Advertisement

Abnormal Reactivity of Brain Oscillations to Visual Search Target in Children With Attention-Deficit/Hyperactivity Disorder

  • Jialiang Guo
    Affiliations
    State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China

    School of Systems Science, Beijing Normal University, Beijing, China
    Search for articles by this author
  • Xiangsheng Luo
    Affiliations
    Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
    Search for articles by this author
  • Yuanjun Kong
    Affiliations
    State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
    Search for articles by this author
  • Bingkun Li
    Affiliations
    State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
    Search for articles by this author
  • Bailu Si
    Affiliations
    School of Systems Science, Beijing Normal University, Beijing, China
    Search for articles by this author
  • Li Sun
    Correspondence
    Li Sun, Ph.D.
    Affiliations
    Institute of Mental Health, Peking University Sixth Hospital, Beijing, China

    National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China

    Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
    Search for articles by this author
  • Yan Song
    Correspondence
    Address correspondence to Yan Song, Ph.D.
    Affiliations
    State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China

    Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
    Search for articles by this author
Published:March 12, 2022DOI:https://doi.org/10.1016/j.bpsc.2022.03.002

      Abstract

      Background

      Previous studies have shown that impaired goal-directed alpha lateralization and functional disconnection within attention networks during the cue period are significant features of attention-deficit/hyperactivity disorder (ADHD). This study aimed to explore the role of brain oscillations in the visual search process, focusing on target-induced posterior alpha lateralization, midfrontal theta synchronization, and their functional connection in children with ADHD.

      Methods

      Electroencephalograms were recorded from typically developing (TD) children (n = 72) and children with ADHD (n = 96) while they performed a visual search task.

      Results

      Both the TD and ADHD groups showed significant midfrontal theta event-related synchronization (ERS) and posterior alpha lateralization. Compared with TD children, children with ADHD showed significantly lower theta ERS and higher target-induced alpha lateralization. TD children showed a positive trial-based correlation between theta ERS and alpha lateralization and a negative correlation between theta ERS and reaction time variability. However, all these correlations were absent in children with ADHD.

