Advertisement
Archival Report|Articles in Press

Genetic and Environmental Influences on Structural and Diffusion-Based Alzheimer’s Disease Neuroimaging Signatures Across Midlife and Early Old Age

      Abstract

      Background

      Composite scores of magnetic resonance imaging–derived metrics in brain regions associated with Alzheimer’s disease (AD), commonly termed AD signatures, have been developed to distinguish early AD–related atrophy from normal age–associated changes. Diffusion-based gray matter signatures may be more sensitive to early AD–related changes compared with thickness/volume-based signatures, demonstrating their potential clinical utility. The timing of early (i.e., midlife) changes in AD signatures from different modalities and whether diffusion- and thickness/volume-based signatures each capture unique AD-related phenotypic or genetic information remains unknown.

      Methods

      Our validated thickness/volume signature, our novel mean diffusivity (MD) signature, and a magnetic resonance imaging–derived measure of brain age were used in biometrical analyses to examine genetic and environmental influences on the measures as well as phenotypic and genetic relationships between measures over 12 years. Participants were 736 men from 3 waves of the Vietnam Era Twin Study of Aging (VETSA) (baseline/wave 1: mean age [years] = 56.1, SD = 2.6, range = 51.1–60.2). Subsequent waves occurred at approximately 5.7-year intervals.

      Results

      MD and thickness/volume signatures were highly heritable (56%–72%). Baseline MD signatures predicted thickness/volume signatures over a decade later, but baseline thickness/volume signatures showed a significantly weaker relationship with future MD signatures. AD signatures and brain age were correlated, but each measure captured unique phenotypic and genetic variance.

