Advertisement

A Multivoxel Pattern Analysis of Anhedonia During Fear Extinction: Implications for Safety Learning

Published:December 23, 2021DOI:https://doi.org/10.1016/j.bpsc.2021.12.008

      Abstract

      Background

      Pavlovian learning processes are central to the etiology and treatment of anxiety disorders. Anhedonia and related perturbations in reward processes have been implicated in Pavlovian learning. Associations between anhedonia symptoms and neural indices of Pavlovian learning can inform transdiagnostic associations among depressive and anxiety disorders.

      Methods

      Participants ages 18 to 19 years (67% female) completed a fear extinction (n = 254) and recall (n = 249) paradigm during functional magnetic resonance imaging. Symptom dimensions of general distress (common to anxiety and depression), fears (more specific to anxiety), and anhedonia-apprehension (more specific to depression) were evaluated. We trained whole-brain multivoxel pattern decoders for anhedonia-apprehension during extinction and extinction recall and tested the decoders’ ability to predict anhedonia-apprehension in an external validation sample. Specificity analyses examined effects covarying for general distress and fears. Decoding was repeated within canonical brain networks to highlight candidate neurocircuitry underlying whole-brain effects.

      Results

      Whole-brain decoder training succeeded during both tasks. Prediction of anhedonia-apprehension in the external validation sample was successful for extinction (R2 = 0.047; r = 0.276, p = .002) but not extinction recall (R2 < 0.001, r = −0.063, p = .492). The extinction decoder remained significantly associated with anhedonia-apprehension covarying for fears and general distress (t121 = 3.209, p = .002). Exploratory results highlighted activity in the cognitive control, default mode, limbic, salience, and visual networks related to these effects.