      Conclusions

      Abnormal brain oscillations in children with ADHD indicate insufficient executive control function and the compensation of attention networks for attention deficits in visual selective attention. Cross-frequency disconnection reflects the common deficiency of executive control in the gating of target information. Our findings provide novel evidence for interpreting the features of brain oscillations during stimulus-driven selective attention in children with ADHD.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • American Psychiatric Association
        Diagnostic and Statistical Manual of Mental Disorders.
        5th ed. American Psychiatric Publishing, Washington, DC2013
        • Mason D.J.
        • Humphreys G.W.
        • Kent L.S.
        Exploring selective attention in ADHD: Visual search through space and time.
        J Child Psychol Psychiatry. 2003; 44: 1158-1176
        • Wang E.
        • Sun L.
        • Sun M.
        • Huang J.
        • Tao Y.
        • Zhao X.
        • et al.
        Attentional selection and suppression in children with attention-deficit/hyperactivity disorder.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2016; 1: 372-380
        • Mazaheri A.
        • Coffey-Corina S.
        • Mangun G.R.
        • Bekker E.M.
        • Berry A.S.
        • Corbett B.A.
        Functional disconnection of frontal cortex and visual cortex in attention-deficit/hyperactivity disorder.
        Biol Psychiatry. 2010; 67: 617-623
        • Mazaheri A.
        • Fassbender C.
        • Coffey-Corina S.
        • Hartanto T.A.
        • Schweitzer J.B.
        • Mangun G.R.
        Differential oscillatory electroencephalogram between attention-deficit/hyperactivity disorder subtypes and typically developing adolescents.
        Biol Psychiatry. 2014; 76: 422-429
        • Vollebregt M.A.
        • Zumer J.M.
        • Ter Huurne N.
        • Buitelaar J.K.
        • Jensen O.
        Posterior alpha oscillations reflect attentional problems in boys with attention deficit hyperactivity disorder.
        Clin Neurophysiol. 2016; 127: 2182-2191
        • Guo J.
        • Luo X.
        • Wang E.
        • Li B.
        • Chang Q.
        • Sun L.
        • Song Y.
        Abnormal alpha modulation in response to human eye gaze predicts inattention severity in children with ADHD.
        Dev Cogn Neurosci. 2019; 38: 100671
        • Guo J.
        • Luo X.
        • Li B.
        • Chang Q.
        • Sun L.
        • Song Y.
        Abnormal modulation of theta oscillations in children with attention-deficit/hyperactivity disorder.
        Neuroimage Clin. 2020; 27: 102314
        • Cavanagh J.F.
        • Frank M.J.
        Frontal theta as a mechanism for cognitive control.
        Trends Cogn Sci. 2014; 18: 414-421
        • Nigbur R.
        • Ivanova G.
        • Stürmer B.
        Theta power as a marker for cognitive interference.
        Clin Neurophysiol. 2011; 122: 2185-2194
        • Luu P.
        • Tucker D.M.
        • Makeig S.
        Frontal midline theta and the error-related negativity: Neurophysiological mechanisms of action regulation.
        Clin Neurophysiol. 2004; 115: 1821-1835
        • Wascher E.
        • Rasch B.
        • Sänger J.
        • Hoffmann S.
        • Schneider D.
        • Rinkenauer G.
        • et al.
        Frontal theta activity reflects distinct aspects of mental fatigue.
        Biol Psychol. 2014; 96: 57-65
        • Lenartowicz A.
        • Delorme A.
        • Walshaw P.D.
        • Cho A.L.
        • Bilder R.M.
        • McGough J.J.
        • et al.
        Electroencephalography correlates of spatial working memory deficits in attention-deficit/hyperactivity disorder: Vigilance, encoding, and maintenance.
        J Neurosci. 2014; 34: 1171-1182
        • Missonnier P.
        • Hasler R.
        • Perroud N.
        • Herrmann F.R.
        • Millet P.
        • Richiardi J.
        • et al.
        EEG anomalies in adult ADHD subjects performing a working memory task.
        Neuroscience. 2013; 241: 135-146
        • Leroy A.
        • Petit G.
        • Zarka D.
        • Cebolla A.M.
        • Palmero-Soler E.
        • Strul J.
        • et al.
        EEG dynamics and neural generators in implicit navigational image processing in adults with ADHD.
        Neuroscience. 2018; 373: 92-105
        • Gomarus H.K.
        • Wijers A.A.
        • Minderaa R.B.
        • Althaus M.
        Do children with ADHD and/or PDD-NOS differ in reactivity of alpha/theta ERD/ERS to manipulations of cognitive load and stimulus relevance?.
        Clin Neurophysiol. 2009; 120: 73-79
        • Lenartowicz A.
        • Truong H.
        • Salgari G.C.
        • Bilder R.M.
        • McGough J.
        • McCracken J.T.
        • Loo S.K.
