Economic Choice and Heart Rate Fractal Scaling Indicate That Cognitive Effort Is Reduced by Depression and Boosted by Sad Mood

Published:August 06, 2022DOI:



      People with depression typically exhibit diminished cognitive control. Control is subjectively costly, prompting speculation that control deficits reflect reduced cognitive effort. Evidence that people with depression exert less cognitive effort is mixed, however, and motivation may depend on state affect.


      We used a cognitive effort discounting task to measure propensity to expend cognitive effort and fractal structure in the temporal dynamics of interbeat intervals to assess on-task effort exertion for 49 healthy control subjects, 36 people with current depression, and 67 people with remitted depression.


      People with depression discounted more steeply, indicating that they were less willing to exert cognitive effort than people with remitted depression and never-depressed control subjects. Also, steeper discounting predicted worse functioning in daily life. Surprisingly, a sad mood induction selectively boosted motivation among participants with depression, erasing differences between them and control subjects. During task performance, depressed participants with the lowest cognitive motivation showed blunted autonomic reactivity as a function of load.


      Discounting patterns supported the hypothesis that people with current depression would be less willing to exert cognitive effort, and steeper discounting predicted lower global functioning in daily life. Heart rate fractal scaling proved to be a highly sensitive index of cognitive load, and data implied that people with lower motivation for cognitive effort had a diminished physiological capacity to respond to rising cognitive demands. State affect appeared to influence motivation among people with current depression given that they were more willing to exert cognitive effort following a sad mood induction.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


        • Cohen R.
        • Lohr I.
        • Paul R.
        • Boland R.
        Impairments of attention and effort among patients with major affective disorders.
        J Neuropsychiatry Clin Neurosci. 2001; 13: 385-395
        • Hammar Å.
        • Årdal G.
        Cognitive functioning in major depression—a summary.
        Front Hum Neurosci. 2009; 3: 26
        • LeMoult J.
        • Gotlib I.H.
        Depression: A cognitive perspective.
        Clin Psychol Rev. 2019; 69: 51-66
        • Westbrook A.
        • Kester D.
        • Braver T.S.
        What is the subjective cost of cognitive effort? Load, trait, and aging effects revealed by economic preference.
        PLoS One. 2013; 8: e68210-e68218
        • Apps M.A.J.
        • Grima L.L.
        • Manohar S.
        • Husain M.
        The role of cognitive effort in subjective reward devaluation and risky decision-making.
        Sci Rep. 2015; 516880
        • Libedinsky C.
        • Massar S.A.A.
        • Ling A.
        • Chee W.
        • Huettel S.A.
        • Chee M.W.L.
        Sleep deprivation alters effort discounting but not delay discounting of monetary rewards.
        Sleep. 2013; 36: 899-904
        • Kool W.
        • McGuire J.T.
        • Rosen Z.B.
        • Botvinick M.M.
        Decision making and the avoidance of cognitive demand.
        J Exp Psychol Gen. 2010; 139: 665-682
        • Sayalı C.
        • Badre D.
        Neural systems of cognitive demand avoidance.
        Neuropsychologia. 2019; 123: 41-54
        • Hammar Å.
        • Strand M.
        • Årdal G.
        • Schmid M.
        • Lund A.
        • Elliott R.
        Testing the cognitive effort hypothesis of cognitive impairment in major depression.
        Nordic J Psychiatry. 2011; 65: 74-80
        • Grahek I.
        • Shenhav A.
        • Musslick S.
        • Krebs R.M.
        • Koster E.H.W.
        Motivation and cognitive control in depression.
        Neurosci Biobehav Rev. 2019; 102: 371-381
        • Hartlage S.
        • Alloy L.B.
        • Vázquez C.
        • Dykman B.
        Automatic and effortful processing in depression.
        Psychol Bull. 1993; 113: 247-278
        • Nishiguchi Y.
        • Takano K.
        • Tanno Y.
        The need for cognition mediates and moderates the association between depressive symptoms and impaired effortful control.
        Psychiatry Res. 2016; 241: 8-13
        • Marchetti I.
        • Shumake J.
        • Grahek I.
        • Koster E.H.W.
