Advertisement

Revealing the Selectivity of Neuroanatomical Alteration in Autism Spectrum Disorder via Reverse Inference

  • Donato Liloia
    Affiliations
    GCS-fMRI Research Group, Koelliker Hospital, and Department of Psychology, University of Turin, Turin, Italy

    Functional Neuroimaging and Complex Neural Systems Laboratory, Department of Psychology, University of Turin, Turin, Italy
    Search for articles by this author
  • Franco Cauda
    Affiliations
    GCS-fMRI Research Group, Koelliker Hospital, and Department of Psychology, University of Turin, Turin, Italy

    Functional Neuroimaging and Complex Neural Systems Laboratory, Department of Psychology, University of Turin, Turin, Italy

    Neuroscience Institute of Turin, Turin, Italy
    Search for articles by this author
  • Lucina Q. Uddin
    Affiliations
    Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California
    Search for articles by this author
  • Jordi Manuello
    Correspondence
    Address correspondence to Jordi Manuello, Ph.D.
    Affiliations
    GCS-fMRI Research Group, Koelliker Hospital, and Department of Psychology, University of Turin, Turin, Italy

    Functional Neuroimaging and Complex Neural Systems Laboratory, Department of Psychology, University of Turin, Turin, Italy
    Search for articles by this author
  • Lorenzo Mancuso
    Affiliations
    GCS-fMRI Research Group, Koelliker Hospital, and Department of Psychology, University of Turin, Turin, Italy

    Functional Neuroimaging and Complex Neural Systems Laboratory, Department of Psychology, University of Turin, Turin, Italy
    Search for articles by this author
  • Roberto Keller
    Affiliations
    Adult Autism Center, DSM Local Health Unit, ASL TO, Turin, Italy
    Search for articles by this author
  • Andrea Nani
    Affiliations
    GCS-fMRI Research Group, Koelliker Hospital, and Department of Psychology, University of Turin, Turin, Italy

    Functional Neuroimaging and Complex Neural Systems Laboratory, Department of Psychology, University of Turin, Turin, Italy
    Search for articles by this author
  • Tommaso Costa
    Affiliations
    GCS-fMRI Research Group, Koelliker Hospital, and Department of Psychology, University of Turin, Turin, Italy

    Functional Neuroimaging and Complex Neural Systems Laboratory, Department of Psychology, University of Turin, Turin, Italy

    Neuroscience Institute of Turin, Turin, Italy
    Search for articles by this author
Published:February 04, 2022DOI:https://doi.org/10.1016/j.bpsc.2022.01.007

      Abstract

      Background

      Although neuroimaging research has identified atypical neuroanatomical substrates in individuals with autism spectrum disorder (ASD), it is at present unclear whether and to what extent disorder-selective gray matter alterations occur in this spectrum of conditions. In fact, a growing body of evidence shows a substantial overlap between the pathomorphological changes across different brain diseases, which may complicate identification of reliable neural markers and differentiation of the anatomical substrates of distinct psychopathologies.

      Methods

      Using a novel data-driven and Bayesian methodology with published voxel-based morphometry data (849 peer-reviewed experiments and 22,304 clinical subjects), this study performs the first reverse inference investigation to explore the selective structural brain alteration profile of ASD.

      Results

      We found that specific brain areas exhibit a >90% probability of gray matter alteration selectivity for ASD: the bilateral precuneus (Brodmann area 7), right inferior occipital gyrus (Brodmann area 18), left cerebellar lobule IX and Crus II, right cerebellar lobule VIIIA, and right Crus I. Of note, many brain voxels that are selective for ASD include areas that are posterior components of the default mode network.

