Advertisement

The Role of School Environment in Brain Structure, Connectivity, and Mental Health in Children: A Multimodal Investigation

  • Divyangana Rakesh
    Correspondence
    Address correspondence to Divyangana Rakesh, M.Sc.
    Affiliations
    Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia
    Search for articles by this author
  • Andrew Zalesky
    Affiliations
    Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia

    Melbourne School of Engineering, University of Melbourne, Melbourne, Victoria, Australia
    Search for articles by this author
  • Sarah Whittle
    Correspondence
    Sarah Whittle, Ph.D.
    Affiliations
    Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia
    Search for articles by this author
Published:February 02, 2022DOI:https://doi.org/10.1016/j.bpsc.2022.01.006

      Abstract

      Background

      Much work has been dedicated to understanding the effects of adverse home environments on brain development. While the school social and learning environment plays a role in child development, little work has been done to investigate the impact of the school environment on the developing brain. The goal of the present study was to examine associations between the school environment, brain structure and connectivity, and mental health.

      Methods

      In this preregistered study we investigated these questions in a large sample of adolescents (9–10 years of age) from the Adolescent Brain Cognitive Development (ABCD) Study. We examined the association between school environment and gray matter (n = 10,435) and white matter (n = 10,770) structure and functional connectivity (n = 9528). We then investigated multivariate relationships between school-associated brain measures and mental health.

      Results

      School environment was associated with connectivity of the auditory and retrosplenial temporal network as well as of higher-order cognitive networks like the cingulo-opercular, default mode, ventral attention, and frontoparietal networks. Multivariate analyses revealed that connectivity of the cingulo-opercular and default mode networks was also associated with mental health.

      Conclusions

      Findings shed light on the neural mechanisms through which favorable school environments may contribute to positive mental health outcomes in children. Our findings have implications for interventions targeted at promoting positive youth functioning through improving school environments.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Green J.G.
        • McLaughlin K.A.
        • Berglund P.A.
        • Gruber M.J.
        • Sampson N.A.
        • Zaslavsky A.M.
        • Kessler R.C.
        Childhood adversities and adult psychiatric disorders in the national comorbidity survey replication I: Associations with first onset of DSM-IV disorders.
        Arch Gen Psychiatry. 2010; 67: 113-123
        • Kessler R.C.
        • McLaughlin K.A.
        • Green J.G.
        • Gruber M.J.
        • Sampson N.A.
        • Zaslavsky A.M.
        • et al.
        Childhood adversities and adult psychopathology in the WHO world mental health surveys.
        Br J Psychiatry. 2010; 197: 378-385
        • Richards M.
        • Wadsworth M.E.J.
        Long term effects of early adversity on cognitive function.
        Arch Dis Child. 2004; 89: 922-927
        • Rakesh D.
        • Kelly C.
        • Vijayakumar N.
        • Zalesky A.
        • Allen N.B.
        • Whittle S.
        Unraveling the consequences of childhood maltreatment: Deviations from typical functional neurodevelopment mediate the relationship between maltreatment history and depressive symptoms.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2021; 6: 329-342
        • Silveira S.
        • Shah R.
        • Nooner K.B.
        • Nagel B.J.
        • Tapert S.F.
        • de Bellis M.D.
        • Mishra J.
        Impact of childhood trauma on executive function in adolescence - Mediating functional brain networks and prediction of high-risk drinking.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2020; 5: 499-509
        • McLaughlin K.A.
        • Weissman D.
        • Bitrán D.
        Childhood adversity and neural development: A systematic review.
        Annu Rev Dev Psychol. 2019; 1: 277-312
        • Teicher M.H.
        • Samson J.A.
        • Anderson C.M.
        • Ohashi K.
        The effects of childhood maltreatment on brain structure, function and connectivity.
        Nat Rev Neurosci. 2016; 17: 652-666
        • Teicher M.H.
        • Samson J.A.