        Temperamental factors in remitted depression: The role of effortful control and attentional mechanisms.
        J Affect Disord. 2018; 235: 499-505
        • Hershenberg R.
        • Satterthwaite T.D.
        • Daldal A.
        • Katchmar N.
        • Moore T.M.
        • Kable J.W.
        • Wolf D.H.
        Diminished effort on a progressive ratio task in both unipolar and bipolar depression.
        J Affect Disord. 2016; 196: 97-100
        • Berwian I.M.
        • Wenzel J.G.
        • Collins A.G.E.
        • Seifritz E.
        • Stephan K.E.
        • Walter H.
        • Huys Q.J.M.
        Computational mechanisms of effort and reward decisions in patients with depression and their association with relapse after antidepressant discontinuation.
        JAMA Psychiatry. 2020; 77: 513-522
        • Treadway M.T.
        • Bossaller N.A.
        • Shelton R.C.
        • Zald D.H.
        Effort-based decision-making in major depressive disorder: A translational model of motivational anhedonia.
        J Abnorm Psychol. 2012; 121: 553-558
        • Treadway M.T.
        • Buckholtz J.W.
        • Schwartzman A.N.
        • Lambert W.E.
        • Zald D.H.
        Worth the ‘EEfRT’? The Effort Expenditure for Rewards Task as an objective measure of motivation and anhedonia.
        PLoS One. 2009; 4e6598
        • Cléry-Melin M.-L.
        • Schmidt L.
        • Lafargue G.
        • Baup N.
        • Fossati P.
        • Pessiglione M.
        Why don’t you try harder? An investigation of effort production in major depression.
        PLoS One. 2011; 6e23178
        • Tran T.
        • Hagen A.E.F.
        • Hollenstein T.
        • Bowie C.R.
        Physical- and cognitive-effort-based decision-making in depression: Relationships to symptoms and functioning.
        Clinical Psychological Science. 2021; 9: 53-67
        • Silvia P.J.
        • Mironovová Z.
        • McHone A.N.
        • Sperry S.H.
        • Harper K.L.
        • Kwapil T.R.
        • Eddington K.M.
        Do depressive symptoms “blunt” effort? An analysis of cardiac engagement and withdrawal for an increasingly difficult task.
        Biol Psychol. 2016; 118: 52-60
        • Silvia P.J.
        • Nusbaum E.C.
        • Eddington K.M.
        • Beaty R.E.
        • Kwapil T.R.
        Effort deficits and depression: The influence of anhedonic depressive symptoms on cardiac autonomic activity during a mental challenge.
        Motiv Emot. 2014; 38: 779-789
        • Brinkmann K.
        • Gendolla G.H.E.
        Does depression interfere with effort mobilization? Effects of dysphoria and task difficulty on cardiovascular response.
        J Pers Soc Psychol. 2008; 94: 146-157
        • Forgas J.P.
        Don’t worry, be sad! On the cognitive, motivational, and interpersonal benefits of negative mood.
        Current Directions in Psychological Science. 2013; 22: 225-232
        • Liew T.W.
        • Tan S.-M.
        The effects of positive and negative mood on cognition and motivation in multimedia learning environment.
        Educational Technology & Society. 2016; 19: 104-115
        • Alloy L.B.
        • Abramson L.Y.
        Judgment of contingency in depressed and nondepressed students: Sadder but wiser?.
        J Exp Psychol Gen. 1979; 108: 441-485
        • Lasauskaite R.
        • Gendolla G.H.E.
        • Silvestrini N.
        Do sadness-primes make me work harder because they make me sad?.
        Cogn Emot. 2013; 27: 158-165
        • Chang W.C.
        • Westbrook A.
        • Strauss G.P.
        • Chu A.O.K.
        • Chong C.S.Y.
        • Siu C.M.W.
        • et al.
        Abnormal cognitive effort allocation and its association with amotivation in first-episode psychosis.
        Psychol Med. 2019; 50: 2599-2609
        • Westbrook A.
        • van den Bosch R.
        • Määttä J.I.
        • Hofmans L.
        • Papadopetraki D.
        • Cools R.
        • Frank M.J.
        Dopamine promotes cognitive effort by biasing the benefits versus costs of cognitive work.
