Advertisement

Multilayer Network Analysis of Dynamic Network Reconfiguration in Adults with Posttraumatic Stress Disorder

  • Xueling Suo
    Affiliations
    Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China

    Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China

    Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, China
    Search for articles by this author
  • Chao Zuo
    Affiliations
    Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China

    Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China

    Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, China
    Search for articles by this author
  • Huan Lan
    Affiliations
    Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China

    Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China

    Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, China
    Search for articles by this author
  • Wenbin Li
    Affiliations
    Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
    Search for articles by this author
  • Lingjiang Li
    Affiliations
    Mental Health Institute, the Second Xiangya Hospital of Central South University, Changsha 410008, China
    Search for articles by this author
  • Graham J. Kemp
    Affiliations
    Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3GE, United Kingdom
    Search for articles by this author
  • Song Wang
    Correspondence
    Corresponding Author: and Song Wang, M.D., Ph.D., Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian 361022, PR China. Tel: 086-028 81812593; Fax: 086-028 85423503.
    Affiliations
    Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China

    Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China

    Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, China
    Search for articles by this author
  • Qiyong Gong
    Correspondence
    Corresponding Author: Qiyong Gong, Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian 361022, PR China,
    Affiliations
    Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China

    Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China

    Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, China

    Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen 361022, China
    Search for articles by this author
Published:September 21, 2022DOI:https://doi.org/10.1016/j.bpsc.2022.09.003

      Abstract

      Background

      Brain functional network abnormalities are reported in posttraumatic stress disorder (PTSD). Most resting-state functional magnetic resonance imaging (rs-fMRI) studies have assumed that the functional networks remain static during the scan. How these might change dynamically in PTSD remains unclear.

      Methods

      Rs-fMRI data were collected from 71 noncomorbid treatment-naïve PTSD patients and 70 demographically-matched trauma-exposed non-PTSD (TENP) controls. Network switching rate was used to characterize dynamic changes of individual resting-state functional networks. Results were analyzed by comparing switching rates between PTSD and TENP, for diagnosis-by-sex interactions, and by correlation with individual PTSD symptom severity.

      Results

      At the global level, PTSD showed significantly lower network switching rates than TENP. These were observed mainly in the fronto-parietal, default-mode, and limbic networks at the subnetwork level, and in the frontal and temporal regions at the nodal level. These network switching rate alterations were correlated with PTSD symptom severity. There were no significant effects of sex.