        Annual Research Review: Enduring neurobiological effects of childhood abuse and neglect.
        J Child Psychol Psychiatry. 2016; 57: 241-266
        • McCrory E.
        • De Brito S.A.
        • Viding E.
        The impact of childhood maltreatment: A review of neurobiological and genetic factors.
        Front Psychiatry. 2011; 2: 48
        • Tamnes C.K.
        • Herting M.M.
        • Goddings A.L.
        • Meuwese R.
        • Blakemore S.J.
        • Dahl R.E.
        • et al.
        Development of the cerebral cortex across adolescence: A multisample study of inter-related longitudinal changes in cortical volume, surface area, and thickness.
        J Neurosci. 2017; 37: 3402-3412
        • Gogtay N.
        • Giedd J.N.
        • Lusk L.
        • Hayashi K.M.
        • Greenstein D.
        • Vaituzis A.C.
        • et al.
        Dynamic mapping of human cortical development during childhood through early adulthood.
        Proc Natl Acad Sci U S A. 2004; 101: 8174-8179
        • Whittle S.
        • Simmons J.G.
        • Dennison M.
        • Vijayakumar N.
        • Schwartz O.
        • Yap M.B.H.
        • et al.
        Positive parenting predicts the development of adolescent brain structure: A longitudinal study.
        Dev Cogn Neurosci. 2014; 8: 7-17
        • Farber M.J.
        • Gee D.G.
        • Hariri A.R.
        Normative range parenting and the developing brain: A scoping review and recommendations for future research [published online ahead of print Oct 14].
        Eur J Neurosci. 2020;
        • Rutter M.
        • Maughan B.
        • Mortimore P.
        • Ouston J.
        • Smith A.
        Fifteen Thousand Hours: Secondary Schools and Their Effects on Children.
        Open Books, London1979
        • Wang M.-T.
        • Degol J.L.
        School climate: A review of the construct, measurement, and impact on student outcomes.
        Educ Psychol Rev. 2016; 28: 315-352
        • Cohen J.
        • Mccabe E.M.
        • Michelli N.M.
        • Pickeral T.
        School climate: Research, policy, teacher education and practice.
        Teach Coll Rec. 2009; 111: 180-213
        • Lester L.
        • Cross D.
        The relationship between school climate and mental and emotional wellbeing over the transition from primary to secondary school.
        Psychol Well Being. 2015; 5: 9
        • Wang M.-T.
        • Selman R.L.
        • Dishion T.J.
        • Stormshak E.A.
        A tobit regression analysis of the covariation between middle school students’ perceived school climate and behavioral problems.
        J Res Adolesc. 2010; 20: 274-286
        • Aldridge J.M.
        • McChesney K.
        The relationships between school climate and adolescent mental health and wellbeing: A systematic literature review.
        Int J Educ Res. 2018; 88: 121-145
        • Ford T.
        • Degli Esposti M.
        • Crane C.
        • Taylor L.
        • Montero-Marín J.
        • Blakemore S.J.
        • et al.
        The role of schools in early adolescents’ mental health: Findings from the MYRIAD study.
        J Am Acad Child Adolesc Psychiatry. 2021; 60: 1467-1478
        • Stevens M.C.
        The contributions of resting state and task-based functional connectivity studies to our understanding of adolescent brain network maturation.
        Neurosci Biobehav Rev. 2016; 70: 13-32
        • Dumontheil I.
        Adolescent brain development.
        Curr Opin Behav Sci. 2016; 10: 39-44
        • Cardenas V.A.
        • Greenstein D.
        • Fouche J.P.
        • Ferrett H.
        • Cuzen N.
        • Stein D.J.
        • Fein G.
        Not lesser but greater fractional anisotropy in adolescents with alcohol use disorders.
        NeuroImage Clin. 2013; 2: 804-809
        • Reynolds S.
        • Carrey N.
        • Jaworska N.
        • Langevin L.M.
        • Yang X.R.