        Science. 2020; 367: 1362-1366
        • Westbrook A.
        • Lamichhane B.
        • Braver T.
        The subjective value of cognitive effort is encoded by a domain-general valuation network.
        J Neurosci. 2019; 39: 3934-3947
        • Culbreth A.
        • Westbrook A.
        • Barch D.
        Negative symptoms are associated with an increased subjective cost of cognitive effort.
        J Abnorm Psychol. 2016; 125: 528-536
        • Fairclough S.H.
        • Venables L.
        • Tattersall A.
        The influence of task demand and learning on the psychophysiological response.
        Int J Psychophysiol. 2005; 56: 171-184
        • Thayer J.F.
        • Hansen A.L.
        • Saus-Rose E.
        • Johnsen B.H.
        Heart rate variability, prefrontal neural function, and cognitive performance: The neurovisceral integration perspective on self-regulation, adaptation, and health.
        Ann Behav Med. 2009; 37: 141-153
        • Nugent A.C.
        • Bain E.E.
        • Thayer J.F.
        • Sollers J.J.
        • Drevets W.C.
        Heart rate variability during motor and cognitive tasks in females with major depressive disorder.
        Psychiatry Res Neuroimaging. 2011; 191: 1-8
        • Richter M.
        • Gendolla G.H.E.
        • Wright R.A.
        Three decades of research on motivational intensity theory: What we have learned about effort and what we still don’t know.
        in: Elliot A.J. Advances in Motivation Science. Academic Press, Cambridge, MA2016: 149-186
        • Tulppo M.P.
        • Kiviniemi A.M.
        • Hautala A.J.
        • Kallio M.
        • Seppänen T.
        • Mäkikallio T.H.
        • Huikuri H.V.
        Physiological background of the loss of fractal heart rate dynamics.
        Circulation. 2005; 112: 314-319
        • Perkiömäki J.S.
        • Mäkikallio T.H.
        • Huikuri H.V.
        Fractal and complexity measures of heart rate variability.
        Clin Exp Hypertens. 2005; 27: 149-158
        • Goldberger A.L.
        Fractal variability versus pathologic periodicity: Complexity loss and stereotypy in disease.
        Perspect Biol Med. 1997; 40: 543-561
        • Gronwald T.
        • Rogers B.
        • Hoos O.
        Fractal correlation properties of heart rate variability: A new biomarker for intensity distribution in endurance exercise and training prescription?.
        Front Physiol. 2020; 11550572
        • Bylsma L.M.
        • Salomon K.
        • Taylor-Clift A.
        • Morris B.H.
        • Rottenberg J.
        Respiratory sinus arrhythmia reactivity in current and remitted major depressive disorder.
        Psychosom Med. 2014; 76: 66-73
        • Rottenberg J.
        • Salomon K.
        • Gross J.J.
        • Gotlib I.H.
        Vagal withdrawal to a sad film predicts subsequent recovery from depression.
        Psychophysiology. 2005; 42: 277-281
        • Shinba T.
        Altered autonomic activity and reactivity in depression revealed by heart-rate variability measurement during rest and task conditions.
        Psychiatry Clin Neurosci. 2014; 68: 225-233
        • Hoffmann A.
        • Ettinger U.
        • Reyes Del Paso G.A.
        • Duschek S.
        Executive function and cardiac autonomic regulation in depressive disorders.
        Brain Cogn. 2017; 118: 108-117
        • Obrist P.A.
        Cardiovascular Psychophysiology: A Perspective.
        Plenum, New York1981
        • Wright R.A.
        • Kirby L.D.
        Effort determination of cardiovascular response: An integrative analysis with applications in social psychology.
        Advances in Experimental Social Psychology. 2001; 33: 255-307
        • Jennings J.R.
        Memory, thought, and bodily response.
        in: Coles M.G.H. Donchin E. Porges S.W. Psychophysiology: Systems, Processes, and Applications. Guilford Press, New York1986: 290-308
        • Mandrick K.
        • Peysakhovich V.
        • Rémy F.
        • Lepron E.
        • Causse M.
        Neural and psychophysiological correlates of human performance under stress and high mental workload.
        Biol Psychol. 2016; 121: 62-73
        • Althaus M.