      Conclusions

      Results suggest that patterns of brain activity during extinction, particularly in the cognitive control, default mode, limbic, salience, and visual networks, can be predictive of anhedonia symptoms. Future research should examine associations between anhedonia and extinction, including studies of exposure therapy or positive affect treatments among anhedonic individuals.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Berridge K.C.
        • Robinson T.E.
        Parsing reward [published correction appears in Trends Neurosci 2003; 26:581].
        Trends Neurosci. 2003; 26: 507-513
        • Treadway M.T.
        • Zald D.H.
        Reconsidering anhedonia in depression: Lessons from translational neuroscience.
        Neurosci Biobehav Rev. 2011; 35: 537-555
        • Huys Q.J.
        • Pizzagalli D.A.
        • Bogdan R.
        • Dayan P.
        Mapping anhedonia onto reinforcement learning: A behavioural meta-analysis.
        Biol Mood Anxiety Disord. 2013; 3: 12
        • Thomsen K.R.
        Measuring anhedonia: Impaired ability to pursue, experience, and learn about reward.
        Front Psychol. 2015; 6: 1409
        • Kumar P.
        • Waiter G.
        • Ahearn T.
        • Milders M.
        • Reid I.
        • Steele J.D.
        Abnormal temporal difference reward-learning signals in major depression.
        Brain. 2008; 131: 2084-2093
        • Pizzagalli D.A.
        • Iosifescu D.
        • Hallett L.A.
        • Ratner K.G.
        • Fava M.
        Reduced hedonic capacity in major depressive disorder: Evidence from a probabilistic reward task.
        J Psychiatr Res. 2008; 43: 76-87
        • Gradin V.B.
        • Kumar P.
        • Waiter G.
        • Ahearn T.
        • Stickle C.
        • Milders M.
        • et al.
        Expected value and prediction error abnormalities in depression and schizophrenia.
        Brain. 2011; 134: 1751-1764
        • Pizzagalli D.A.
        Depression, stress, and anhedonia: Toward a synthesis and integrated model.
        Annu Rev Clin Psychol. 2014; 10: 393-423
        • Young K.S.
        • Bookheimer S.Y.
        • Nusslock R.
        • Zinbarg R.E.
        • Damme K.S.F.
        • Chat I.K.
        • et al.
        Dysregulation of threat neurocircuitry during fear extinction: The role of anhedonia.
        Neuropsychopharmacology. 2021; 46: 1650-1657
        • Etkin A.
        • Wager T.D.
        Functional neuroimaging of anxiety: A meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia.
        Am J Psychiatry. 2007; 164: 1476-1488
        • Sehlmeyer C.
        • Schöning S.
        • Zwitserlood P.
        • Pfleiderer B.
        • Kircher T.
        • Arolt V.
        • Konrad C.
        Human fear conditioning and extinction in neuroimaging: A systematic review.
        PLoS One. 2009; 4e5865
        • Milad M.R.
        • Rosenbaum B.L.
        • Simon N.M.
        Neuroscience of fear extinction: Implications for assessment and treatment of fear-based and anxiety related disorders.
        Behav Res Ther. 2014; 62: 17-23
        • Fullana M.A.
        • Harrison B.J.
        • Soriano-Mas C.
        • Vervliet B.
        • Cardoner N.
        • Àvila-Parcet A.
        • Radua J.
        Neural signatures of human fear conditioning: An updated and extended meta-analysis of fMRI studies.
        Mol Psychiatry. 2016; 21: 500-508
        • Greco J.A.
        • Liberzon I.
        Neuroimaging of fear-associated learning.
        Neuropsychopharmacology. 2016; 41: 320-334
        • Battaglia S.
        • Garofalo S.
        • di Pellegrino G.
        • Starita F.
        Revaluing the role of vmPFC in the acquisition of Pavlovian threat conditioning in humans.
        J Neurosci. 2020; 40: 8491-8500
        • Graham B.M.
        • Milad M.R.
        The study of fear extinction: Implications for anxiety disorders.
        Am J Psychiatry. 2011; 168: 1255-1265
        • Craske M.G.
        • Stein M.B.
        • Eley T.C.
        • Milad M.R.
        • Holmes A.
        • Rapee R.M.
        • Wittchen H.U.
        Anxiety disorders [published correction appears in Nat Rev Dis Primers 2017; 3:17100].
        Nat Rev Dis Primers. 2017; 3: 17024
        • Craske M.G.
        • Hermans D.
        • Vervliet B.
        State-of-the-art and future directions for extinction as a translational model for fear and anxiety [published correction appears in Philos Trans R Soc Lond B Biol Sci 2018; 373:20180432].
        Philos Trans R Soc Lond B Biol Sci. 2018; 373: 20170025
        • Salinas-Hernández X.I.
        • Vogel P.
        • Betz S.
        • Kalisch R.
        • Sigurdsson T.
        • Duvarci S.
        Dopamine neurons drive fear extinction learning by signaling the omission of expected aversive outcomes.
        Elife. 2018; 7e38818