        • MacMaster F.P.
        Cortical thickness in youth with major depressive disorder.
        BMC Psychiatry. 2014; 14: 83
        • Rakesh D.
        • Allen N.B.
        • Whittle S.
        Balancing act: Neural correlates of affect dysregulation in youth depression and substance use – A systematic review of functional neuroimaging studies.
        Dev Cogn Neurosci. 2020; 42: 100775
        • Whittle S.
        • Vijayakumar N.
        • Simmons J.G.
        • Allen N.B.
        Internalizing and externalizing symptoms are associated with different trajectories of cortical development during late childhood.
        J Am Acad Child Adolesc Psychiatry. 2020; 59: 177-185
        • Whittle S.
        • Lichter R.
        • Dennison M.
        • Vijayakumar N.
        • Schwartz O.
        • Byrne M.L.
        • et al.
        Structural brain development and depression onset during adolescence: A prospective longitudinal study.
        Am J Psychiatry. 2014; 171: 564-571
        • Lewinn K.Z.
        • Connolly C.G.
        • Wu J.
        • Drahos M.
        • Hoeft F.
        • Ho T.C.
        • et al.
        White matter correlates of adolescent depression: Structural evidence for frontolimbic disconnectivity.
        J Am Acad Child Adolesc Psychiatry. 2014; 53: 899-909.e7
        • Kopala-Sibley D.C.
        • Cyr M.
        • Finsaas M.C.
        • Orawe J.
        • Huang A.
        • Tottenham N.
        • Klein D.N.
        Early childhood parenting predicts late childhood brain functional connectivity during emotion perception and reward processing.
        Child Dev. 2020; 91: 110-128
        • Rakesh D.
        • Whittle S.
        Socioeconomic status and the developing brain – A systematic review of neuroimaging findings in youth.
        Neurosci Biobehav Rev. 2021; 130: 379-407
        • Rakesh D.
        • Zalesky A.
        • Whittle S.
        Similar but distinct – Effects of different socioeconomic indicators on resting state functional connectivity: Findings from the Adolescent Brain Cognitive Development (ABCD) Study®.
        Dev Cogn Neurosci. 2021; 51: 101005
        • Rakesh D.
        • Cropley V.
        • Zalesky A.
        • Vijayakumar N.
        • Allen N.B.
        • Whittle S.
        Neighborhood disadvantage and longitudinal brain-predicted-age trajectory during adolescence.
        Dev Cogn Neurosci. 2021; 51: 101002
        • Hanson J.L.
        • Gillmore A.D.
        • Yu T.
        • Holmes C.J.
        • Hallowell E.S.
        • Barton A.W.
        • et al.
        A family focused intervention influences hippocampal-prefrontal connectivity through gains in self-regulation.
        Child Dev. 2019; 90: 1389-1401
        • Hanson J.L.
        • Albert W.D.
        • Skinner A.T.
        • Shen S.H.
        • Dodge K.A.
        • Lansford J.E.
        Resting state coupling between the amygdala and ventromedial prefrontal cortex is related to household income in childhood and indexes future psychological vulnerability to stress.
        Dev Psychopathol. 2019; 31: 1053-1066
        • Noble K.G.
        • Houston S.M.
        • Brito N.H.
        • Bartsch H.
        • Kan E.
        • Kuperman J.M.
        • et al.
        Family income, parental education and brain structure in children and adolescents.
        Nat Neurosci. 2015; 18: 773-778
        • Luby J.L.
        • Barch D.M.
        • Belden A.
        • Gaffrey M.S.
        • Tillman R.
        • Babb C.
        • et al.
        Maternal support in early childhood predicts larger hippocampal volumes at school age.
        Proc Natl Acad Sci U S A. 2012; 109: 2854-2859
        • Rosen M.L.
        • Sheridan M.A.
        • Sambrook K.A.
        • Meltzoff A.N.
        • McLaughlin K.A.