        • Mulder L.J.M.
        • Mulder G.
        • Roon A.M.
        • Minderaa R.B.
        Influence of respiratory activity on the cardiac response pattern to mental effort.
        Psychophysiology. 1998; 35: 420-430
        • Richter M.
        • Friedrich A.
        • Gendolla G.H.
        Task difficulty effects on cardiac activity.
        Psychophysiology. 2008; 45: 869-875
        • Silvia P.J.
        • Eddington K.M.
        • Harper K.L.
        • Burgin C.J.
        • Kwapil T.R.
        Appetitive motivation in depressive anhedonia: Effects of piece-rate cash rewards on cardiac and behavioral outcomes.
        Motiv Sci. 2019; 6: 259-265
        • Hamilton J.L.
        • Alloy L.B.
        Atypical reactivity of heart rate variability to stress and depression across development: Systematic review of the literature and directions for future research.
        Clin Psychol Rev. 2016; 50: 67-79
        • Kardan O.
        • Adam K.C.S.
        • Mance I.
        • Churchill N.W.
        • Vogel E.K.
        • Berman M.G.
        Distinguishing cognitive effort and working memory load using scale-invariance and alpha suppression in EEG.
        Neuroimage. 2020; 211116622
        • Perkiömäki J.S.
        • Zareba W.
        • Ruta J.
        • Dubner S.
        • Madoery C.
        • Deedwania P.
        • et al.
        Fractal and complexity measures of heart rate dynamics after acute myocardial infarction.
        Am J Cardiol. 2001; 88: 777-781
        • Pikkujämsä S.M.
        • Mäkikallio T.H.
        • Airaksinen K.E.J.
        • Huikuri H.V.
        Determinants and interindividual variation of R-R interval dynamics in healthy middle-aged subjects.
        Am J Physiol Heart Circ Physiol. 2001; 280: H1400-H1406
        • Peng C.-K.
        • Havlin S.
        • Stanley H.E.
        • Goldberger A.L.
        Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series.
        Chaos. 1995; 5: 82-87
        • Liu X.
        • Gentzler A.L.
        • George C.J.
        • Kovacs M.
        Responses to depressed mood and suicide attempt in young adults with a history of childhood-onset mood disorder.
        J Clin Psychiatry. 2009; 70: 644-652
        • Miller A.
        • Fox N.A.
        • Cohn J.F.
        • Forbes E.E.
        • Sherrill J.T.
        • Kovacs M.
        Regional patterns of brain activity in adults with a history of childhood-onset depression: Gender differences and clinical variability.
        Am J Psychiatry. 2002; 159: 934-940
        • First M.B.
        • Gibbon M.
        The Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-I) and the Structured Clinical Interview for DSM-IV Axis II Disorders (SCID-II).
        in: Hilsenroth M.J. Segal D.L. Comprehensive Handbook of Psychological Assessment, Vol. 2, Personality Assessment. John Wiley & Sons, Inc., Hoboken, NJ2004: 134-143
        • Maziade M.
        • Roy M.A.
        • Fournier J.P.
        • Cliche D.
        • Mérette C.
        • Caron C.
        • et al.
        Reliability of best-estimate diagnosis in genetic linkage studies of major psychoses: Results from the Quebec pedigree studies.
        Am J Psychiatry. 1992; 149: 1674-1686
        • Gross J.J.
        • Levenson R.W.
        Emotion elicitation using films.
        Cognition and Emotion. 1995; 9: 87-108
        • Yang X.
        • Daches S.
        • George C.J.
        • Kiss E.
        • Kapornai K.
        • Baji I.
        • Kovacs M.
        Autonomic correlates of lifetime suicidal thoughts and behaviors among adolescents with a history of depression.
        Psychophysiology. 2019; 56e13378
        • Silva L.E.V.
        • Silva C.A.A.
        • Salgado H.C.
        • Fazan R.
        The role of sympathetic and vagal cardiac control on complexity of heart rate dynamics.
        Am J Physiol Heart Circ Physiol. 2017; 312: H469-H477
        • Goldberger A.L.
        • Amaral L.A.
        • Glass L.
        • Hausdorff J.M.
        • Ivanov P.C.