      Conclusions

      The identification of these spatial gray matter alteration patterns offers new insights into understanding the complex neurobiological underpinnings of ASD and opens attractive prospects for future neuroimaging-based interventions.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Ashburner J.
        • Friston K.J.
        Voxel-based morphometry—The methods.
        Neuroimage. 2000; 11: 805-821
        • Henson R.
        Forward inference using functional neuroimaging: Dissociations versus associations.
        Trends Cogn Sci. 2006; 10: 64-69
        • Poldrack R.A.
        Can cognitive processes be inferred from neuroimaging data?.
        Trends Cogn Sci. 2006; 10: 59-63
        • Cauda F.
        • Nani A.
        • Liloia D.
        • Manuello J.
        • Premi E.
        • Duca S.
        • et al.
        Finding specificity in structural brain alterations through Bayesian reverse inference.
        Hum Brain Mapp. 2020; 41: 4155-4172
        • Liloia D.
        • Cauda F.
        • Nani A.
        • Manuello J.
        • Duca S.
        • Fox P.T.
        • Costa T.
        Low entropy maps as patterns of the pathological alteration specificity of brain regions: A meta-analysis dataset.
        Data Brief. 2018; 21: 1483-1495
        • Cauda F.
        • Nani A.
        • Manuello J.
        • Liloia D.
        • Tatu K.
        • Vercelli U.
        • et al.
        The alteration landscape of the cerebral cortex.
        Neuroimage. 2019; 184: 359-371
        • Goodkind M.
        • Eickhoff S.B.
        • Oathes D.J.
        • Jiang Y.
        • Chang A.
        • Jones-Hagata L.B.
        • et al.
        Identification of a common neurobiological substrate for mental illness.
        JAMA Psychiatry. 2015; 72: 305-315
        • Crossley N.A.
        • Mechelli A.
        • Scott J.
        • Carletti F.
        • Fox P.T.
        • McGuire P.
        • Bullmore E.T.
        The hubs of the human connectome are generally implicated in the anatomy of brain disorders [published correction appears in Brain 2015; 138:e374].
        Brain. 2014; 137: 2382-2395
        • Cauda F.
        • Costa T.
        • Nani A.
        • Fava L.
        • Palermo S.
        • Bianco F.
        • et al.
        Are schizophrenia, autistic, and obsessive spectrum disorders dissociable on the basis of neuroimaging morphological findings?: A voxel-based meta-analysis.
        Autism Res. 2017; 10: 1079-1095
        • Cole M.W.
        • Repovš G.
        • Anticevic A.
        The frontoparietal control system: A central role in mental health.
        Neuroscientist. 2014; 20: 652-664
        • McTeague L.M.
        • Goodkind M.S.
        • Etkin A.
        Transdiagnostic impairment of cognitive control in mental illness.
        J Psychiatr Res. 2016; 83: 37-46
        • Radonjić N.V.
        • Hess J.L.
        • Rovira P.
        • Andreassen O.
        • Buitelaar J.K.
        • Ching C.R.K.
        • et al.
        Structural brain imaging studies offer clues about the effects of the shared genetic etiology among neuropsychiatric disorders.
        Mol Psychiatry. 2021; 26: 2101-2110
        • Ecker C.
        • Bookheimer S.Y.
        • Murphy D.G.M.
        Neuroimaging in autism spectrum disorder: Brain structure and function across the lifespan.
        Lancet Neurol. 2015; 14: 1121-1134
        • Carlisi C.O.
        • Norman L.J.
        • Lukito S.S.
        • Radua J.
        • Mataix-Cols D.
        • Rubia K.
        Comparative multimodal meta-analysis of structural and functional brain abnormalities in autism spectrum disorder and obsessive-compulsive disorder.
        Biol Psychiatry. 2017; 82: 83-102