      Conclusions

      Cortical MD and thickness/volume AD signatures are heritable, and each signature captures unique variance that is also not explained by brain age. Moreover, results are in line with changes in MD emerging before changes in cortical thickness, underscoring the utility of MD as a very early predictor of AD risk.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Bakkour A.
        • Morris J.C.
        • Wolk D.A.
        • Dickerson B.C.
        The effects of aging and Alzheimer’s disease on cerebral cortical anatomy: Specificity and differential relationships with cognition.
        Neuroimage. 2013; 76: 332-344
        • Bakkour A.
        • Morris J.C.
        • Dickerson B.C.
        The cortical signature of prodromal AD: Regional thinning predicts mild AD dementia.
        Neurology. 2009; 72: 1048-1055
        • Dickerson B.C.
        • Bakkour A.
        • Salat D.H.
        • Feczko E.
        • Pacheco J.
        • Greve D.N.
        • et al.
        The cortical signature of Alzheimer’s disease: Regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals.
        Cereb Cortex. 2009; 19: 497-510
        • Dickerson B.C.
        • Stoub T.R.
        • Shah R.C.
        • Sperling R.A.
        • Killiany R.J.
        • Albert M.S.
        • et al.
        Alzheimer-signature MRI biomarker predicts AD dementia in cognitively normal adults.
        Neurology. 2011; 76: 1395-1402
        • Dickerson B.C.
        • Wolk D.A.
        • Alzheimer's Disease Neuroimaging Initiative
        MRI cortical thickness biomarker predicts AD-like CSF and cognitive decline in normal adults.
        Neurology. 2012; 78: 84-90
        • McEvoy L.K.
        • Fennema-Notestine C.
        • Roddey J.C.
        • Hagler Jr., D.J.
        • Holland D.
        • Karow D.S.
        • et al.
        Alzheimer disease: Quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment.
        Radiology. 2009; 251: 195-205
        • McEvoy L.K.
        • Holland D.
        • Hagler Jr D.J.
        • Fennema-Notestine C.
        • Brewer J.B.
        • Dale A.M.
        • Alzheimer's Disease Neuroimaging Initiative
        Mild cognitive impairment: Baseline and longitudinal structural MR imaging measures improve predictive prognosis.
        Radiology. 2011; 259: 834-843
        • Sabuncu M.R.
        • Desikan R.S.
        • Sepulcre J.
        • Yeo B.T.
        • Liu H.
        • Schmansky N.J.
        • et al.
        The dynamics of cortical and hippocampal atrophy in Alzheimer disease.
        Arch Neurol. 2011; 68: 1040-1048
        • Weston P.S.J.
        • Simpson I.J.A.
        • Ryan N.S.
        • Ourselin S.
        • Fox N.C.
        Diffusion imaging changes in grey matter in Alzheimer’s disease: A potential marker of early neurodegeneration.
        Alzheimers Res Ther. 2015; 7: 47
        • Kantarci K.
        Magnetic resonance markers for early diagnosis and progression of Alzheimer’s disease.
        Expert Rev Neurother. 2005; 5: 663-670
        • Fellgiebel A.
        • Wille P.
        • Müller M.J.
        • Winterer G.
        • Scheurich A.
        • Vucurevic G.
        • et al.
        Ultrastructural hippocampal and white matter alterations in mild cognitive impairment: A diffusion tensor imaging study.
        Dement Geriatr Cogn Disord. 2004; 18: 101-108
        • Ray K.M.
        • Wang H.
        • Chu Y.
        • Chen Y.-F.
        • Bert A.
        • Hasso A.N.
        • Su M.Y.
        Mild cognitive impairment: Apparent diffusion coefficient in regional gray matter and white matter structures.
        Radiology. 2006; 241: 197-205
        • Scola E.
        • Bozzali M.
        • Agosta F.
        • Magnani G.
        • Franceschi M.
        • Sormani M.P.
        • et al.
        A diffusion tensor MRI study of patients with MCI and AD with a 2-year clinical follow-up.
        J Neurol Neurosurg Psychiatry. 2010; 81: 798-805
        • Rose S.E.
        • Janke A.L.
        • Chalk J.B.
        Gray and white matter changes in Alzheimer’s disease: A diffusion tensor imaging study.
        J Magn Reson Imaging. 2008; 27: 20-26
        • Williams M.E.
        • Elman J.A.
        • McEvoy L.K.
        • Andreassen O.A.
        • Dale A.M.
        • Eglit G.M.L.
        • et al.
        12-year prediction of mild cognitive impairment aided by Alzheimer’s brain signatures at mean age 56.
        Brain Commun. 2021; 3: fcab167
        • Rodriguez-Vieitez E.
        • Montal V.
        • Sepulcre J.
        • Lois C.
        • Hanseeuw B.
        • Vilaplana E.
        • et al.
        Association of cortical microstructure with amyloid-beta and tau: Impact on cognitive decline, neurodegeneration, and clinical progression in older adults.
        Mol Psychiatry. 2021; 26: 7813-7822
        • Vogt N.M.
        • Hunt J.F.
        • Adluru N.
        • Dean D.C.