        • Mark R.G.
        • et al.
        PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals.
        Circulation. 2000; 101: E215-E220
        • Vest A.N.
        • Poian G.D.
        • Li Q.
        • Liu C.
        • Nemati S.
        • Shah A.J.
        • Clifford G.D.
        An open source benchmarked toolbox for cardiovascular waveform and interval analysis.
        Physiol Meas. 2018; 39105004
        • Beck A.T.
        • Steer R.A.
        • Brown G.K.
        Manual for the Beck Depression Inventory-II.
        Psychological Corporation, San Antonio, TX1996
        • Beck A.T.
        • Epstein N.
        • Brown G.
        • Steer R.A.
        An inventory for measuring clinical anxiety: Psychometric properties.
        J Consult Clin Psychol. 1998; 56: 893-897
        • Kumar P.
        • Waiter G.
        • Ahearn T.
        • Milders M.
        • Reid I.
        • Steele J.D.
        Abnormal temporal difference reward-learning signals in major depression.
        Brain. 2008; 131: 2084-2093
        • Gradin V.B.
        • Kumar P.
        • Waiter G.
        • Ahearn T.
        • Stickle C.
        • Milders M.
        • et al.
        Expected value and prediction error abnormalities in depression and schizophrenia.
        Brain. 2011; 134: 1751-1764
        • Robinson O.J.
        • Cools R.
        • Carlisi C.O.
        • Sahakian B.J.
        • Drevets W.C.
        Ventral striatum response during reward and punishment reversal learning in unmedicated major depressive disorder.
        Am J Psychiatry. 2012; 169: 152-159
        • Halahakoon D.C.
        • Kieslich K.
        • O’Driscoll C.
        • Nair A.
        • Lewis G.
        • Roiser J.P.
        Reward-processing behavior in depressed participants relative to healthy volunteers.
        JAMA Psychiatry. 2020; 77: 1286-1295
        • Eshel N.
        • Roiser J.P.
        Reward and punishment processing in depression.
        Biol Psychiatry. 2010; 68: 118-124
        • Meyniel F.
        • Goodwin G.M.
        • Deakin J.W.
        • Klinge C.
        • MacFadyen C.
        • Milligan H.
        • et al.
        A specific role for serotonin in overcoming effort cost.
        Elife. 2016; 5e17282
        • Yoon S.
        • Verona E.
        • Schlauch R.
        • Schneider S.
        • Rottenberg J.
        Why do depressed people prefer sad music?.
        Emotion. 2019; 20: 613-624
        • Yoon S.
        • Rottenberg J.
        Listening to the blues: An ecological momentary assessment of music choice in depression.
        Emotion. 2020; 21: 1177-1187
        • Arens E.A.
        • Stangier U.
        Sad as a matter of evidence: The desire for self-verification motivates the pursuit of sadness in clinical depression.
        Front Psychol. 2020; 11: 238
        • Millgram Y.
        • Joormann J.
        • Huppert J.D.
        • Lampert A.
        • Tamir M.
        Motivations to experience happiness or sadness in depression: Temporal stability and implications for coping with stress.
        Clinical Psychological Science. 2019; 7: 143-161
        • Aldao A.
        • Nolen-Hoeksema S.
        • Schweizer S.
        Emotion-regulation strategies across psychopathology: A meta-analytic review.
        Clin Psychol Rev. 2010; 30: 217-237
        • Kemp A.H.
        • Quintana D.S.
        • Felmingham K.L.
        • Matthews S.
        • Jelinek H.F.
        Depression, comorbid anxiety disorders, and heart rate variability in physically healthy, unmedicated patients: Implications for cardiovascular risk.
        PLoS One. 2012; 7e30777
        • Molen M.W.
        • Somsen R.J.M.
        • Jennings J.R.
        Developmental change in auditory selective attention as reflected by phasic heart rate changes.
        Psychophysiology. 2000; 37: 626-633
        • Blain B.
        • Schmit C.
        • Aubry A.
        • Hausswirth C.
        • Meur Y.L.
        • Pessiglione M.
        Neuro-computational impact of physical training overload on economic decision-making.
        Curr Biol. 2019; 29 (e4): 3289-3297