        Socioeconomic disparities in academic achievement: A multi-modal investigation of neural mechanisms in children and adolescents.
        NeuroImage. 2018; 173: 298-310
        • Piccolo L.R.
        • Merz E.C.
        • Noble K.G.
        School climate is associated with cortical thickness and executive function in children and adolescents.
        Dev Sci. 2019; 22e12719
        • Rakesh D.
        • Seguin C.
        • Zalesky A.
        • Cropley V.
        • Whittle S.
        Associations between neighborhood disadvantage, resting-state functional connectivity, and behavior in the Adolescent Brain Cognitive Development Study: The moderating role of positive family and school environments.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2021; 6: 877-886
        • Bava S.
        • Thayer R.
        • Jacobus J.
        • Ward M.
        • Jernigan T.L.
        • Tapert S.F.
        Longitudinal characterization of white matter maturation during adolescence.
        Brain Res. 2010; 1327: 38-46
        • Qiu D.
        • Tan L.H.
        • Zhou K.
        • Khong P.L.
        Diffusion tensor imaging of normal white matter maturation from late childhood to young adulthood: Voxel-wise evaluation of mean diffusivity, fractional anisotropy, radial and axial diffusivities, and correlation with reading development.
        NeuroImage. 2008; 41: 223-232
        • Schmithorst V.J.
        • Wilke M.
        • Dardzinski B.J.
        • Holland S.K.
        Correlation of white matter diffusivity and anisotropy with age during childhood and adolescence: A cross-sectional diffusion-tensor MR imaging study.
        Radiology. 2002; 222: 212-218
        • Owens M.M.
        • Yuan D.
        • Hahn S.
        • Albaugh M.
        • Allgaier N.
        • Chaarani B.
        • et al.
        Investigation of psychiatric and neuropsychological correlates of default mode network and dorsal attention network anticorrelation in children.
        Cereb Cortex. 2020; 30: 6083-6096
        • Zhao Y.
        • Yang L.
        • Gong G.
        • Cao Q.
        • Liu J.
        Identify aberrant white matter microstructure in ASD, ADHD and other neurodevelopmental disorders: A meta-analysis of diffusion tensor imaging studies.
        Prog Neuropsychopharmacol Biol Psychiatry. 2022; 113: 110477
        • Shen X.
        • MacSweeney N.
        • Chan S.W.Y.
        • Barbu M.C.
        • Adams M.J.
        • Lawrie S.M.
        • et al.
        Brain structural associations with depression in a large early adolescent sample (the ABCD study®).
        EClinicalMedicine. 2021; 42: 101204
        • Ment L.R.
        • Scheinost D.
        • Constable T.
        Microstructural and functional connectivity in the developing brain.
        in: Swaiman K.F. Ashwal S. Ferreiro D.M. Schor N.F. Finkel R.S. Gropman A.L. Swaiman’s Pediatric Neurology. Sixth Edition. Elsevier, New York2017: 97-106
        • Buimer E.E.L.
        • Pas P.
        • Brouwer R.M.
        • Froeling M.
        • Hoogduin H.
        • Leemans A.
        • et al.
        The YOUth cohort study: MRI protocol and test-retest reliability in adults.
        Dev Cogn Neurosci. 2020; 45: 100816
        • Fox R.J.
        • Sakaie K.
        • Lee J.C.
        • Debbins J.P.
        • Liu Y.
        • Arnold D.L.
        • et al.
        A validation study of multicenter diffusion tensor imaging: Reliability of fractional anisotropy and diffusivity values.
        Am J Neuroradiol. 2012; 33: 695-700
        • Duan F.
        • Zhao T.
        • He Y.
        • Shu N.
        Test–retest reliability of diffusion measures in cerebral white matter: A multiband diffusion MRI study.
        J Magn Reson Imaging. 2015; 42: 1106-1116
        • Schmaal L.
        • Hibar D.P.
        • Sämann P.G.
        • Hall G.B.
        • Baune B.T.