        • Papalini S.
        • Beckers T.
        • Vervliet B.
        Dopamine: From prediction error to psychotherapy.
        Transl Psychiatry. 2020; 10: 164
        • Carver C.S.
        Threat sensitivity, incentive sensitivity, and the experience of relief.
        J Pers. 2009; 77: 125-138
        • Kalisch R.
        • Gerlicher A.M.V.
        • Duvarci S.
        A dopaminergic basis for fear extinction.
        Trends Cogn Sci. 2019; 23: 274-277
        • Rizvi S.J.
        • Pizzagalli D.A.
        • Sproule B.A.
        • Kennedy S.H.
        Assessing anhedonia in depression: Potentials and pitfalls.
        Neurosci Biobehav Rev. 2016; 65: 21-35
        • Zbozinek T.D.
        • Craske M.G.
        Positive affect predicts less reacquisition of fear: Relevance for long-term outcomes of exposure therapy.
        Cogn Emot. 2017; 31: 712-725
        • Zbozinek T.D.
        • Holmes E.A.
        • Craske M.G.
        The effect of positive mood induction on reducing reinstatement fear: Relevance for long term outcomes of exposure therapy.
        Behav Res Ther. 2015; 71: 65-75
        • Zhang W.N.
        • Chang S.H.
        • Guo L.Y.
        • Zhang K.L.
        • Wang J.
        The neural correlates of reward-related processing in major depressive disorder: A meta-analysis of functional magnetic resonance imaging studies.
        J Affect Disord. 2013; 151: 531-539
        • Drevets W.C.
        Orbitofrontal cortex function and structure in depression.
        Ann N Y Acad Sci. 2007; 1121: 499-527
        • Sheline Y.I.
        • Barch D.M.
        • Price J.L.
        • Rundle M.M.
        • Vaishnavi S.N.
        • Snyder A.Z.
        • et al.
        The default mode network and self-referential processes in depression.
        Proc Natl Acad Sci U S A. 2009; 106: 1942-1947
        • Hamilton J.P.
        • Farmer M.
        • Fogelman P.
        • Gotlib I.H.
        Depressive rumination, the default-mode network, and the dark matter of clinical neuroscience.
        Biol Psychiatry. 2015; 78: 224-230
        • Zhou H.X.
        • Chen X.
        • Shen Y.Q.
        • Li L.
        • Chen N.X.
        • Zhu Z.C.
        • et al.
        Rumination and the default mode network: Meta-analysis of brain imaging studies and implications for depression.
        Neuroimage. 2020; 206: 116287
        • Dwyer D.B.
        • Falkai P.
        • Koutsouleris N.
        Machine learning approaches for clinical psychology and psychiatry.
        Annu Rev Clin Psychol. 2018; 14: 91-118
        • Zhang X.
        • Braun U.
        • Tost H.
        • Bassett D.S.
        Data-driven approaches to neuroimaging analysis to enhance psychiatric diagnosis and therapy.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2020; 5: 780-790
        • Hennings A.C.
        • McClay M.
        • Lewis-Peacock J.A.
        • Dunsmoor J.E.
        Contextual reinstatement promotes extinction generalization in healthy adults but not PTSD.
        Neuropsychologia. 2020; 147: 107573
        • Taschereau-Dumouchel V.
        • Kawato M.
        • Lau H.
        Multivoxel pattern analysis reveals dissociations between subjective fear and its physiological correlates.
        Mol Psychiatry. 2020; 25: 2342-2354
        • Wen Z.
        • Marin M.F.
        • Blackford J.U.
        • Chen Z.S.
        • Milad M.R.
        Fear-induced brain activations distinguish anxious and trauma-exposed brains.
        Transl Psychiatry. 2021; 11: 46
        • Eysenck H.J.
        • Eysenck S.B.G.
        Manual of the Eysenck Personality Questionnaire (Junior and Adult).
        Hodder & Stoughton, London1975
        • Carver C.S.
        • White T.L.
        Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The BIS/BAS scales.
        J Pers Soc Psychol. 1994; 67: 319-333
        • Milad M.R.
        • Quirk G.J.
        • Pitman R.K.
        • Orr S.P.
        • Fischl B.
        • Rauch S.L.
        A role for the human dorsal anterior cingulate cortex in fear expression.
        Biol Psychiatry. 2007; 62: 1191-1194
        • Milad M.R.
        • Wright C.I.
        • Orr S.P.
        • Pitman R.K.
        • Quirk G.J.
        • Rauch S.L.
        Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert.
        Biol Psychiatry. 2007; 62: 446-454
        • Marin M.F.
        • Zsido R.G.
        • Song H.
        • Lasko N.B.
        • Killgore W.D.S.
        • Rauch S.L.
        • et al.
        Skin conductance responses and neural activations during fear conditioning and extinction recall across anxiety disorders.
        JAMA Psychiatry. 2017; 74: 622-631
        • Marin M.F.
        • Hammoud M.Z.
        • Klumpp H.
        • Simon N.M.
        • Milad M.R.
        Multimodal categorical and dimensional approaches to understanding threat conditioning and its extinction in individuals with anxiety disorders.
