Advertisement

The Posterior Cingulate Cortex Reflects the Impact of Anxiety on Drift Rates During Cognitive Processing

Published:April 02, 2022DOI:https://doi.org/10.1016/j.bpsc.2022.03.010

      Abstract

      Background

      Generally, anxiety is thought to impair ongoing cognitive operations. Surprisingly, however, anxiety has been shown to improve performance during the Go/NoGo task. Understanding how anxiety can facilitate task performance may shed light on avenues to address the cognitive deficits commonly associated with anxiety.

      Methods

      A total of 39 participants (mean age ± SD = 27.5 ± 7.22 years; 18 women) performed a Go/NoGo task during periods of safety and periods of experimental anxiety, induced using the unpredictable delivery of aversive stimuli. Computational analysis and ultrahigh field (7T) functional magnetic resonance imaging were used to determine how induced anxiety affected computational processes and blood oxygen level–dependent responses during the task.

      Results

      Induced anxiety improved accuracy during the Go/NoGo task. Induced anxiety was associated with an amplified drift rate process, which is thought to reflect increased informational uptake. In addition, changes in drift rate during the anxiety condition were associated with enhanced blood oxygen level–dependent responses within the posterior cingulate cortex during Go trials.

      Conclusions

      These results may reflect the impact of induced anxiety on the activity of neurons within the posterior cingulate cortex, whose activity patterns mimic the buildup of evidence accumulation. Collectively, these results shed light on the mechanisms underlying facilitated task performance and suggest that anxiety can improve cognitive processing by enhancing information uptake and increasing activity within the posterior cingulate cortex.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Levenson R.W.
        Basic emotion questions.
        Emot Rev. 2011; 3: 379-386
        • Eysenck M.W.
        • Derakshan N.
        • Santos R.
        • Calvo M.G.
        Anxiety and cognitive performance: Attentional control theory.
        Emotion. 2007; 7: 336-353
        • Pessoa L.
        How do emotion and motivation direct executive control?.
        Trends Cogn Sci. 2009; 13: 160-166
        • Vytal K.E.
        • Cornwell B.R.
        • Letkiewicz A.M.
        • Arkin N.E.
        • Grillon C.
        The complex interaction between anxiety and cognition: Insight from spatial and verbal working memory.
        Front Hum Neurosci. 2013; 7: 93
        • Balderston N.L.
        • Vytal K.E.
        • O’Connell K.
        • Torrisi S.
        • Letkiewicz A.
        • Ernst M.
        • Grillon C.
        Anxiety patients show reduced working memory related dlPFC activation during safety and threat.
        Depress Anxiety. 2017; 34: 25-36
        • Yancey J.R.
        • Bowyer C.B.
        • Foell J.
        • Boot W.R.
        • Patrick C.J.
        Boldness moderates the effects of external threat on performance within a task-switching paradigm.
        J Exp Psychol Hum Percept Perform. 2019; 45: 758-770
        • Roxburgh A.D.
        • Hughes M.E.
        • Cornwell B.R.
        Threat-induced anxiety weakens inhibitory control.
        Biol Psychol. 2019; 144: 99-102
        • Roxburgh A.D.
        • White D.J.
        • Cornwell B.R.
        Anxious arousal alters prefrontal cortical control of stopping [published online ahead of print Sep 18].
        Eur J Neurosci. 2020;
        • Robinson O.J.
        • Krimsky M.
        • Grillon C.
        The impact of induced anxiety on response inhibition.
        Front Hum Neurosci. 2013; 7: 69
        • Torrisi S.
        • Robinson O.
        • O’Connell K.
        • Davis A.
        • Balderston N.
        • Ernst M.
        • Grillon C.
        The neural basis of improved cognitive performance by threat of shock.
        Soc Cogn Affect Neurosci. 2016; 11: 1677-1686
        • Aylward J.
        • Robinson O.J.
        Towards an emotional ‘stress test’: A reliable, non-subjective cognitive measure of anxious responding.
        Sci Rep. 2017; 7: 40094
        • Grillon C.
        • Robinson O.J.
        • O’Connell K.
        • Davis A.
        • Alvarez G.
        • Pine D.S.
        • Ernst M.
        Clinical anxiety promotes excessive response inhibition.
        Psychol Med. 2017; 47: 484-494
        • Mkrtchian A.
        • Roiser J.P.
        • Robinson O.J.
        Threat of shock and aversive inhibition: Induced anxiety modulates Pavlovian-instrumental interactions.
        J Exp Psychol Gen. 2017; 146: 1694-1704
        • Ratcliff R.
        A theory of memory retrieval.
        Psychol Rev. 1978; 85: 59-108
        • Ratcliff R.
        • Huang-Pollock C.
        • McKoon G.
        Modeling individual differences in the Go/No-go task with a diffusion model.
        Decision (Wash D C). 2018; 5: 42-62
        • Huang-Pollock C.
        • Ratcliff R.
        • McKoon G.
        • Shapiro Z.
        • Weigard A.
        • Galloway-Long H.
        Using the diffusion model to explain cognitive deficits in attention deficit hyperactivity disorder.
        J Abnorm Child Psychol. 2017; 45: 57-68
        • Weigard A.
        • Soules M.
        • Ferris B.
        • Zucker R.A.
        • Sripada C.
        • Heitzeg M.
        Cognitive modeling informs interpretation of Go/No-Go task-related neural activations and their links to externalizing psychopathology.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2020; 5: 530-541
        • Shadlen M.N.
        • Newsome W.T.
        Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey.
