Advertisement

Longitudinal Changes of Resting-State Networks in Children With Attention-Deficit/Hyperactivity Disorder and Typically Developing Children

Published:January 13, 2022DOI:https://doi.org/10.1016/j.bpsc.2022.01.001

      Abstract

      Background

      Attention-deficit/hyperactivity disorder (ADHD) is a prevalent childhood neurodevelopmental disorder. Given the profound brain changes that occur across childhood and adolescence, it is important to identify functional networks that exhibit differential developmental patterns in children with ADHD. This study sought to examine whether children with ADHD exhibit differential developmental trajectories in functional connectivity compared with typically developing children using a network-based approach.

      Methods

      This longitudinal neuroimaging study included 175 participants (91 children with ADHD and 84 control children without ADHD) between ages 9 and 14 and up to 3 waves (173 total resting-state scans in children with ADHD and 197 scans in control children). We adopted network-based statistics to identify connected components with trajectories of development that differed between groups.

      Results

      Children with ADHD exhibited differential developmental trajectories compared with typically developing control children in networks connecting cortical and limbic regions as well as between visual and higher-order cognitive regions. A pattern of reduction in functional connectivity between corticolimbic networks was seen across development in the control group that was not present in the ADHD group. Conversely, the ADHD group showed a significant decrease in connectivity between predominantly visual and higher-order cognitive networks that was not displayed in the control group.