        JAMA Psychiatry. 2020; 77: 618-627
        • Mazziotta J.
        • Toga A.
        • Evans A.
        • Fox P.
        • Lancaster J.
        • Zilles K.
        • et al.
        A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM).
        Philos Trans R Soc Lond B Biol Sci. 2001; 356: 1293-1322
        • Pedregosa F.
        • Varoquaux G.
        • Gramfort A.
        • Michel V.
        • Thirion B.
        • Grisel O.
        • et al.
        Scikit-learn: Machine learning in Python.
        J Mach Learn Res. 2011; 12: 2825-2830
        • Yeo B.T.T.
        • Krienen F.M.
        • Sepulcre J.
        • Sabuncu M.R.
        • Lashkari D.
        • Hollinshead M.
        • et al.
        The organization of the human cerebral cortex estimated by intrinsic functional connectivity.
        J Neurophysiol. 2011; 106: 1125-1165
        • Schaefer A.
        • Kong R.
        • Gordon E.M.
        • Laumann T.O.
        • Zuo X.N.
        • Holmes A.J.
        • et al.
        Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI.
        Cereb Cortex. 2018; 28: 3095-3114
        • Kriegeskorte N.
        • Douglas P.K.
        Interpreting encoding and decoding models.
        Curr Opin Neurobiol. 2019; 55: 167-179
        • Sridharan D.
        • Levitin D.J.
        • Menon V.
        A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks.
        Proc Natl Acad Sci U S A. 2008; 105: 12569-12574
        • Menon V.
        • Uddin L.Q.
        Saliency, switching, attention and control: A network model of insula function.
        Brain Struct Funct. 2010; 214: 655-667
        • Goulden N.
        • Khusnulina A.
        • Davis N.J.
        • Bracewell R.M.
        • Bokde A.L.
        • McNulty J.P.
        • Mullins P.G.
        The salience network is responsible for switching between the default mode network and the central executive network: Replication from DCM.
        Neuroimage. 2014; 99: 180-190
        • Hamilton J.P.
        • Furman D.J.
        • Chang C.
        • Thomason M.E.
        • Dennis E.
        • Gotlib I.H.
        Default-mode and task-positive network activity in major depressive disorder: Implications for adaptive and maladaptive rumination.
        Biol Psychiatry. 2011; 70: 327-333
        • Kaiser R.H.
        • Andrews-Hanna J.R.
        • Wager T.D.
        • Pizzagalli D.A.
        Large-scale network dysfunction in major depressive disorder: A meta-analysis of resting-state functional connectivity.
        JAMA Psychiatry. 2015; 72: 603-611
        • Gotlib I.H.
        • Hamilton J.P.
        Neuroimaging and depression: Current status and unresolved issues.
        Curr Dir Psychol Sci. 2008; 17: 159-163
        • Koenigs M.
        • Grafman J.
        The functional neuroanatomy of depression: Distinct roles for ventromedial and dorsolateral prefrontal cortex.
        Behav Brain Res. 2009; 201: 239-243
        • Disner S.G.
        • Beevers C.G.
        • Haigh E.A.P.
        • Beck A.T.
        Neural mechanisms of the cognitive model of depression.
        Nat Rev Neurosci. 2011; 12: 467-477
        • Brolsma S.C.A.
        • Vassena E.
        • Vrijsen J.N.
        • Sescousse G.
        • Collard R.M.
        • van Eijndhoven P.F.
        • et al.
        Negative learning bias in depression revisited: Enhanced neural response to surprising reward across psychiatric disorders.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2021; 6: 280-289
        • Kashdan T.B.
        Social anxiety spectrum and diminished positive experiences: Theoretical synthesis and meta-analysis.
        Clin Psychol Rev. 2007; 27: 348-365
        • Abramovitch A.
        • Pizzagalli D.A.
        • Reuman L.
        • Wilhelm S.
        Anhedonia in obsessive-compulsive disorder: Beyond comorbid depression.
        Psychiatry Res. 2014; 216: 223-229
        • Nawijn L.
        • van Zuiden M.
        • Frijling J.L.
        • Koch S.B.J.
        • Veltman D.J.
        • Olff M.
        Reward functioning in PTSD: A systematic review exploring the mechanisms underlying anhedonia.
        Neurosci Biobehav Rev. 2015; 51: 189-204
        • Krueger R.F.
        • Kotov R.
        • Watson D.
        • Forbes M.K.
        • Eaton N.R.
        • Ruggero C.J.
        • et al.
        Progress in achieving quantitative classification of psychopathology.
        World Psychiatry. 2018; 17: 282-293
        • Naragon-Gainey K.
        • Prenoveau J.M.
        • Brown T.A.
        • Zinbarg R.E.
        A comparison and integration of structural models of depression and anxiety in a clinical sample: Support for and validation of the tri-level model.
        J Abnorm Psychol. 2016; 125: 853-867
        • Prenoveau J.M.
        • Zinbarg R.E.