        • Johnson S.C.
        • Asthana S.
        • et al.
        Cortical microstructural alterations in mild cognitive impairment and Alzheimer’s disease dementia.
        Cereb Cortex. 2020; 30: 2948-2960
        • Elman J.A.
        • Panizzon M.S.
        • Hagler Jr., D.J.
        • Fennema-Notestine C.
        • Eyler L.T.
        • Gillespie N.A.
        • et al.
        Genetic and environmental influences on cortical mean diffusivity.
        Neuroimage. 2017; 146: 90-99
        • Gillespie N.A.
        • Neale M.C.
        • Hagler Jr., D.J.
        • Eyler L.T.
        • Fennema-Notestine C.
        • Franz C.E.
        • et al.
        Genetic and environmental influences on mean diffusivity and volume in subcortical brain regions.
        Hum Brain Mapp. 2017; 38: 2589-2598
        • Brookmeyer R.
        • Gray S.
        • Kawas C.
        Projections of Alzheimer’s disease in the United States and the public health impact of delaying disease onset.
        Am J Public Health. 1998; 88: 1337-1342
        • Brookmeyer R.
        • Johnson E.
        • Ziegler-Graham K.
        • Arrighi H.M.
        Forecasting the global burden of Alzheimer’s disease.
        Alzheimers Dement. 2007; 3: 186-191
        • Hebert L.E.
        • Weuve J.
        • Scherr P.A.
        • Evans D.A.
        Alzheimer disease in the United States (2010–2050) estimated using the 2010 census.
        Neurology. 2013; 80: 1778-1783
        • Riedel B.C.
        • Thompson P.M.
        • Brinton R.D.
        Age, APOE and sex: Triad of risk of Alzheimer’s disease.
        J Steroid Biochem Mol Biol. 2016; 160: 134-147
        • Racine A.M.
        • Brickhouse M.
        • Wolk D.A.
        • Dickerson B.C.
        • Alzheimer's Disease Neuroimaging Initiative
        The personalized Alzheimer’s disease cortical thickness index predicts likely pathology and clinical progression in mild cognitive impairment.
        Alzheimers Dement (Amst). 2018; 10: 301-310
        • Kremen W.S.
        • Franz C.E.
        • Lyons M.J.
        VETSA: The Vietnam era twin study of aging.
        Twin Res Hum Genet. 2013; 16: 399-402
        • Schoeneborn C.A.
        • Heyman K.M.
        Health characteristics of adults aged 55 years and over: United States, 2004–2007.
        Natl Health Stat Rep. 2009; 16: 1-31
        • Fischl B.
        • Salat D.H.
        • Busa E.
        • Albert M.
        • Dieterich M.
        • Haselgrove C.
        • et al.
        Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain.
        Neuron. 2002; 33: 341-355
        • Fischl B.
        • van der Kouwe A.
        • Destrieux C.
        • Halgren E.
        • Ségonne F.
        • Salat D.H.
        • et al.
        Automatically parcellating the human cerebral cortex.
        Cereb Cortex. 2004; 14: 11-22
        • Dale A.M.
        • Sereno M.I.
        Improved Localizadon of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: A linear approach.
        J Cogn Neurosci. 1993; 5: 162-176
        • Dale A.M.
        • Fischl B.
        • Sereno M.I.
        Cortical surface-based analysis. I. Segmentation and surface reconstruction.
        Neuroimage. 1999; 9: 179-194
        • Kremen W.S.
        • Prom-Wormley E.
        • Panizzon M.S.
        • Eyler L.T.
        • Fischl B.
        • Neale M.C.
        • et al.
        Genetic and environmental influences on the size of specific brain regions in midlife: The VETSA MRI study [published correction appears in Neuroimage 2010; 49:3499–3502].
        Neuroimage. 2010; 49: 1213-1223
        • McEvoy L.K.
        • Fennema-Notestine C.
        • Eyler L.T.
        • Franz C.E.
        • Hagler Jr., D.J.
        • Lyons M.J.
        • et al.
        Hypertension-related alterations in white matter microstructure detectable in middle age.
        Hypertension. 2015; 66: 317-323
        • Liem F.
        • Varoquaux G.
        • Kynast J.
        • Beyer F.
        • Kharabian Masouleh S.
        • Huntenburg J.M.
        • et al.
        Predicting brain-age from multimodal imaging data captures cognitive impairment.
        Neuroimage. 2017; 148: 179-188
        • Hatton S.N.
        • Franz C.E.
        • Elman J.A.
        • Panizzon M.S.
        • Hagler Jr., D.J.
        • Fennema-Notestine C.
        • et al.
        Negative fateful life events in midlife and advanced predicted brain aging.
        Neurobiol Aging. 2018; 67: 1-9
        • Franz C.E.
        • Hatton S.N.
        • Elman J.A.
        • Warren T.
        • Gillespie N.A.
        • Whitsel N.A.
        • et al.
        Lifestyle and the aging brain: Interactive effects of modifiable lifestyle behaviors and cognitive ability in men from midlife to old age.
        Neurobiol Aging. 2021; 108: 80-89
        • Whitsel N.
        • Reynolds C.A.
        • Buchholz E.J.
        • Pahlen S.
        • Pearce R.C.
        • Hatton S.N.