      Conclusions

      Our findings show that the developmental trajectories in children with ADHD are characterized by a subnetwork involving different trajectories predominantly between corticolimbic regions and between visual and higher-order cognitive network connections. These findings highlight the importance of examining the longitudinal maturational course to understand the development of functional connectivity networks in children with ADHD.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Adler L.A.
        Best practices in adult ADHD. Neurobiology, pharmacology, and emerging treatment.
        CNS Spectr. 2008; 13: 4
        • Kasparek T.
        • Theiner P.
        • Filova A.
        Neurobiology of ADHD from childhood to adulthood: Findings of imaging methods.
        J Atten Disord. 2015; 19: 931-943
        • Biederman J.
        • Mick E.
        • Faraone S.V.
        Age-dependent decline of symptoms of attention deficit hyperactivity disorder: Impact of remission definition and symptom type.
        Am J Psychiatry. 2000; 157: 816-818
        • Faraone S.V.
        • Biederman J.
        • Mick E.
        The age-dependent decline of attention deficit hyperactivity disorder: A meta-analysis of follow-up studies.
        Psychol Med. 2006; 36: 159-165
        • Biederman J.
        • Monuteaux M.C.
        • Mick E.
        • Spencer T.
        • Wilens T.E.
        • Silva J.M.
        • et al.
        Young adult outcome of attention deficit hyperactivity disorder: A controlled 10-year follow-up study.
        Psychol Med. 2006; 36: 167-179
        • Spencer T.J.
        ADHD and comorbidity in childhood.
        J Clin Psychiatry. 2006; 67: 27-31
        • Wilens T.E.
        • Biederman J.
        • Brown S.
        • Tanguay S.
        • Monuteaux M.C.
        • Blake C.
        • et al.
        Psychiatric comorbidity and functioning in clinically referred preschool children and school-age youths with ADHD.
        J Am Acad Child Adolesc Psychiatry. 2002; 41: 262-268
        • Faraone S.V.
        • Asherson P.
        • Banaschewski T.
        • Biederman J.
        • Buitelaar J.K.
        • Ramos-Quiroga J.A.
        • et al.
        Attention-deficit/hyperactivity disorder.
        Nat Rev Dis Primers. 2015; 1: 15020
        • Lin H.Y.
        • Tseng W.Y.
        • Lai M.C.
        • Matsuo K.
        • Gau S.S.
        Altered resting-state frontoparietal control network in children with attention-deficit/hyperactivity disorder.
        J Int Neuropsychol Soc. 2015; 21: 271-284
        • Posner J.
        • Siciliano F.
        • Wang Z.
        • Liu J.
        • Sonuga-Barke E.
        • Greenhill L.
        A multimodal MRI study of the hippocampus in medication-naive children with ADHD: What connects ADHD and depression?.
        Psychiatry Res. 2014; 224: 112-118
        • Rubia K.
        • Alegria A.
        • Brinson H.
        Imaging the ADHD brain: Disorder-specificity, medication effects and clinical translation.
        Expert Rev Neurother. 2014; 14: 519-538
        • Tian L.
        • Jiang T.
        • Wang Y.
        • Zang Y.
        • He Y.
        • Liang M.
        • et al.
        Altered resting-state functional connectivity patterns of anterior cingulate cortex in adolescents with attention deficit hyperactivity disorder.
        Neurosci Lett. 2006; 400: 39-43
        • Zhang H.
        • Zhao Y.
        • Cao W.
        • Cui D.
        • Jiao Q.
        • Lu W.
        • et al.
        Aberrant functional connectivity in resting state networks of ADHD patients revealed by independent component analysis.
        BMC Neurosci. 2020; 21: 39
        • Fair D.A.
        • Dosenbach N.U.
        • Church J.A.
        • Cohen A.L.
        • Brahmbhatt S.
        • Miezin F.M.
        • et al.
        Development of distinct control networks through segregation and integration.
        Proc Natl Acad Sci. 2007; 104: 13507-13512
        • Grayson D.S.
        • Fair D.A.
        Development of large-scale functional networks from birth to adulthood: A guide to the neuroimaging literature.
        Neuroimage. 2017; 160: 15-31
        • Uddin L.Q.
        • Supekar K.
        • Menon V.
        Typical and atypical development of functional human brain networks: Insights from resting-state FMRI.
        Front Syst Neurosci. 2010; 4: 21
        • Bos D.J.
        • Oranje B.
        • Achterberg M.
        • Vlaskamp C.
        • Ambrosino S.
        • de Reus M.A.
        • et al.
        Structural and functional connectivity in children and adolescents with and without attention deficit/hyperactivity disorder.
        J Child Psychol Psychiatry. 2017; 58: 810-818
        • Tang C.
        • Wei Y.
        • Zhao J.
        • Nie J.