        • Jahanshad N.
        • et al.
        Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group.
        Mol Psychiatry. 2017; 22: 900-909
        • Gong W.
        • Rolls E.T.
        • Du J.
        • Feng J.
        • Cheng W.
        Brain structure is linked to the association between family environment and behavioral problems in children in the ABCD study.
        Nat Commun. 2021; 12: 3769
        • Garavan H.
        • Bartsch H.
        • Conway K.
        • Decastro A.
        • Goldstein R.Z.
        • Heeringa S.
        • et al.
        Recruiting the ABCD sample: Design considerations and procedures.
        Dev Cogn Neurosci. 2018; 32: 16-22
        • Casey B.J.
        • Cannonier T.
        • Conley M.I.
        • Cohen A.O.
        • Barch D.M.
        • Heitzeg M.M.
        • et al.
        The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites.
        Dev Cogn Neurosci. 2018; 32: 43-54
        • Zucker R.A.
        • Gonzalez R.
        • Feldstein Ewing S.W.
        • Paulus M.P.
        • Arroyo J.
        • Fuligni A.
        • et al.
        Assessment of culture and environment in the Adolescent Brain and Cognitive Development Study: Rationale, description of measures, and early data.
        Dev Cogn Neurosci. 2018; 32: 107-120
        • Hagler Jr., D.J.
        • Hatton S.N.
        • Cornejo M.D.
        • Makowski C.
        • Fair D.A.
        • Dick A.S.
        • et al.
        Image processing and analysis methods for the Adolescent Brain Cognitive Development Study.
        NeuroImage. 2019; 202: 116091
        • Gordon E.M.
        • Laumann T.O.
        • Adeyemo B.
        • Huckins J.F.
        • Kelley W.M.
        • Petersen S.E.
        Generation and evaluation of a cortical area parcellation from resting-state correlations.
        Cereb Cortex. 2016; 26: 288-303
        • Hagler Jr., D.J.
        • Ahmadi M.E.
        • Kuperman J.
        • Holland D.
        • McDonald C.R.
        • Halgren E.
        • Dale A.M.
        Automated white-matter tractography using a probabilistic diffusion tensor atlas: Application to temporal lobe epilepsy..
        Hum Brain Mapp. 2009; 30: 1535-1547
        • Hagler Jr., D.J.
        • Donald J.
        • Hatten S.N.
        • Cornejo M.D.
        • Makowski C.
        • Fair D.A.
        • et al.
        Image processing and analysis methods for the Adolescent Brain Cognitive Development Study.
        Neuroimage. 2019; 202116091
        • Benjamini Y.
        • Hochberg Y.
        Controlling the false discovery rate: A practical and powerful approach to multiple testing.
        J R Stat Soc Series B Stat Methodol. 1995; 57: 289-300
        • Achenbach T.M.
        • Ruffle T.M.
        The Child Behavior Checklist and related forms for assessing behavioral/emotional problems and competencies.
        Pediatr Rev. 2000; 21: 265-271
        • Krishnan A.
        • Williams L.J.
        • McIntosh A.R.
        • Abdi H.
        Partial least squares (PLS) methods for neuroimaging: A tutorial and review.
        NeuroImage. 2011; 56: 455-475
        • Truelove-Hill M.
        • Erus G.
        • Bashyam V.
        • Varol E.
        • Sako C.
        • Gur R.C.
        • et al.
        A multidimensional neural maturation index reveals reproducible developmental patterns in children and adolescents.
        J Neurosci. 2020; 40: 1265-1275
        • Sun L.
        • Cao Q.
        • Long X.
        • Sui M.
        • Cao X.
        • Zhu C.
        • et al.
        Abnormal functional connectivity between the anterior cingulate and the default mode network in drug-naïve boys with attention deficit hyperactivity disorder.
        Psychiatry Res. 2012; 201: 120-127
        • Stein M.B.
        • Simmons A.N.
        • Feinstein J.S.