        • et al.
        Long-term associations of cigarette smoking in early mid-life with predicted brain aging from mid- to late life.
        Addiction. 2022; 117: 1049-1059
        • Boker S.
        • Neale M.
        • Maes H.
        • Wilde M.
        • Spiegel M.
        • Brick T.
        • et al.
        OpenMx: An open source extended structural equation modeling framework.
        Psychometrika. 2011; 76: 306-317
        • Bates T.C.
        • Neale M.C.
        • Maes H.H.
        umx: A library for structural equation and twin modelling in R.
        Twin Res Hum Genet. 2019; 22: 27-41
        • Neale M.C.
        • Cardon L.R.
        Methodology for Genetic Studies of Twins and Families.
        Kluwer Academic Publishers, Dordrecht, The Netherlands1992
        • Eaves L.J.
        • Last K.A.
        • Young P.A.
        • Martin N.G.
        Model-fitting approaches to the analysis of human behaviour.
        Heredity (Edinb). 1978; 41: 249-320
        • Ferretti M.T.
        • Iulita M.F.
        • Cavedo E.
        • Chiesa P.A.
        • Schumacher Dimech A.
        • Santuccione Chadha A.
        • et al.
        Sex differences in Alzheimer disease – The gateway to precision medicine.
        Nat Rev Neurol. 2018; 14: 457-469
        • Royse S.K.
        • Cohen A.D.
        • Snitz B.E.
        • Rosano C.
        Differences in Alzheimer’s disease and related dementias pathology among African American and Hispanic women: A qualitative literature review of biomarker studies.
        Front Syst Neurosci. 2021; 15685957
        • Bondi M.W.
        • Edmonds E.C.
        • Jak A.J.
        • Clark L.R.
        • Delano-Wood L.
        • McDonald C.R.
        • et al.
        Neuropsychological criteria for mild cognitive impairment improves diagnostic precision, biomarker associations, and progression rates.
        J Alzheimers Dis. 2014; 42: 275-289
        • Bondi M.W.
        • Jak A.J.
        • Delano-Wood L.
        • Jacobson M.W.
        • Delis D.C.
        • Salmon D.P.
        Neuropsychological contributions to the early identification of Alzheimer’s disease.
        Neuropsychol Rev. 2008; 18: 73-90
        • Blokland G.A.
        • de Zubicaray G.I.
        • McMahon K.L.
        • Wright M.J.
        Genetic and environmental influences on neuroimaging phenotypes: A meta-analytical perspective on twin imaging studies.
        Twin Res Hum Genet. 2012; 15: 351-371
        • Chiang M.-C.
        • Barysheva M.
        • Shattuck D.W.
        • Lee A.D.
        • Madsen S.K.
        • Avedissian C.
        • et al.
        Genetics of brain fiber architecture and intellectual performance.
        J Neurosci. 2009; 29: 2212-2224
        • Eyler L.T.
        • Prom-Wormley E.
        • Panizzon M.S.
        • Kaup A.R.
        • Fennema-Notestine C.
        • Neale M.C.
        • et al.
        Genetic and environmental contributions to regional cortical surface area in humans: A magnetic resonance imaging twin study.
        Cereb Cortex. 2011; 21: 2313-2321
        • Putcha D.
        • Brickhouse M.
        • O’Keefe K.
        • Sullivan C.
        • Rentz D.
        • Marshall G.
        • et al.
        Hippocampal hyperactivation associated with cortical thinning in Alzheimer’s disease signature regions in non-demented elderly adults.
        J Neurosci. 2011; 31: 17680-17688
        • Sims R.
        • Hill M.
        • Williams J.
        The multiplex model of the genetics of Alzheimer’s disease.
        Nat Neurosci. 2020; 23: 311-322
        • Raghavan N.
        • Tosto G.
        Genetics of Alzheimer’s disease: The importance of polygenic and epistatic components.
        Curr Neurol Neurosci Rep. 2017; 17: 78
        • Livingston G.
        • Huntley J.
        • Sommerlad A.
        • Ames D.
        • Ballard C.
        • Banerjee S.
        • et al.
        Dementia prevention, intervention, and care: 2020 report of the Lancet Commission.
        Lancet. 2020; 396: 413-446
        • Gillespie N.A.
        • Hatton S.N.
        • Hagler D.H.
        • Dale A.M.
        • Elman J.A.
        • McEvoy L.K.
        • et al.
        The genetic etiology of longitudinal measures of predicted brain ageing in a population-based sample of mid to late-age males.
        bioRxiv. 2021; https://doi.org/10.1101/2021.08.04.455143v1
        • Koo B.-B.
        • Hua N.
        • Choi C.-H.
        • Ronen I.
        • Lee J.-M.
        • Kim D.-S.
        A framework to analyze partial volume effect on gray matter mean diffusivity measurements.
        Neuroimage. 2009; 44: 136-144
        • Tang M.X.
        • Cross P.
        • Andrews H.
        • Jacobs D.M.
        • Small S.
        • Bell K.
        • et al.
        Incidence of AD in African-Americans, Caribbean Hispanics, and Caucasians in northern Manhattan.
        Neurology. 2001; 56: 49-56