        • Lukito S.
        • Norman L.
        • Carlisi C.
        • Radua J.
        • Hart H.
        • Simonoff E.
        • Rubia K.
        Comparative meta-analyses of brain structural and functional abnormalities during cognitive control in attention-deficit/hyperactivity disorder and autism spectrum disorder.
        Psychol Med. 2020; 50: 894-919
        • DeRamus T.P.
        • Kana R.K.
        Anatomical likelihood estimation meta-analysis of grey and white matter anomalies in autism spectrum disorders.
        Neuroimage Clin. 2014; 7: 525-536
        • Liloia D.
        • Brasso C.
        • Cauda F.
        • Mancuso L.
        • Nani A.
        • Manuello J.
        • et al.
        Updating and characterizing neuroanatomical markers in high-risk subjects, recently diagnosed and chronic patients with schizophrenia: A revised coordinate-based meta-analysis.
        Neurosci Biobehav Rev. 2021; 123: 83-103
        • Meng L.
        • Jiang J.
        • Jin C.
        • Liu J.
        • Zhao Y.
        • Wang W.
        • et al.
        Trauma-specific grey matter alterations in PTSD.
        Sci Rep. 2016; 6: 33748
        • Smallwood R.F.
        • Laird A.R.
        • Ramage A.E.
        • Parkinson A.L.
        • Lewis J.
        • Clauw D.J.
        • et al.
        Structural brain anomalies and chronic pain: A quantitative meta-analysis of gray matter volume.
        J Pain. 2013; 14: 663-675
        • Brieber S.
        • Neufang S.
        • Bruning N.
        • Kamp-Becker I.
        • Remschmidt H.
        • Herpertz-Dahlmann B.
        • et al.
        Structural brain abnormalities in adolescents with autism spectrum disorder and patients with attention deficit/hyperactivity disorder.
        J Child Psychol Psychiatry. 2007; 48: 1251-1258
        • Wang X.
        • Cheng B.
        • Luo Q.
        • Qiu L.
        • Wang S.
        Gray matter structural alterations in social anxiety disorder: A voxel-based meta-analysis.
        Front Psychiatry. 2018; 9: 449
        • Poldrack R.A.
        Inferring mental states from neuroimaging data: From reverse inference to large-scale decoding.
        Neuron. 2011; 72: 692-697
        • Yarkoni T.
        • Poldrack R.A.
        • Nichols T.E.
        • Van Essen D.C.
        • Wager T.D.
        Large-scale automated synthesis of human functional neuroimaging data.
        Nat Methods. 2011; 8: 665-670
        • Hutzler F.
        Reverse inference is not a fallacy per se: Cognitive processes can be inferred from functional imaging data.
        Neuroimage. 2014; 84: 1061-1069
        • Poldrack R.A.
        The role of fMRI in cognitive neuroscience: Where do we stand?.
        Curr Opin Neurobiol. 2008; 18: 223-227
        • Machery E.
        In defense of reverse inference.
        Br J Philos Sci. 2014; 65: 251-267
        • Wager T.D.
        • Atlas L.Y.
        • Botvinick M.M.
        • Chang L.J.
        • Coghill R.C.
        • Davis K.D.
        • et al.
        Pain in the ACC?.
        Proc Natl Acad Sci USA. 2016; 113: E2474-E2475
        • Del Pinal G.
        • Nathan M.J.
        There and up again: On the uses and misuses of neuroimaging in psychology.
        Cogn Neuropsychol. 2013; 30: 233-252
        • Poldrack R.A.
        • Yarkoni T.
        From brain maps to cognitive ontologies: Informatics and the search for mental structure.
        Annu Rev Psychol. 2016; 67: 587-612
        • Fox P.T.
        • Lancaster J.L.
        Opinion: Mapping context and content: The BrainMap model.
        Nat Rev Neurosci. 2002; 3: 319-321
        • Fox P.T.
        • Laird A.R.
        • Fox S.P.
        • Fox P.M.
        • Uecker A.M.
        • Crank M.
        • et al.