        • Paulus M.P.
        Increased amygdala and insula activation during emotion processing in anxiety-prone subjects.
        Am J Psychiatry. 2007; 164: 318-327
        • Bush G.
        • Luu P.
        • Posner M.I.
        Cognitive and emotional influences in anterior cingulate cortex.
        Trends Cogn Sci. 2000; 4: 215-222
        • Rakesh D.
        • Allen N.B.
        • Whittle S.
        Longitudinal changes in within-salience network functional connectivity mediate the relationship between childhood abuse and neglect, and mental health during adolescence [published online ahead of print Aug 25].
        Psychol Med. 2021;
        • Rakesh D.
        • Lv J.
        • Zalesky A.
        • Allen N.B.
        • Lubman D.I.
        • Yücel M.
        • Whittle S.
        Altered resting functional connectivity patterns associated with problematic substance use and substance use disorders during adolescence.
        J Affect Disord. 2021; 279: 599-608
        • Bebko G.
        • Bertocci M.
        • Chase H.
        • Dwojak A.
        • Bonar L.
        • Almeida J.
        • et al.
        Decreased amygdala-insula resting state connectivity in behaviorally and emotionally dysregulated youth.
        Psychiatry Res. 2015; 231: 77-86
        • Davey C.G.
        • Harrison B.J.
        • Yücel M.
        • Allen N.B.
        Regionally specific alterations in functional connectivity of the anterior cingulate cortex in major depressive disorder.
        Psychol Med. 2012; 42: 2071-2081
        • Connolly C.G.
        • Wu J.
        • Ho T.C.
        • Hoeft F.
        • Wolkowitz O.
        • Eisendrath S.
        • et al.
        Resting-state functional connectivity of subgenual anterior cingulate cortex in depressed adolescents.
        Biol Psychiatry. 2013; 74: 898-907
        • Tian L.
        • Jiang T.
        • Wang Y.
        • Zang Y.
        • He Y.
        • Liang M.
        • et al.
        Altered resting-state functional connectivity patterns of anterior cingulate cortex in adolescents with attention deficit hyperactivity disorder.
        Neurosci Lett. 2006; 400: 39-43
        • Klumpp H.
        • Angstadt M.
        • Phan K.L.
        Insula reactivity and connectivity to anterior cingulate cortex when processing threat in generalized social anxiety disorder.
        Biol Psychol. 2012; 89: 273-276
        • Geng H.
        • Li X.
        • Chen J.
        • Li X.
        • Gu R.
        Decreased intra- and inter-salience network functional connectivity is related to trait anxiety in adolescents.
        Front Behav Neurosci. 2016; 0: 350
        • Manoliu A.
        • Meng C.
        • Brandl F.
        • Doll A.
        • Tahmasian M.
        • Scherr M.
        • et al.
        Insular dysfunction within the salience network is associated with severity of symptoms and aberrant inter-network connectivity in major depressive disorder.
        Front Hum Neurosci. 2014; 7: 930
        • Ellwood-Lowe M.E.
        • Irving C.N.
        • Bunge S.A.
        Exploring neural correlates of behavioral and academic resilience among children in poverty.
        bioRxiv. 2021; https://doi.org/10.1101/2021.09.16.460710
        • Menon V.
        Large-scale brain networks and psychopathology: A unifying triple network model.
        Trends Cogn Sci. 2011; 15: 483-506
        • Menon V.
        • Uddin L.Q.
        Saliency, switching, attention and control: A network model of insula function.
        Brain Struct Funct. 2010; 214: 655-667
        • Seeley W.W.
        • Menon V.
        • Schatzberg A.F.
        • Keller J.
        • Glover G.H.
        • Kenna H.
        • et al.
        Dissociable intrinsic connectivity networks for salience processing and executive control.
        J Neurosci. 2007; 27: 2349-2356
        • Berking M.
        • Wupperman P.
        Emotion regulation and mental health: Recent findings, current challenges, and future directions.