        Alpha modulation during working memory encoding predicts neurocognitive impairment in ADHD.
        J Child Psychol Psychiatry. 2019; 60: 917-926
        • Jensen O.
        • Mazaheri A.
        Shaping functional architecture by oscillatory alpha activity: Gating by inhibition.
        Front Hum Neurosci. 2010; 4: 186
        • Klimesch W.
        α-band oscillations, attention, and controlled access to stored information.
        Trends Cogn Sci. 2012; 16: 606-617
        • Sadaghiani S.
        • Kleinschmidt A.
        Brain networks and α-oscillations: Structural and functional foundations of cognitive control.
        Trends Cogn Sci. 2016; 20: 805-817
        • Ergenoglu T.
        • Demiralp T.
        • Bayraktaroglu Z.
        • Ergen M.
        • Beydagi H.
        • Uresin Y.
        Alpha rhythm of the EEG modulates visual detection performance in humans.
        Brain Res Cogn Brain Res. 2004; 20: 376-383
        • van Dijk H.
        • Schoffelen J.M.
        • Oostenveld R.
        • Jensen O.
        Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability.
        J Neurosci. 2008; 28: 1816-1823
        • Worden M.S.
        • Foxe J.J.
        • Wang N.
        • Simpson G.V.
        Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha-band electroencephalography increases over occipital cortex.
        J Neurosci. 2000; 20: RC63
        • Thut G.
        • Nietzel A.
        • Brandt S.A.
        • Pascual-Leone A.
        Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection.
        J Neurosci. 2006; 26: 9494-9502
        • Händel B.F.
        • Haarmeier T.
        • Jensen O.
        Alpha oscillations correlate with the successful inhibition of unattended stimuli.
        J Cogn Neurosci. 2011; 23: 2494-2502
        • Doesburg S.M.
        • Bedo N.
        • Ward L.M.
        Top-down alpha oscillatory network interactions during visuospatial attention orienting.
        Neuroimage. 2016; 132: 512-519
        • Posner M.I.
        Orienting of attention.
        Q J Exp Psychol. 1980; 32: 3-25
        • ter Huurne N.
        • Onnink M.
        • Kan C.
        • Franke B.
        • Buitelaar J.
        • Jensen O.
        Behavioral consequences of aberrant alpha lateralization in attention-deficit/hyperactivity disorder.
        Biol Psychiatry. 2013; 74: 227-233
        • van Diepen R.M.
        • Miller L.M.
        • Mazaheri A.
        • Geng J.J.
        The role of alpha activity in spatial and feature-based attention.
        eNeuro. 2016; 3 (ENEURO.0204-16.2016)
        • Bacigalupo F.
        • Luck S.J.
        Lateralized suppression of alpha-band EEG activity as a mechanism of target processing.
        J Neurosci. 2019; 39: 900-917
        • Wang E.
        • Sun M.
        • Tao Y.
        • Gao X.
        • Guo J.
        • Zhao C.
        • et al.
        Attentional selection predicts rapid automatized naming ability in Chinese-speaking children with ADHD.
        Sci Rep. 2017; 7: 939
        • Gaspar J.M.
        • McDonald J.J.
        Suppression of salient objects prevents distraction in visual search.
        J Neurosci. 2014; 34: 5658-5666
        • Delorme A.
        • Makeig S.
        EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis.
        J Neurosci Methods. 2004; 134: 9-21
        • Debnath R.
        • Salo V.C.
        • Buzzell G.A.
        • Yoo K.H.
        • Fox N.A.
        Mu rhythm desynchronization is specific to action execution and observation: Evidence from time-frequency and connectivity analysis.
        Neuroimage. 2019; 184: 496-507
        • Perrin F.
        • Pernier J.
        • Bertrand O.
        • Echallier J.F.
        Spherical splines for scalp potential and current density mapping.
        Electroencephalogr Clin Neurophysiol. 1989; 72: 184-187
        • Luck S.J.
        An Introduction to the Event-Related Potential Technique.
        2nd ed. MIT Press, Cambridge, MA2014
        • Jung T.P.
        • Makeig S.
        • Humphries C.
        • Lee T.W.
        • McKeown M.J.
        • Iragui V.
        • Sejnowski T.J.
        Removing electroencephalographic artifacts by blind source separation.
        Psychophysiology. 2000; 37: 163-178
        • Oostenveld R.
        • Fries P.
        • Maris E.
        • Schoffelen J.M.
        FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data.
        Comput Intell Neurosci. 2011; 2011: 156869
        • Yeung N.
        • Bogacz R.
        • Holroyd C.B.
        • Nieuwenhuis S.
        • Cohen J.D.
        Theta phase resetting and the error-related negativity.
        Psychophysiology. 2007; 44: 39-49
        • van Driel J.
        • Gunseli E.
        • Meeter M.
        • Olivers C.N.L.