        BrainMap taxonomy of experimental design: Description and evaluation.
        Hum Brain Mapp. 2005; 25: 185-198
        • Jeffreys H.
        Theory of Probability.
        3rd ed. Clarendon Press, Oxford1961
        • Costa T.
        • Manuello J.
        • Ferraro M.
        • Liloia D.
        • Nani A.
        • Fox P.T.
        • et al.
        BACON: A tool for reverse inference in brain activation and alteration.
        Hum Brain Mapp. 2021; 42: 3343-3351
        • Eickhoff S.B.
        • Bzdok D.
        • Laird A.R.
        • Kurth F.
        • Fox P.T.
        Activation likelihood estimation meta-analysis revisited.
        Neuroimage. 2012; 59: 2349-2361
        • Eickhoff S.B.
        • Nichols T.E.
        • Laird A.R.
        • Hoffstaedter F.
        • Amunts K.
        • Fox P.T.
        • et al.
        Behavior, sensitivity, and power of activation likelihood estimation characterized by massive empirical simulation.
        Neuroimage. 2016; 137: 70-85
        • Moher D.
        • Liberati A.
        • Tetzlaff J.
        • Altman D.G.
        • PRISMA Group
        Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA statement.
        J Clin Epidemiol. 2009; 62: 1006-1012
        • Müller V.I.
        • Cieslik E.C.
        • Laird A.R.
        • Fox P.T.
        • Radua J.
        • Mataix-Cols D.
        • et al.
        Ten simple rules for neuroimaging meta-analysis.
        Neurosci Biobehav Rev. 2018; 84: 151-161
        • Eickhoff S.B.
        • Laird A.R.
        • Grefkes C.
        • Wang L.E.
        • Zilles K.
        • Fox P.T.
        Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty.
        Hum Brain Mapp. 2009; 30: 2907-2926
        • Laird A.R.
        • Robinson J.L.
        • McMillan K.M.
        • Tordesillas-Gutiérrez D.
        • Moran S.T.
        • Gonzales S.M.
        • et al.
        Comparison of the disparity between Talairach and MNI coordinates in functional neuroimaging data: Validation of the Lancaster transform.
        Neuroimage. 2010; 51: 677-683
        • Yeo B.T.T.
        • Krienen F.M.
        • Sepulcre J.
        • Sabuncu M.R.
        • Lashkari D.
        • Hollinshead M.
        • et al.
        The organization of the human cerebral cortex estimated by intrinsic functional connectivity.
        J Neurophysiol. 2011; 106: 1125-1165
        • Buckner R.L.
        • Krienen F.M.
        • Castellanos A.
        • Diaz J.C.
        • Yeo B.T.T.
        The organization of the human cerebellum estimated by intrinsic functional connectivity.
        J Neurophysiol. 2011; 106: 2322-2345
        • Choi E.Y.
        • Yeo B.T.T.
        • Buckner R.L.
        The organization of the human striatum estimated by intrinsic functional connectivity.
        J Neurophysiol. 2012; 108: 2242-2263
        • Acar F.
        • Seurinck R.
        • Eickhoff S.B.
        • Moerkerke B.
        Assessing robustness against potential publication bias in activation likelihood estimation (ALE) meta-analyses for fMRI.
        PLoS One. 2018; 13e0208177
        • Samartsidis P.
        • Montagna S.
        • Laird A.R.
        • Fox P.T.
        • Johnson T.D.
        • Nichols T.E.
        Estimating the prevalence of missing experiments in a neuroimaging meta-analysis.
        Res Synth Methods. 2020; 11: 866-883
        • Gray J.P.
        • Müller V.I.
        • Eickhoff S.B.
        • Fox P.T.
        Multimodal abnormalities of brain structure and function in major depressive disorder: A meta-analysis of neuroimaging studies.
        Am J Psychiatry. 2020; 177: 422-434
        • Di Martino A.
        • Yan C.G.
        • Li Q.
        • Denio E.
        • Castellanos F.X.
        • Alaerts K.