        Curr Opin Psychiatry. 2012; 25: 128-134
        • Hair N.L.
        • Hanson J.L.
        • Wolfe B.L.
        • Pollak S.D.
        Association of child poverty, brain development, and academic achievement.
        JAMA Pediatr. 2015; 169: 822-829
        • Hanson J.L.
        • Nacewicz B.M.
        • Sutterer M.J.
        • Cayo A.A.
        • Schaefer S.M.
        • Rudolph K.D.
        • et al.
        Behavioral problems after early life stress: Contributions of the hippocampus and amygdala.
        Biol Psychiatry. 2015; 77: 314-323
        • Price C.J.
        The anatomy of language: A review of 100 fMRI studies published in 2009.
        Ann N Y Acad Sci. 2010; 1191: 62-88
        • Vossel S.
        • Geng J.J.
        • Fink G.R.
        Dorsal and ventral attention systems: Distinct neural circuits but collaborative roles.
        Neuroscientist. 2014; 20: 150-159
        • Furl N.
        • Garrido L.
        • Dolan R.J.
        • Driver J.
        • Duchaine B.
        Fusiform gyrus face selectivity relates to individual differences in facial recognition ability.
        J Cogn Neurosci. 2011; 23: 1723-1740
        • Schnack H.G.
        • Van Haren N.E.M.
        • Brouwer R.M.
        • Evans A.
        • Durston S.
        • Boomsma D.I.
        • et al.
        Changes in thickness and surface area of the human cortex and their relationship with intelligence.
        Cereb Cortex. 2015; 25: 1608-1617
        • Sussman D.
        • Leung R.C.
        • Chakravarty M.M.
        • Lerch J.P.
        • Taylor M.J.
        Developing human brain: Age-related changes in cortical, subcortical, and cerebellar anatomy.
        Brain Behav. 2016; 6e00457
        • Zhou D.
        • Lebel C.
        • Treit S.
        • Evans A.
        • Beaulieu C.
        Accelerated longitudinal cortical thinning in adolescence.
        NeuroImage. 2015; 104: 138-145
        • Funder D.C.
        • Ozer D.J.
        Evaluating effect size in psychological research: Sense and nonsense.
        Adv Methods Pract Psychol Sci. 2019; 2: 156-168
        • Hong S.J.
        • Sisk L.M.
        • Caballero C.
        • Mekhanik A.
        • Roy A.K.
        • Milham M.P.
        • Gee D.G.
        Decomposing complex links between the childhood environment and brain structure in school-aged youth.
        Dev Cogn Neurosci. 2021; 48: 100919
        • Modabbernia A.
        • Janiri D.
        • Doucet G.E.
        • Reichenberg A.
        • Frangou S.
        Multivariate patterns of brain-behavior-environment associations in the Adolescent Brain and Cognitive Development Study.
        Biol Psychiatry. 2021; 89: 510-520
        • Benner A.D.
        • Boyle A.E.
        • Bakhtiari F.
        Understanding students’ transition to high school: Demographic variation and the role of supportive relationships: Correction.
        J Youth Adolesc. 2017; 46: 2129-2142
        • Wang M.-T.
        • Degol J.L.
        • Amemiya J.
        • Parr A.
        • Guo J.
        Classroom climate and children’s academic and psychological wellbeing: A systematic review and meta-analysis.
        Dev Rev. 2020; 57: 100912
        • Wang M.-T.
        • Holcombe R.
        Adolescents’ perceptions of school environment, engagement, and academic achievement in middle school.
        Am Educ Res J. 2010; 47: 633-662
        • Bryce N.V.
        • Flournoy J.C.
        • Guassi Moreira J.F.
        • Rosen M.L.
        • Sambook K.A.
        • Mair P.
        • McLaughlin K.A.
        Brain parcellation selection: An overlooked decision point with meaningful effects on individual differences in resting-state functional connectivity.
        NeuroImage. 2021; 243: 118487