        Different developmental pattern of brain activities in ADHD: A study of resting-state fMRI.
        Dev Neurosci. 2018; 40: 246-257
        • Fair D.A.
        • Cohen A.L.
        • Dosenbach N.U.
        • Church J.A.
        • Miezin F.M.
        • Barch D.M.
        • et al.
        The maturing architecture of the brain’s default network.
        Proc Natl Acad Sci U S A. 2008; 105: 4028-4032
        • Hoff G.E.
        • Van den Heuvel M.P.
        • Benders M.J.
        • Kersbergen K.J.
        • De Vries L.S.
        On development of functional brain connectivity in the young brain.
        Front Hum Neurosci. 2013; 7: 650
        • Jolles D.D.
        • van Buchem M.A.
        • Crone E.A.
        • Rombouts S.A.
        A comprehensive study of whole-brain functional connectivity in children and young adults.
        Cereb Cortex. 2011; 21: 385-391
        • Muetzel R.L.
        • Blanken L.M.
        • Thijssen S.
        • van der Lugt A.
        • Jaddoe V.W.
        • Verhulst F.C.
        • et al.
        Resting-state networks in 6-to-10 year old children.
        Hum Brain Mapp. 2016; 37: 4286-4300
        • Supekar K.
        • Uddin L.Q.
        • Prater K.
        • Amin H.
        • Greicius M.D.
        • Menon V.
        Development of functional and structural connectivity within the default mode network in young children.
        Neuroimage. 2010; 52: 290-301
        • Gracia-Tabuenca Z.
        • Moreno M.B.
        • Barrios F.A.
        • Alcauter S.
        Development of the brain functional connectome follows puberty-dependent nonlinear trajectories.
        Neuroimage. 2021; 229: 117769
        • Marek S.
        • Dosenbach N.U.F.
        The frontoparietal network: Function, electrophysiology, and importance of individual precision mapping.
        Dialogues Clin Neurosci. 2018; 20: 133-140
        • Adleman N.E.
        • Menon V.
        • Blasey C.M.
        • White C.D.
        • Warsofsky I.S.
        • Glover G.H.
        • et al.
        A developmental fMRI study of the Stroop color-word task.
        Neuroimage. 2002; 16: 61-75
        • Christakou A.
        • Halari R.
        • Smith A.B.
        • Ifkovits E.
        • Brammer M.
        • Rubia K.
        Sex-dependent age modulation of frontostriatal and temporo-parietal activation during cognitive control.
        Neuroimage. 2009; 48: 223-236
        • Hwang K.
        • Velanova K.
        • Luna B.
        Strengthening of top-down frontal cognitive control networks underlying the development of inhibitory control: A functional magnetic resonance imaging effective connectivity study.
        J Neurosci. 2010; 30: 15535-15545
        • Peters S.
        • Van Duijvenvoorde A.C.
        • Koolschijn P.C.
        • Crone E.A.
        Longitudinal development of frontoparietal activity during feedback learning: Contributions of age, performance, working memory and cortical thickness.
        Dev Cogn Neurosci. 2016; 19: 211-222
        • Wendelken C.
        • Ferrer E.
        • Whitaker K.J.
        • Bunge S.A.
        Fronto-parietal network reconfiguration supports the development of reasoning ability.
        Cereb Cortex. 2016; 26: 2178-2190
        • de Bie H.M.
        • Boersma M.
        • Adriaanse S.
        • Veltman D.J.
        • Wink A.M.
        • Roosendaal S.D.
        • et al.
        Resting-state networks in awake five- to eight-year old children.
        Hum Brain Mapp. 2012; 33: 1189-1201
        • Rubia K.
        Functional brain imaging across development.
        Eur Child Adolesc Psychiatry. 2013; 22: 719-731
        • Rubia K.
        • Smith A.B.
        • Woolley J.
        • Nosarti C.
        • Heyman I.
        • Taylor E.
        • et al.
        Progressive increase of frontostriatal brain activation from childhood to adulthood during event-related tasks of cognitive control.
        Hum Brain Mapp. 2006; 27: 973-993
        • Wu K.
        • Taki Y.
        • Sato K.
        • Hashizume H.
        • Sassa Y.
        • Takeuchi H.
        • et al.
        Topological organization of functional brain networks in healthy children: Differences in relation to age, sex, and intelligence.
        PLoS One. 2013; 8e55347
        • Bush G.
        Attention-deficit/hyperactivity disorder and attention networks.
        Neuropsychopharmacology. 2010; 35: 278-300
        • Cao X.
        • Cao Q.
        • Long X.
        • Sun L.
        • Sui M.
        • Zhu C.
        • et al.
        Abnormal resting-state functional connectivity patterns of the putamen in medication-naïve children with attention deficit hyperactivity disorder.
        Brain Res. 2009; 1303: 195-206
        • Castellanos F.X.
        • Proal E.
        Large-scale brain systems in ADHD: Beyond the prefrontal-striatal model.