        • et al.
        The autism brain imaging data exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism.
        Mol Psychiatry. 2014; 19: 659-667
        • Dajani D.R.
        • Uddin L.Q.
        Local brain connectivity across development in autism spectrum disorder: A cross-sectional investigation.
        Autism Res. 2016; 9: 43-54
        • Nomi J.S.
        • Uddin L.Q.
        Developmental changes in large-scale network connectivity in autism.
        NeuroImage Clin. 2015; 7: 732-741
        • Nunes A.S.
        • Vakorin V.A.
        • Kozhemiako N.
        • Peatfield N.
        • Ribary U.
        • Doesburg S.M.
        Atypical age-related changes in cortical thickness in autism spectrum disorder.
        Sci Rep. 2020; 10: 11067
        • Lange N.
        • Travers B.G.
        • Bigler E.D.
        • Prigge M.B.D.
        • Froehlich A.L.
        • Nielsen J.A.
        • et al.
        Longitudinal volumetric brain changes in autism spectrum disorder ages 6–35 years.
        Autism Res. 2015; 8: 82-93
        • Uddin L.Q.
        • Yeo B.T.T.
        • Spreng R.N.
        Towards a universal taxonomy of macro-scale functional human brain networks.
        Brain Topogr. 2019; 32: 926-942
        • McTeague L.M.
        • Huemer J.
        • Carreon D.M.
        • Jiang Y.
        • Eickhoff S.B.
        • Etkin A.
        Identification of common neural circuit disruptions in cognitive control across psychiatric disorders.
        Am J Psychiatry. 2017; 174: 676-685
        • McTeague L.M.
        • Rosenberg B.M.
        • Lopez J.W.
        • Carreon D.M.
        • Huemer J.
        • Jiang Y.
        • et al.
        Identification of common neural circuit disruptions in emotional processing across psychiatric disorders.
        Am J Psychiatry. 2020; 177: 411-421
        • van den Heuvel M.P.
        • Sporns O.
        A cross-disorder connectome landscape of brain dysconnectivity.
        Nat Rev Neurosci. 2019; 20: 435-446
        • Buckholtz J.W.
        • Meyer-Lindenberg A.
        Psychopathology and the human connectome: Toward a transdiagnostic model of risk for mental illness.
        Neuron. 2012; 74: 990-1004
        • Bonilha L.
        • Cendes F.
        • Rorden C.
        • Eckert M.
        • Dalgalarrondo P.
        • Li L.M.
        • Steiner C.E.
        Gray and white matter imbalance—Typical structural abnormality underlying classic autism?.
        Brain Dev. 2008; 30: 396-401
        • Zielinski B.A.
        • Prigge M.B.D.
        • Nielsen J.A.
        • Froehlich A.L.
        • Abildskov T.J.
        • Anderson J.S.
        • et al.
        Longitudinal changes in cortical thickness in autism and typical development.
        Brain. 2014; 137: 1799-1812
        • Riva D.
        • Annunziata S.
        • Contarino V.
        • Erbetta A.
        • Aquino D.
        • Bulgheroni S.
        Gray matter reduction in the vermis and CRUS-II is associated with social and interaction deficits in low-functioning children with autistic spectrum disorders: A VBM-DARTEL Study.
        Cerebellum. 2013; 12: 676-685
        • Bi X.A.
        • Zhao J.
        • Xu Q.
        • Sun Q.
        • Wang Z.
        Abnormal functional connectivity of resting state network detection based on linear ICA analysis in autism spectrum disorder.
        Front Physiol. 2018; 9: 475
        • Long Z.
        • Duan X.
        • Mantini D.
        • Chen H.
        Alteration of functional connectivity in autism spectrum disorder: Effect of age and anatomical distance.
        Sci Rep. 2016; 6: 26527
        • Samson F.
        • Mottron L.
        • Soulières I.
        • Zeffiro T.A.