      Conclusion

      These disruptions of dynamic functional network stability, reflected by lower network switching rate in the resting state, are a feature of PTSD, and suggest that the fronto-parietal, default mode and limbic networks may play a critical role in the underlying neural mechanisms.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Kessler R.C.
        Posttraumatic stress disorder: the burden to the individual and to society.
        J Clin Psychiatry. 2000; 61 (; discussion 13-14): 4-12
        • Patel R.
        • Spreng R.N.
        • Shin L.M.
        • Girard T.A.
        Neurocircuitry models of posttraumatic stress disorder and beyond: A meta-analysis of functional neuroimaging studies.
        Neurosci Biobehav Rev. 2012; 36: 2130-2142
        • Bao W.J.
        • Gao Y.X.
        • Cao L.X.
        • Li H.L.
        • Liu J.
        • Liang K.L.
        • et al.
        Alterations in large-scale functional networks in adult posttraumatic stress disorder: A systematic review and meta-analysis of resting-state functional connectivity studies.
        Neurosci Biobehav Rev. 2021; 131: 1027-1036
        • Akiki T.J.
        • Averill C.L.
        • Wrocklage K.M.
        • Scott J.C.
        • Averill L.A.
        • Schweinsburg B.
        • et al.
        Default mode network abnormalities in posttraumatic stress disorder: A novel network-restricted topology approach.
        Neuroimage. 2018; 176: 489-498
        • Miller D.R.
        • Logue M.W.
        • Wolf E.J.
        • Maniates H.
        • Robinson M.E.
        • Hayes J.P.
        • et al.
        Posttraumatic stress disorder symptom severity is associated with reduced default mode network connectivity in individuals with elevated genetic risk for psychopathology.
        Depress Anxiety. 2017; 34: 632-640
        • Suo X.L.
        • Lei D.
        • Li W.B.
        • Yang J.
        • Li L.J.
        • Sweeney J.A.
        • et al.
        Individualized Prediction of PTSD Symptom Severity in Trauma Survivors From Whole-Brain Resting-State Functional Connectivity.
        Front Behav Neurosci. 2020; 14563152
        • Korgaonkar M.S.
        • Chakouch C.
        • Breukelaar I.A.
        • Erlinger M.
        • Felmingham K.L.
        • Forbes D.
        • et al.
        Intrinsic connectomes underlying response to trauma-focused psychotherapy in post-traumatic stress disorder.
        Transl Psychiatry. 2020; 10: 270
        • Sheynin J.
        • Duval E.R.
        • King A.P.
        • Angstadt M.
        • Phan K.L.
        • Simon N.M.
        • et al.
        Associations between resting-state functional connectivity and treatment response in a randomized clinical trial for posttraumatic stress disorder.
        Depress Anxiety. 2020; 37: 1037-1046
        • Hutchison R.M.
        • Womelsdorf T.
        • Allen E.A.
        • Bandettini P.A.
        • Calhoun V.D.
        • Corbetta M.
        • et al.
        Dynamic functional connectivity: Promise, issues, and interpretations.
        Neuroimage. 2013; 80: 360-378
        • Allen E.A.
        • Damaraju E.
        • Plis S.M.
        • Erhardt E.B.
        • Eichele T.
        • Calhoun V.D.
        Tracking Whole-Brain Connectivity Dynamics in the Resting State.
        Cereb Cortex. 2014; 24: 663-676
        • Zalesky A.
        • Fornito A.
        • Cocchi L.
        • Gollo L.L.
        • Breakspear M.
        Time-resolved resting-state brain networks.
        Proc Natl Acad Sci U S A. 2014; 111: 10341-10346
        • Liao X.H.
        • Cao M.
        • Xia M.R.
        • He Y.
        Individual differences and time-varying features of modular brain architecture.
        Neuroimage. 2017; 152: 94-107
        • Baker A.P.
        • Brookes M.J.
        • Rezek I.A.
        • Smith S.M.
        • Behrens T.
        • Smith P.J.P.
        • et al.
        Fast transient networks in spontaneous human brain activity.
        Elife. 2014; 3e01867
        • Jin C.F.
        • Jia H.
        • Lanka P.
        • Rangaprakash D.
        • Li L.J.
        • Liu T.M.
        • et al.
        Dynamic Brain Connectivity Is a Better Predictor of PTSD than Static Connectivity.
        Hum Brain Mapp. 2017; 38: 4479-4496
        • Yuan H.
        • Phillips R.
        • Wong C.K.
        • Zotev V.
        • Misaki M.
        • Wurfel B.
        • et al.
        Tracking resting state connectivity dynamics in veterans with PTSD.
        Neuroimage Clin. 2018; 19: 260-270
        • Fu S.S.
        • Ma X.F.
        • Wu Y.F.
        • Bai Z.G.
        • Yi Y.
        • Liu M.C.
        • et al.
        Altered Local and Large-Scale Dynamic Functional Connectivity Variability in Posttraumatic Stress Disorder: A Resting-State fMRI Study.
        Front Psychiatry. 2019; 10: 234
        • Li X.
        • Zhu D.J.
        • Jiang X.
        • Jin C.F.
        • Zhang X.
        • Guo L.
        • et al.
        Dynamic Functional Connectomics Signatures for Characterization and Differentiation of PTSD Patients.
        Hum Brain Mapp. 2014; 35: 1761-1778
        • Ou J.L.
        • Xie L.
        • Jin C.F.
        • Li X.
        • Zhu D.J.
        • Jiang R.X.
        • et al.
        Characterizing and Differentiating Brain State Dynamics via Hidden Markov Models.
        Brain Topogr. 2015; 28: 666-679
        • Kundu S.
        • Ming J.
        • Stevens J.
        Developing Multimodal Dynamic Functional Connectivity as a Neuroimaging Biomarker.
        Brain Connect. 2021; 11: 529-542
        • Mucha P.J.
        • Richardson T.
        • Macon K.
        • Porter M.A.
        • Onnela J.P.
        Community Structure in Time-Dependent, Multiscale, and Multiplex Networks.
        Science. 2010; 328: 876-878
        • Tang B.
        • Deng Q.
        • Glik D.
        • Dong J.
        • Zhang L.
        A Meta-Analysis of Risk Factors for Post-Traumatic Stress Disorder (PTSD) in Adults and Children after Earthquakes.
        Int J Environ Res Public Health. 2017; 14: 1537
        • Helpman L.
        • Zhu X.
        • Zilcha-Mano S.
        • Suarez-Jimenez B.
        • Lazarov A.
        • Rutherford B.
        • et al.
        Reversed patterns of resting state functional connectivity for females vs. males in posttraumatic stress disorder.
        Neurobiol Stress. 2021; 15100389
        • Luo Y.
        • Qi R.
        • Zhang L.
        • Qing Z.
        • Weng Y.
        • Wang W.
        • et al.
        Functional brain network topology in parents who lost their only child in China: Post-traumatic stress disorder and sex effects.
        J Affect Disord. 2019; 257: 632-639
      1. Weathers FW, Litz BT, Herman D, Huska J, Keane T. (1994): The PTSD checklist-civilian version (PCL-C). Boston, MA: National Center for PTSD.