        Trends Cogn Sci. 2012; 16: 17-26
        • Cubillo A.
        • Halari R.
        • Ecker C.
        • Giampietro V.
        • Taylor E.
        • Rubia K.
        Reduced activation and inter-regional functional connectivity of fronto-striatal networks in adults with childhood attention-deficit hyperactivity disorder (ADHD) and persisting symptoms during tasks of motor inhibition and cognitive switching.
        J Psychiatr Res. 2010; 44: 629-639
        • Danielson N.B.
        • Guo J.N.
        • Blumenfeld H.
        The default mode network and altered consciousness in epilepsy.
        Behav Neurol. 2011; 24: 55-65
        • De La Fuente A.
        • Xia S.
        • Branch C.
        • Li X.
        A review of attention-deficit/hyperactivity disorder from the perspective of brain networks.
        Front Hum Neurosci. 2013; 7: 192
        • Fair D.A.
        • Posner J.
        • Nagel B.J.
        • Bathula D.
        • Dias T.G.
        • Mills K.L.
        • et al.
        Atypical default network connectivity in youth with attention-deficit/hyperactivity disorder.
        Biol Psychiatry. 2010; 68: 1084-1091
        • Qian X.
        • Castellanos F.X.
        • Uddin L.Q.
        • Loo B.R.Y.
        • Liu S.
        • Koh H.L.
        • et al.
        Large-scale brain functional network topology disruptions underlie symptom heterogeneity in children with attention-deficit/hyperactivity disorder.
        Neuroimage Clin. 2019; 21: 101600
        • Qiu M.G.
        • Ye Z.
        • Li Q.Y.
        • Liu G.J.
        • Xie B.
        • Wang J.
        Changes of brain structure and function in ADHD children.
        Brain Topogr. 2011; 24: 243-252
        • Rubia K.
        • Halari R.
        • Cubillo A.
        • Mohammad A.M.
        • Scott S.
        • Brammer M.
        Disorder-specific inferior prefrontal hypofunction in boys with pure attention-deficit/hyperactivity disorder compared to boys with pure conduct disorder during cognitive flexibility.
        Hum Brain Mapp. 2010; 31: 1823-1833
        • Sun L.
        • Cao Q.
        • Long X.
        • Sui M.
        • Cao X.
        • Zhu C.
        • et al.
        Abnormal functional connectivity between the anterior cingulate and the default mode network in drug-naïve boys with attention deficit hyperactivity disorder.
        Psychiatry Res. 2012; 201: 120-127
        • Tomasi D.
        • Volkow N.D.
        Abnormal functional connectivity in children with attention-deficit/hyperactivity disorder.
        Biol Psychiatry. 2012; 71: 443-450
        • Wang L.
        • Zhu C.
        • He Y.
        • Zang Y.
        • Cao Q.
        • Zhang H.
        • et al.
        Altered small-world brain functional networks in children with attention-deficit/hyperactivity disorder.
        Hum Brain Mapp. 2009; 30: 638-649
        • Zhao Q.
        • Li H.
        • Yu X.
        • Huang F.
        • Wang Y.
        • Liu L.
        • et al.
        Abnormal resting-state functional connectivity of insular subregions and disrupted correlation with working memory in adults with attention deficit/hyperactivity disorder.
        Front Psychiatry. 2017; 8: 200
        • Choi J.
        • Jeong B.
        • Lee S.W.
        • Go H.J.
        Aberrant development of functional connectivity among resting state-related functional networks in medication-naïve ADHD children.
        PLoS One. 2013; 8e83516
        • Sripada C.S.
        • Kessler D.
        • Angstadt M.
        Lag in maturation of the brain’s intrinsic functional architecture in attention-deficit/hyperactivity disorder.
        Proc Natl Acad Sci. 2014; 111: 14259
        • Francx W.
        • Oldehinkel M.
        • Oosterlaan J.
        • Heslenfeld D.
        • Hartman C.A.
        • Hoekstra P.J.
        • et al.
        The executive control network and symptomatic improvement in attention-deficit/hyperactivity disorder.
        Cortex. 2015; 73: 62-72
        • Griffiths K.R.
        • Braund T.A.
        • Kohn M.R.
        • Clarke S.
        • Williams L.M.
        • Korgaonkar M.S.
        Structural brain network topology underpinning ADHD and response to methylphenidate treatment.
        Transl Psychiatry. 2021; 11: 150
        • Hilger K.
        • Fiebach C.J.
        ADHD symptoms are associated with the modular structure of intrinsic brain networks in a representative sample of healthy adults.
        Netw Neurosci. 2019; 3: 567-588
        • Sörös P.
        • Hoxhaj E.
        • Borel P.
        • Sadohara C.
        • Feige B.
        • Matthies S.
        • et al.
        Hyperactivity/restlessness is associated with increased functional connectivity in adults with ADHD: A dimensional analysis of resting state fMRI.