        Enhanced visual functioning in autism: An ALE meta-analysis.
        Hum Brain Mapp. 2012; 33: 1553-1581
        • Lombardo M.V.
        • Eyler L.
        • Moore A.
        • Datko M.
        • Carter Barnes C.
        • Cha D.
        • et al.
        Default mode-visual network hypoconnectivity in an autism subtype with pronounced social visual engagement difficulties.
        Elife. 2019; 8e47427
        • Pierce K.
        • Haist F.
        • Sedaghat F.
        • Courchesne E.
        The brain response to personally familiar faces in autism: Findings of fusiform activity and beyond.
        Brain. 2004; 127: 2703-2716
        • Hadjikhani N.
        • Joseph R.M.
        • Snyder J.
        • Tager-Flusberg H.
        Abnormal activation of the social brain during face perception in autism.
        Hum Brain Mapp. 2007; 28: 441-449
        • Koshino H.
        • Kana R.K.
        • Keller T.A.
        • Cherkassky V.L.
        • Minshew N.J.
        • Just M.A.
        fMRI investigation of working memory for faces in autism: Visual coding and underconnectivity with frontal areas.
        Cereb Cortex. 2008; 18: 289-300
        • Jou R.J.
        • Jackowski A.P.
        • Papademetris X.
        • Rajeevan N.
        • Staib L.H.
        • Volkmar F.R.
        Diffusion tensor imaging in autism spectrum disorders: Preliminary evidence of abnormal neural connectivity.
        Aust N Z J Psychiatry. 2011; 45: 153-162
        • McAlonan G.M.
        • Daly E.
        • Kumari V.
        • Critchley H.D.
        • van Amelsvoort T.
        • Suckling J.
        • et al.
        Brain anatomy and sensorimotor gating in Asperger’s syndrome.
        Brain. 2002; 125: 1594-1606
        • McAlonan G.M.
        • Cheung V.
        • Cheung C.
        • Suckling J.
        • Lam G.Y.
        • Tai K.S.
        • et al.
        Mapping the brain in autism. A voxel-based MRI study of volumetric differences and intercorrelations in autism.
        Brain. 2005; 128: 268-276
        • Riva D.
        • Bulgheroni S.
        • Aquino D.
        • Di Salle F.
        • Savoiardo M.
        • Erbetta A.
        Basal forebrain involvement in low-functioning autistic children: A voxel-based morphometry study.
        AJNR Am J Neuroradiol. 2011; 32: 1430-1435
        • Foster N.E.V.
        • Doyle-Thomas K.A.R.
        • Tryfon A.
        • Ouimet T.
        • Anagnostou E.
        • Evans A.C.
        • et al.
        Structural gray matter differences during childhood development in autism spectrum disorder: A multimetric approach.
        Pediatr Neurol. 2015; 53: 350-359
        • Jiao Y.
        • Chen R.
        • Ke X.
        • Chu K.
        • Lu Z.
        • Herskovits E.H.
        Predictive models of autism spectrum disorder based on brain regional cortical thickness.
        Neuroimage. 2010; 50: 589-599
        • Ecker C.
        • Ronan L.
        • Feng Y.
        • Daly E.
        • Murphy C.
        • Ginestet C.E.
        • et al.
        Intrinsic gray-matter connectivity of the brain in adults with autism spectrum disorder.
        Proc Natl Acad Sci U S A. 2013; 110: 13222-13227
        • Uddin L.Q.
        • Menon V.
        • Young C.B.
        • Ryali S.
        • Chen T.
        • Khouzam A.
        • et al.
        Multivariate searchlight classification of structural magnetic resonance imaging in children and adolescents with autism.
        Biol Psychiatry. 2011; 70: 833-841
        • Brodmann K.
        Brodmann’s Localisation in the Cerebral Cortex: The Principles of Comparative Localisation in the Cerebral Cortex Based on Cytoarchitectonics [Garey LJ, transl].
        Springer Science and Business Media [original work published 1909], New York2007