        • Craske M.G.
        • Mineka S.
        • Griffith J.W.
        • Epstein A.M.
        Testing a hierarchical model of anxiety and depression in adolescents: A tri-level model.
        J Anxiety Disord. 2010; 24: 334-344
        • Brown T.A.
        • Barlow D.H.
        A proposal for a dimensional classification system based on the shared features of the DSM-IV anxiety and mood disorders: Implications for assessment and treatment.
        Psychol Assess. 2009; 21: 256-271
        • Insel T.R.
        The NIMH Research Domain Criteria (RDoC) project: Precision medicine for psychiatry.
        Am J Psychiatry. 2014; 171: 395-397
        • Thompson-Hollands J.
        • Sauer-Zavala S.
        • Barlow D.H.
        CBT and the future of personalized treatment: A proposal.
        Depress Anxiety. 2014; 31: 909-911
        • Kotov R.
        • Krueger R.F.
        • Watson D.
        • Achenbach T.M.
        • Althoff R.R.
        • Bagby R.M.
        • et al.
        The Hierarchical Taxonomy of Psychopathology (HiTOP): A dimensional alternative to traditional nosologies.
        J Abnorm Psychol. 2017; 126: 454-477
        • Kotov R.
        • Krueger R.F.
        • Watson D.
        A paradigm shift in psychiatric classification: The Hierarchical Taxonomy of Psychopathology (HiTOP).
        World Psychiatry. 2018; 17: 24-25
        • Ruggero C.J.
        • Kotov R.
        • Hopwood C.J.
        • First M.
        • Clark L.A.
        • Skodol A.E.
        • et al.
        Integrating the Hierarchical Taxonomy of Psychopathology (HiTOP) into clinical practice.
        J Consult Clin Psychol. 2019; 87: 1069-1084
        • Hopwood C.J.
        • Bagby R.M.
        • Gralnick T.
        • Ro E.
        • Ruggero C.
        • Mullins-Sweatt S.
        • et al.
        Integrating psychotherapy with the hierarchical taxonomy of psychopathology (HiTOP).
        J Psychother Integr. 2020; 30: 477-497
        • Pittig A.
        • van den Berg L.
        • Vervliet B.
        The key role of extinction learning in anxiety disorders: Behavioral strategies to enhance exposure-based treatments.
        Curr Opin Psychiatry. 2016; 29: 39-47
        • Scheveneels S.
        • Boddez Y.
        • Vervliet B.
        • Hermans D.
        The validity of laboratory-based treatment research: Bridging the gap between fear extinction and exposure treatment.
        Behav Res Ther. 2016; 86: 87-94
        • Fullana M.A.
        • Dunsmoor J.E.
        • Schruers K.R.J.
        • Savage H.S.
        • Bach D.R.
        • Harrison B.J.
        Human fear conditioning: From neuroscience to the clinic.
        Behav Res Ther. 2020; 124: 103528
        • Craske M.G.
        • Kircanski K.
        • Zelikowsky M.
        • Mystkowski J.
        • Chowdhury N.
        • Baker A.
        Optimizing inhibitory learning during exposure therapy.
        Behav Res Ther. 2008; 46: 5-27
        • Craske M.G.
        • Liao B.
        • Brown L.
        • Vervliet B.
        Role of inhibition in exposure therapy.
        J Exp Psychopathol. 2012; 3: 322-345
        • Craske M.G.
        • Treanor M.
        • Conway C.C.
        • Zbozinek T.
        • Vervliet B.
        Maximizing exposure therapy: An inhibitory learning approach.
        Behav Res Ther. 2014; 58: 10-23
        • Craske M.G.
        • Meuret A.E.
        • Ritz T.
        • Treanor M.
        • Dour H.J.
        Treatment for anhedonia: A neuroscience driven approach.
        Depress Anxiety. 2016; 33: 927-938
        • Craske M.G.
        • Meuret A.E.
        • Ritz T.
        • Treanor M.
        • Dour H.
        • Rosenfield D.
        Positive affect treatment for depression and anxiety: A randomized clinical trial for a core feature of anhedonia.
        J Consult Clin Psychol. 2019; 87: 457-471
        • Osuch E.A.
        • Benson B.E.
        • Luckenbaugh D.A.
        • Geraci M.
        • Post R.M.
        • McCann U.
        Repetitive TMS combined with exposure therapy for PTSD: A preliminary study.
        J Anxiety Disord. 2009; 23: 54-59
        • Karsen E.F.
        • Watts B.V.
        • Holtzheimer P.E.
        Review of the effectiveness of transcranial magnetic stimulation for post-traumatic stress disorder.
        Brain Stimul. 2014; 7: 151-157
        • Fryml L.D.
        • Pelic C.G.
        • Acierno R.
        • Tuerk P.
        • Yoder M.
        • Borckardt J.J.
        • et al.
        Exposure therapy and simultaneous repetitive transcranial magnetic stimulation: A controlled pilot trial for the treatment of posttraumatic stress disorder.
        J ECT. 2019; 35: 53-60
        • Poldrack R.A.
        • Huckins G.
        • Varoquaux G.
        Establishment of best practices for evidence for prediction: A review.
        JAMA Psychiatry. 2020; 77: 534-540