        BMC Psychiatry. 2019; 19: 43
        • Bullmore E.
        • Sporns O.
        Complex brain networks: Graph theoretical analysis of structural and functional systems.
        Nat Rev Neurosci. 2009; 10: 186-198
        • Papo D.
        • Zanin M.
        • Pineda-Pardo J.A.
        • Boccaletti S.
        • Buldú J.M.
        Functional brain networks: Great expectations, hard times and the big leap forward.
        Philos Trans R Soc Lond B Biol Sci. 2014; 369: 20130525
        • Zalesky A.
        • Fornito A.
        • Bullmore E.T.
        Network-based statistic: Identifying differences in brain networks.
        Neuroimage. 2010; 53: 1197-1207
        • Beare R.
        • Adamson C.
        • Bellgrove M.A.
        • Vilgis V.
        • Vance A.
        • Seal M.L.
        • et al.
        Altered structural connectivity in ADHD: A network based analysis.
        Brain Imaging Behav. 2017; 11: 846-858
        • Cocchi L.
        • Bramati I.E.
        • Zalesky A.
        • Furukawa E.
        • Fontenelle L.F.
        • Moll J.
        • et al.
        Altered functional brain connectivity in a non-clinical sample of young adults with attention-deficit/hyperactivity disorder.
        J Neurosci. 2012; 32: 17753
        • Hong S.B.
        • Zalesky A.
        • Fornito A.
        • Park S.
        • Yang Y.H.
        • Park M.H.
        • et al.
        Connectomic disturbances in attention-deficit/hyperactivity disorder: A whole-brain tractography analysis.
        Biol Psychiatry. 2014; 76: 656-663
        • Gracia-Tabuenca Z.
        • Alcauter S.
        NBR: Network-based R-statistics for (unbalanced) longitudinal samples.
        bioRxiv. 2020; https://doi.org/10.1101/2020.11.07.373019
        • Silk T.J.
        • Genc S.
        • Anderson V.
        • Efron D.
        • Hazell P.
        • Nicholson J.M.
        • et al.
        Developmental brain trajectories in children with ADHD and controls: A longitudinal neuroimaging study.
        BMC Psychiatry. 2016; 16: 59
        • Sciberras E.
        • Efron D.
        • Schilpzand E.J.
        • Anderson V.
        • Jongeling B.
        • Hazell P.
        • et al.
        The Children’s Attention Project: A community-based longitudinal study of children with ADHD and non-ADHD controls.
        BMC Psychiatry. 2013; 13: 18
        • Andersson J.L.R.
        • Jenkinson M.
        • Smith S.
        Non-linear registration aka Spatial normalisation. FMRIB Technical Report TR07JA2.
        (Available at:)
        • Jenkinson M.
        • Bannister P.
        • Brady M.
        • Smith S.
        Improved optimization for the robust and accurate linear registration and motion correction of brain images.
        Neuroimage. 2002; 17: 825-841
        • Griffanti L.
        • Douaud G.
        • Bijsterbosch J.
        • Evangelisti S.
        • Alfaro-Almagro F.
        • Glasser M.F.
        • et al.
        Hand classification of fMRI ICA noise components.
        Neuroimage. 2017; 154: 188-205
        • Griffanti L.
        • Salimi-Khorshidi G.
        • Beckmann C.F.
        • Auerbach E.J.
        • Douaud G.
        • Sexton C.E.
        • et al.
        ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging.
        Neuroimage. 2014; 95: 232-247
        • Salimi-Khorshidi G.
        • Douaud G.
        • Beckmann C.F.
        • Glasser M.F.
        • Griffanti L.
        • Smith S.M.
        Automatic denoising of functional MRI data: Combining independent component analysis and hierarchical fusion of classifiers.
        Neuroimage. 2014; 90: 449-468
        • Power J.D.
        • Barnes K.A.
        • Snyder A.Z.
        • Schlaggar B.L.
        • Petersen S.E.
        Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion.
        Neuroimage. 2012; 59: 2142-2154
        • Yeo B.T.
        • Krienen F.M.
        • Sepulcre J.
        • Sabuncu M.R.
        • Lashkari D.
        • Hollinshead M.
        • et al.
        The organization of the human cerebral cortex estimated by intrinsic functional connectivity.
        J Neurophysiol. 2011; 106: 1125-1165
        • R Core Team
        R: A language and environment for statistical computing.
        R Foundation for Statistical Computing, Vienna, Austria2020
        • Chopra S.
        • Francey S.M.
        • O’Donoghue B.
        • Sabaroedin K.
        • Arnatkeviciute A.
        • Cropley V.
        • et al.
        Functional connectivity in antipsychotic-treated and antipsychotic-naive patients with first-episode psychosis and low risk of self-harm or aggression: A secondary analysis of a randomized clinical trial.
        JAMA Psychiatry. 2021; 78: 994-1004
        • Kühn S.
        • Forlim C.G.
        • Lender A.
        • Wirtz J.