        • Margulies D.S.
        • Vincent J.L.
        • Kelly C.
        • Lohmann G.
        • Uddin L.Q.
        • Biswal B.B.
        • et al.
        Precuneus shares intrinsic functional architecture in humans and monkeys.
        Proc Natl Acad Sci U S A. 2009; 106: 20069-20074
        • Burrows C.A.
        • Laird A.R.
        • Uddin L.Q.
        Functional connectivity of brain regions for self- and other-evaluation in children, adolescents and adults with autism.
        Dev Sci. 2016; 19: 564-580
        • Patriquin M.A.
        • DeRamus T.
        • Libero L.E.
        • Laird A.
        • Kana R.K.
        Neuroanatomical and neurofunctional markers of social cognition in autism spectrum disorder.
        Hum Brain Mapp. 2016; 37: 3957-3978
        • Schneider K.
        • Pauly K.D.
        • Gossen A.
        • Mevissen L.
        • Michel T.M.
        • Gur R.C.
        • et al.
        Neural correlates of moral reasoning in autism spectrum disorder.
        Soc Cogn Affect Neurosci. 2013; 8: 702-710
        • Just M.A.
        • Cherkassky V.L.
        • Buchweitz A.
        • Keller T.A.
        • Mitchell T.M.
        Identifying autism from neural representations of social interactions: Neurocognitive markers of autism.
        PLoS One. 2014; 9e113879
        • Wang A.T.
        • Dapretto M.
        • Hariri A.R.
        • Sigman M.
        • Bookheimer S.Y.
        Neural correlates of facial affect processing in children and adolescents with autism spectrum disorder.
        J Am Acad Child Adolesc Psychiatry. 2004; 43: 481-490
        • Schulte-Rüther M.
        • Greimel E.
        • Markowitsch H.J.
        • Kamp-Becker I.
        • Remschmidt H.
        • Fink G.R.
        • Piefke M.
        Dysfunctions in brain networks supporting empathy: An fMRI study in adults with autism spectrum disorders.
        Soc Neurosci. 2011; 6: 1-21
        • Cheng W.
        • Rolls E.T.
        • Zhang J.
        • Sheng W.
        • Ma L.
        • Wan L.
        • et al.
        Functional connectivity decreases in autism in emotion, self, and face circuits identified by Knowledge-based Enrichment Analysis.
        Neuroimage. 2017; 148: 169-178
        • Rolls E.T.
        • Zhou Y.
        • Cheng W.
        • Gilson M.
        • Deco G.
        • Feng J.
        Effective connectivity in autism.
        Autism Res. 2020; 13: 32-44
        • Lynch C.J.
        • Uddin L.Q.
        • Supekar K.
        • Khouzam A.
        • Phillips J.
        • Menon V.
        Default mode network in childhood autism: Posteromedial cortex heterogeneity and relationship with social deficits.
        Biol Psychiatry. 2013; 74: 212-219
        • Li Q.
        • Becker B.
        • Jiang X.
        • Zhao Z.
        • Zhang Q.
        • Yao S.
        • Kendrick K.M.
        Decreased interhemispheric functional connectivity rather than corpus callosum volume as a potential biomarker for autism spectrum disorder.
        Cortex. 2019; 119: 258-266
        • Weng S.J.
        • Wiggins J.L.
        • Peltier S.J.
        • Carrasco M.
        • Risi S.
        • Lord C.
        • Monk C.S.
        Alterations of resting state functional connectivity in the default network in adolescents with autism spectrum disorders.
        Brain Res. 2010; 1313: 202-214
        • Jann K.
        • Hernandez L.M.
        • Beck-Pancer D.
        • McCarron R.
        • Smith R.X.
        • Dapretto M.
        • Wang D.J.J.
        Altered resting perfusion and functional connectivity of default mode network in youth with autism spectrum disorder.
        Brain Behav. 2015; 5e00358
        • Liloia D.
        • Mancuso L.
        • Uddin L.Q.
        • Costa T.