        Local and interregional alpha EEG dynamics dissociate between memory for search and memory for recognition.
        Neuroimage. 2017; 149: 114-128
        • Pfurtscheller G.
        • Lopes da Silva F.H.
        Event-related EEG/MEG synchronization and desynchronization: Basic principles.
        Clin Neurophysiol. 1999; 110: 1842-1857
        • Maris E.
        • Oostenveld R.
        Nonparametric statistical testing of EEG- and MEG-data.
        J Neurosci Methods. 2007; 164: 177-190
        • Missonnier P.
        • Deiber M.P.
        • Gold G.
        • Millet P.
        • Gex-Fabry Pun M.
        • Fazio-Costa L.
        • et al.
        Frontal theta event-related synchronization: Comparison of directed attention and working memory load effects.
        J Neural Transm (Vienna). 2006; 113: 1477-1486
        • Gomarus H.K.
        • Althaus M.
        • Wijers A.A.
        • Minderaa R.B.
        The effects of memory load and stimulus relevance on the EEG during a visual selective memory search task: An ERP and ERD/ERS study.
        Clin Neurophysiol. 2006; 117: 871-884
        • Barkley R.A.
        Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD.
        Psychol Bull. 1997; 121: 65-94
        • Bruckmann S.
        • Hauk D.
        • Roessner V.
        • Resch F.
        • Freitag C.M.
        • Kammer T.
        • et al.
        Cortical inhibition in attention deficit hyperactivity disorder: New insights from the electroencephalographic response to transcranial magnetic stimulation.
        Brain. 2012; 135: 2215-2230
        • Cohen M.X.
        • Cavanagh J.F.
        Single-trial regression elucidates the role of prefrontal theta oscillations in response conflict.
        Front Psychol. 2011; 2: 30
        • Cohen M.X.
        • Donner T.H.
        Midfrontal conflict-related theta-band power reflects neural oscillations that predict behavior.
        J Neurophysiol. 2013; 110: 2752-2763
        • Feuerriegel D.
        • Jiwa M.
        • Turner W.F.
        • Andrejević M.
        • Hester R.
        • Bode S.
        Tracking dynamic adjustments to decision making and performance monitoring processes in conflict tasks.
        Neuroimage. 2021; 238: 118265
        • Pertermann M.
        • Bluschke A.
        • Roessner V.
        • Beste C.
        The modulation of neural noise underlies the effectiveness of methylphenidate treatment in attention-deficit/hyperactivity disorder.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2019; 4: 743-750
        • Ostlund B.D.
        • Alperin B.R.
        • Drew T.
        • Karalunas S.L.
        Behavioral and cognitive correlates of the aperiodic (1/f-like) exponent of the EEG power spectrum in adolescents with and without ADHD.
        Dev Cogn Neurosci. 2021; 48: 100931
        • Kuefner D.
        • de Heering A.
        • Jacques C.
        • Palmero-Soler E.
        • Rossion B.
        Early visually evoked electrophysiological responses over the human brain (P1, N170) show stable patterns of face- sensitivity from 4 years to adulthood.
        Front Hum Neurosci. 2010; 3: 67
        • Barriga-Paulino C.I.
        • Rodríguez-Martínez E.I.
        • Arjona A.
        • Morales M.
        • Gómez C.M.
        Developmental trajectories of event related potentials related to working memory.
        Neuropsychologia. 2017; 95: 215-226
        • Sun M.
        • Wang E.
        • Huang J.
        • Zhao C.
        • Guo J.
        • Li D.
        • et al.
        Attentional selection and suppression in children and adults.
        Dev Sci. 2018; 21e12684
        • Qiu M.G.
        • Ye Z.
        • Li Q.Y.
        • Liu G.J.
        • Xie B.
        • Wang J.
        Changes of brain structure and function in ADHD children.
        Brain Topogr. 2011; 24: 243-252
        • Shaw P.
        • Eckstrand K.
        • Sharp W.
        • Blumenthal J.
        • Lerch J.P.
        • Greenstein D.
        • et al.
        Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation.
        Proc Natl Acad Sci U S A. 2007; 104: 19649-19654
        • Wang Y.
        • Zuo C.
        • Xu Q.
        • Hao L.
        • Zhang Y.
        Attention-deficit/hyperactivity disorder is characterized by a delay in subcortical maturation.
        Prog Neuropsychopharmacol Biol Psychiatry. 2021; 104: 110044
        • Chabot R.J.
        • Serfontein G.
        Quantitative electroencephalographic profiles of children with attention deficit disorder.
        Biol Psychiatry. 1996; 40: 951-963
        • Giertuga K.
        • Zakrzewska M.Z.
        • Bielecki M.
        • Racicka-Pawlukiewicz E.
        • Kossut M.
        • Cybulska-Klosowicz A.
        Age-related changes in resting-state EEG activity in attention deficit/hyperactivity disorder: A cross-sectional study.
        Front Hum Neurosci. 2017; 11: 285