        • Gallinat J.
        Brain functional connectivity differs when viewing pictures from natural and built environments using fMRI resting state analysis.
        Sci Rep. 2021; 11: 4110
        • Xia M.
        • Wang J.
        • He Y.
        BrainNet Viewer: A network visualization tool for human brain connectomics.
        PLoS One. 2013; 8e68910
        • Christakou A.
        • Brammer M.
        • Rubia K.
        Maturation of limbic corticostriatal activation and connectivity associated with developmental changes in temporal discounting.
        Neuroimage. 2011; 54: 1344-1354
        • Bush G.
        Cingulate, frontal, and parietal cortical dysfunction in attention-deficit/hyperactivity disorder.
        Biol Psychiatry. 2011; 69: 1160-1167
        • Hwang S.
        • White S.F.
        • Nolan Z.T.
        • Craig Williams W.
        • Sinclair S.
        • Blair R.J.
        Executive attention control and emotional responding in attention-deficit/hyperactivity disorder—a functional MRI study.
        Neuroimage Clin. 2015; 9: 545-554
        • Posner J.
        • Rauh V.
        • Gruber A.
        • Gat I.
        • Wang Z.
        • Peterson B.S.
        Dissociable attentional and affective circuits in medication-naïve children with attention-deficit/hyperactivity disorder.
        Psychiatry Res. 2013; 213: 24-30
        • Cardinal R.N.
        • Pennicott D.R.
        • Lakmali C.
        • Sugathapala
        • Robbins T.W.
        • Everitt B.J.
        Impulsive choice induced in rats by lesions of the nucleus accumbens core.
        Science. 2001; 292: 2499-2501
        • Winstanley C.A.
        • Eagle D.M.
        • Robbins T.W.
        Behavioral models of impulsivity in relation to ADHD: Translation between clinical and preclinical studies.
        Clin Psychol Rev. 2006; 26: 379-395
        • Winstanley C.A.
        • Theobald D.E.
        • Dalley J.W.
        • Cardinal R.N.
        • Robbins T.W.
        Double dissociation between serotonergic and dopaminergic modulation of medial prefrontal and orbitofrontal cortex during a test of impulsive choice.
        Cereb Cortex. 2006; 16: 106-114
        • Hulvershorn L.A.
        • Mennes M.
        • Castellanos F.X.
        • Di Martino A.
        • Milham M.P.
        • Hummer T.A.
        • et al.
        Abnormal amygdala functional connectivity associated with emotional lability in children with attention-deficit/hyperactivity disorder.
        J Am Acad Child Adolesc Psychiatry. 2014; 53: 351-361.e351
        • Rubia K.
        Cognitive neuroscience of attention deficit hyperactivity disorder (ADHD) and its clinical translation.
        Front Hum Neurosci. 2018; 12: 100
        • Rubia K.
        • Overmeyer S.
        • Taylor E.
        • Brammer M.
        • Williams S.C.
        • Simmons A.
        • et al.
        Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: A study with functional MRI.
        Am J Psychiatry. 1999; 156: 891-896
        • Vaidya C.J.
        • Austin G.
        • Kirkorian G.
        • Ridlehuber H.W.
        • Desmond J.E.
        • Glover G.H.
        • et al.
        Selective effects of methylphenidate in attention deficit hyperactivity disorder: A functional magnetic resonance study.
        Proc Natl Acad Sci U S A. 1998; 95: 14494-14499
        • Mangun G.R.
        • Hopfinger J.B.
        • Kussmaul C.L.
        • Fletcher E.M.
        • Heinze H.J.
        Covariations in ERP and PET measures of spatial selective attention in human extrastriate visual cortex.
        Hum Brain Mapp. 1997; 5: 273-279
        • Gao W.
        • Alcauter S.
        • Elton A.
        • Hernandez-Castillo C.R.
        • Smith J.K.
        • Ramirez J.
        • et al.
        Functional network development during the first year: Relative sequence and socioeconomic correlations.
        Cereb Cortex. 2015; 25: 2919-2928
        • Lin W.
        • Zhu Q.
        • Gao W.
        • Chen Y.
        • Toh C.H.
        • Styner M.
        • et al.
        Functional connectivity MR imaging reveals cortical functional connectivity in the developing brain.
        AJNR Am J Neuroradiol. 2008; 29: 1883-1889
        • Wang M.
        • Hu Z.
        • Liu L.
        • Li H.
        • Qian Q.
        • Niu H.
        Disrupted functional brain connectivity networks in children with attention-deficit/hyperactivity disorder: Evidence from resting-state functional near-infrared spectroscopy.
        Neurophotonics. 2020; 7015012
        • Zhan C.
        • Liu Y.
        • Wu K.
        • Gao Y.
        • Li X.
        Structural and functional abnormalities in children with attention-deficit/hyperactivity disorder: A focus on subgenual anterior cingulate cortex.
        Brain Connec. 2017; 7: 106-114