        • Nani A.
        • Keller R.
        • et al.
        Gray matter abnormalities follow non-random patterns of co-alteration in autism: Meta-connectomic evidence.
        Neuroimage Clin. 2021; 30: 102583
        • Cauda F.
        • Geda E.
        • Sacco K.
        • D’Agata F.
        • Duca S.
        • Geminiani G.
        • Keller R.
        Grey matter abnormality in autism spectrum disorder: An activation likelihood estimation meta-analysis study.
        J Neurol Neurosurg Psychiatry. 2011; 82: 1304-1313
        • Becker E.B.E.
        • Stoodley C.J.
        Autism spectrum disorder and the cerebellum.
        Int Rev Neurobiol. 2013; 113: 1-34
        • Liu J.
        • Yao L.
        • Zhang W.
        • Xiao Y.
        • Liu L.
        • Gao X.
        • et al.
        Gray matter abnormalities in pediatric autism spectrum disorder: A meta-analysis with signed differential mapping.
        Eur Child Adolesc Psychiatry. 2017; 26: 933-945
        • Van Overwalle F.
        • Manto M.
        • Cattaneo Z.
        • Clausi S.
        • Ferrari C.
        • Gabrieli J.D.E.
        • et al.
        Consensus paper: Cerebellum and social cognition.
        Cerebellum. 2020; 19: 833-868
        • Klucharev V.
        • Hytönen K.
        • Rijpkema M.
        • Smidts A.
        • Fernández G.
        Reinforcement learning signal predicts social conformity.
        Neuron. 2009; 61: 140-151
        • D’Mello A.M.
        • Stoodley C.J.
        Cerebro-cerebellar circuits in autism spectrum disorder.
        Front Neurosci. 2015; 9: 408
        • Pantelis P.C.
        • Byrge L.
        • Tyszka J.M.
        • Adolphs R.
        • Kennedy D.P.
        A specific hypoactivation of right temporo-parietal junction/posterior superior temporal sulcus in response to socially awkward situations in autism.
        Soc Cogn Affect Neurosci. 2015; 10: 1348-1356
        • D’Mello A.M.
        • Moore D.M.
        • Crocetti D.
        • Mostofsky S.H.
        • Stoodley C.J.
        Cerebellar gray matter differentiates children with early language delay in autism.
        Autism Res. 2016; 9: 1191-1204
        • D’Mello A.M.
        • Crocetti D.
        • Mostofsky S.H.
        • Stoodley C.J.
        Cerebellar gray matter and lobular volumes correlate with core autism symptoms.
        Neuroimage Clin. 2015; 7: 631-639
        • Uddin L.Q.
        Salience processing and insular cortical function and dysfunction.
        Nat Rev Neurosci. 2015; 16: 55-61
        • Di Martino A.
        • Shehzad Z.
        • Kelly C.
        • Roy A.K.
        • Gee D.G.
        • Uddin L.Q.
        • et al.
        Relationship between cingulo-insular functional connectivity and autistic traits in neurotypical adults.
        Am J Psychiatry. 2009; 166: 891-899
        • Tu P.C.
        • Hsu J.W.
        • Lan C.C.
        • Liu C.C.
        • Su T.P.
        • Chen Y.S.
        Structural and functional correlates of a quantitative autistic trait measured using the social responsive scale in neurotypical male adolescents.
        Autism Res. 2016; 9: 570-578
        • Mancuso L.
        • Fornito A.
        • Costa T.
        • Ficco L.
        • Liloia D.
        • Manuello J.
        • et al.
        A meta-analytic approach to mapping co-occurrent grey matter volume increases and decreases in psychiatric disorders.
        Neuroimage. 2020; 222: 117220
        • Tahmasian M.
        • Sepehry A.A.
        • Samea F.
        • Khodadadifar T.
        • Soltaninejad Z.
        • Javaheripour N.
        • et al.
        Practical recommendations to conduct a neuroimaging meta-analysis for neuropsychiatric disorders.
        Hum Brain Mapp. 2019; 40: 5142-5154