
        Obstet Gynecol. 2004; 103: 546-550
        • Dahlgren J.
        • Samuelsson A.M.
        • Jansson T.
        • Holmäng A.
        Interleukin-6 in the maternal circulation reaches the rat fetus in mid-gestation.
        Pediatr Res. 2006; 60: 147-151
        • McCurdy C.E.
        • Bishop J.M.
        • Williams S.M.
        • Grayson B.E.
        • Smith M.S.
        • Friedman J.E.
        • Grove K.L.
        Maternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates.
        J Clin Invest. 2009; 119: 323-335
        • Deverman B.E.
        • Patterson P.H.
        Cytokines and CNS development.
        Neuron. 2009; 64: 61-78
        • Davis J.
        • Mire E.
        Maternal obesity and developmental programming of neuropsychiatric disorders: An inflammatory hypothesis.
        Brain Neurosci Adv. 2021; 5 (23982128211003484)
        • Pfrieger F.W.
        Cholesterol homeostasis and function in neurons of the central nervous system.
        Cell Mol Life Sci. 2003; 60: 1158-1171
        • Rey C.
        • Nadjar A.
        • Joffre F.
        • Amadieu C.
        • Aubert A.
        • Vaysse C.
        • et al.
        Maternal n-3 polyunsaturated fatty acid dietary supply modulates microglia lipid content in the offspring.
        Prostaglandins Leukot Essent Fatty Acids. 2018; 133: 1-7
        • Destaillats F.
        • Joffre C.
        • Acar N.
        • Joffre F.
        • Bezelgues J.B.
        • Pasquis B.
        • et al.
        Differential effect of maternal diet supplementation with alpha-linolenic acid or n-3 long-chain polyunsaturated fatty acids on glial cell phosphatidylethanolamine and phosphatidylserine fatty acid profile in neonate rat brains.
        Nutr Metab (Lond). 2010; 7: 2
        • Bowen R.A.R.
        • Clandinin M.T.
        Maternal dietary 22: 6n-3 is more effective than 18: 3n-3 in increasing the 22: 6n-3 content in phospholipids of glial cells from neonatal rat brain.
        Br J Nutr. 2005; 93: 601-611
        • Mauerer R.
        • Walczak Y.
        • Langmann T.
        Comprehensive mRNA profiling of lipid-related genes in microglia and macrophages using Taqman arrays.
        Methods Mol Biol. 2009; 580: 187-201
        • Zhu M.J.
        • Du M.
        • Nathanielsz P.W.
        • Ford S.P.
        Maternal obesity up-regulates inflammatory signaling pathways and enhances cytokine expression in the mid-gestation sheep placenta.
        Placenta. 2010; 31: 387-391
        • Leyrolle Q.
        • Layé S.
        • Nadjar A.
        Direct and indirect effects of lipids on microglia function.
        Neurosci Lett. 2019; 708: 134348
        • Moranis A.
        • Delpech J.C.
        • De Smedt-Peyrusse V.
        • Aubert A.
        • Guesnet P.
        • Lavialle M.
        • et al.
        Long term adequate n-3 polyunsaturated fatty acid diet protects from depressive-like behavior but not from working memory disruption and brain cytokine expression in aged mice.
        Brain Behav Immun. 2012; 26: 721-731
        • Chen H.F.
        • Su H.M.
        Exposure to a maternal n-3 fatty acid-deficient diet during brain development provokes excessive hypothalamic-pituitary-adrenal axis responses to stress and behavioral indices of depression and anxiety in male rat offspring later in life.
        J Nutr Biochem. 2013; 24: 70-80
        • Martinat M.
        • Rossitto M.
        • Di Miceli M.
        • Layé S.
        Perinatal dietary polyunsaturated fatty acids in brain development, role in neurodevelopmental disorders.
        Nutrients. 2021; 13: 1185
        • Madore C.
        • Nadjar A.
        • Delpech J.C.
        • Sere A.
        • Aubert A.
        • Portal C.
        • et al.
        Nutritional n-3 PUFAs deficiency during perinatal periods alters brain innate immune system and neuronal plasticity-associated genes.
        Brain Behav Immun. 2014; 41: 22-31
        • Rising R.
        • Lifshitz F.
        Relationship between maternal obesity and infant feeding-interactions.
        Nutr J. 2005; 4: 17
        • Avena N.M.
        • Gearhardt A.N.
        • Gold M.S.
        • Wang G.J.
        • Potenza M.N.
        Tossing the baby out with the bathwater after a brief rinse? The potential downside of dismissing food addiction based on limited data.
        Nat Rev Neurosci. 2012; 13 (author reply: 514): 514
        • Ziauddeen H.
        • Farooqi I.S.
        • Fletcher P.C.
        Obesity and the brain: How convincing is the addiction model?.
        Nat Rev Neurosci. 2012; 13: 279-286
        • Brekke H.K.
        • van Odijk J.
        • Ludvigsson J.
        Predictors and dietary consequences of frequent intake of high-sugar, low-nutrient foods in 1-year-old children participating in the ABIS study.
        Br J Nutr. 2007; 97: 176-181
        • Al Rubaye H.
        • Adamson C.C.
        • Jadavji N.M.
        The role of maternal diet on offspring gut microbiota development: A review.
        J Neurosci Res. 2021; 99: 284-293