        J Neurophysiol. 2001; 86: 1916-1936
        • Ding L.
        • Gold J.I.
        Neural correlates of perceptual decision making before, during, and after decision commitment in monkey frontal eye field.
        Cereb Cortex. 2012; 22: 1052-1067
        • Donner T.H.
        • Siegel M.
        • Fries P.
        • Engel A.K.
        Buildup of choice-predictive activity in human motor cortex during perceptual decision making.
        Curr Biol. 2009; 19: 1581-1585
        • Bang D.
        • Fleming S.M.
        Distinct encoding of decision confidence in human medial prefrontal cortex.
        Proc Natl Acad Sci U S A. 2018; 115: 6082-6087
        • Brosnan M.B.
        • Sabaroedin K.
        • Silk T.
        • Genc S.
        • Newman D.P.
        • Loughnane G.M.
        • et al.
        Evidence accumulation during perceptual decisions in humans varies as a function of dorsal frontoparietal organization.
        Nat Hum Behav. 2020; 4: 844-855
        • Kelly S.P.
        • O’Connell R.G.
        Internal and external influences on the rate of sensory evidence accumulation in the human brain.
        J Neurosci. 2013; 33: 19434-19441
        • Bitzer S.
        • Park H.
        • Maess B.
        • von Kriegstein K.
        • Kiebel S.J.
        Representation of perceptual evidence in the human brain assessed by fast, within-trial dynamic stimuli.
        Front Hum Neurosci. 2020; 14: 9
        • de Lange F.P.
        • Jensen O.
        • Dehaene S.
        Accumulation of evidence during sequential decision making: The importance of top-down factors.
        J Neurosci. 2010; 30: 731-738
        • Torrisi S.
        • Chen G.
        • Glen D.
        • Bandettini P.A.
        • Baker C.I.
        • Reynolds R.
        • et al.
        Statistical power comparisons at 3T and 7T with a GO / NOGO task.
        Neuroimage. 2018; 175: 100-110
        • Robertson I.H.
        • Manly T.
        • Andrade J.
        • Baddeley B.T.
        • Yiend J.
        ‘Oops!’: Performance correlates of everyday attentional failures in traumatic brain injured and normal subjects.
        Neuropsychologia. 1997; 35: 747-758
        • Wiecki T.V.
        • Sofer I.
        • Frank M.J.
        HDDM: Hierarchical Bayesian estimation of the drift-diffusion model in Python.
        Front Neuroinform. 2013; 7: 14
        • McDonald J.H.
        G-test of goodness-of-fit.
        in: Handbook of Biological Statistics (3rd Edition). Sparky House Publishing, Baltimore, MD2014: 53-58
        • Schallmo M.P.
        • Weldon K.B.
        • Burton P.C.
        • Sponheim S.R.
        • Olman C.A.
        Assessing methods for geometric distortion compensation in 7 T gradient echo functional MRI data.
        Hum Brain Mapp. 2021; 42: 4205-4223
        • Fischl B.
        • Salat D.H.
        • Busa E.
        • Albert M.
        • Dieterich M.
        • Haselgrove C.
        • et al.
        Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain.
        Neuron. 2002; 33: 341-355
        • Cox R.W.
        AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages.
        Comput Biomed Res. 1996; 29: 162-173
        • Jo H.J.
        • Saad Z.S.
        • Simmons W.K.
        • Milbury L.A.
        • Cox R.W.
        Mapping sources of correlation in resting state FMRI, with artifact detection and removal.
        Neuroimage. 2010; 52: 571-582
        • Chen G.
        • Adleman N.E.
        • Saad Z.S.
        • Leibenluft E.
        • Cox R.W.
        Applications of multivariate modeling to neuroimaging group analysis: A comprehensive alternative to univariate general linear model.
        Neuroimage. 2014; 99: 571-588
        • Glasser M.F.
        • Coalson T.S.
        • Robinson E.C.
        • Hacker C.D.
        • Harwell J.
        • Yacoub E.
        • et al.
        A multi-modal parcellation of human cerebral cortex.
        Nature. 2016; 536: 171-178
        • Eklund A.
        • Nichols T.E.
        • Knutsson H.
        Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates [published correction appears in Proc Natl Acad Sci U S A 2016; 113:E4929].
        Proc Natl Acad Sci U S A. 2016; 113: 7900-7905
        • Cox R.W.
        • Chen G.
        • Glen D.R.
        • Reynolds R.C.
        • Taylor P.A.
        FMRI clustering in AFNI: False-positive rates redux.
        Brain Connect. 2017; 7: 152-171
        • Robinson O.J.
        • Vytal K.
        • Cornwell B.R.
        • Grillon C.
        The impact of anxiety upon cognition: Perspectives from human threat of shock studies.
        Front Hum Neurosci. 2013; 7: 203
        • Raichle M.E.
        The brain’s default mode network.
        Annu Rev Neurosci. 2015; 38: 433-447
        • Leech R.
        • Sharp D.J.
        The role of the posterior cingulate cortex in cognition and disease.
        Brain. 2014; 137: 12-32
        • Makovac E.
        • Fagioli S.
        • Rae C.L.
        • Critchley H.D.
        • Ottaviani C.
        Can’t get it off my brain: Meta-analysis of neuroimaging studies on perseverative cognition.
        Psychiatry Res Neuroimaging. 2020; 295: 111020
        • Wright L.
        • Lipszyc J.
        • Dupuis A.
        • Thayapararajah S.W.
        • Schachar R.
        Response inhibition and psychopathology: A meta-analysis of go/no-go task performance.
        J Abnorm Psychol. 2014; 123: 429-439
        • Xu J.
        • Van Dam N.T.
        • Feng C.
        • Luo Y.
        • Ai H.
        • Gu R.
        • Xu P.
        Anxious brain networks: A coordinate-based activation likelihood estimation meta-analysis of resting-state functional connectivity studies in anxiety.
        Neurosci Biobehav Rev. 2019; 96: 21-30