      2. First MB, Spitzer RL, Gibbon M, Williams JB. (1994): Structured clinical interview for Axis I DSM-IV disorders. New York: Biometrics Research.

        • Blake D.D.
        • Weathers F.W.
        • Nagy L.M.
        • Kaloupek D.G.
        • Gusman F.D.
        • Charney D.S.
        • et al.
        The development of a Clinician-Administered PTSD Scale.
        J Trauma Stress. 1995; 8: 75-90
        • Li S.G.
        • Huang X.Q.
        • Li L.J.
        • Du F.
        • Li J.
        • Bi F.
        • et al.
        Posttraumatic Stress Disorder: Structural Characterization with 3-T MR Imaging.
        Radiology. 2016; 280: 537-544
        • Li L.
        • Lei D.
        • Li L.J.
        • Huang X.Q.
        • Suo X.L.
        • Xiao F.L.
        • et al.
        White Matter Abnormalities in Post-traumatic Stress Disorder Following a Specific Traumatic Event.
        Ebiomedicine. 2016; 4: 176-183
        • Niu R.N.
        • Lei D.
        • Chen F.Q.
        • Chen Y.
        • Suo X.L.
        • Li L.J.
        • et al.
        Reduced local segregation of single-subject gray matter networks in adult PTSD.
        Hum Brain Mapp. 2018; 39: 4884-4892
        • Suo X.
        • Lei D.
        • Li W.
        • Chen F.
        • Niu R.
        • Kuang W.
        • et al.
        Large-scale white matter network reorganization in posttraumatic stress disorder.
        Hum Brain Mapp. 2019; 40: 4801-4812
        • Kivelä M.
        • Arenas A.
        • Barthelemy M.
        • Gleeson J.P.
        • Moreno Y.
        • Porter M.A.
        Multilayer networks.
        J Complex Netw. 2014; 2: 203-271
        • Boccaletti S.
        • Bianconi G.
        • Criado R.
        • Del Genio C.I.
        • Gómez-Gardenes J.
        • Romance M.
        • et al.
        The structure and dynamics of multilayer networks.
        Phys Rep. 2014; 544: 1-122
        • Tewarie P.
        • Hillebrand A.
        • van Dijk B.W.
        • Stam C.J.
        • O'Neill G.C.
        • Van Mieghem P.
        • et al.
        Integrating cross-frequency and within band functional networks in resting-state MEG: A multi-layer network approach.
        Neuroimage. 2016; 142: 314-326
        • Buldu J.M.
        • Porter M.A.
        Frequency-based brain networks: From a multiplex framework to a full multilayer description.
        Netw Neurosci. 2018; 2: 418-441
        • Pedersen M.
        • Zalesky A.
        • Omidvarnia A.
        • Jackson G.D.
        Multilayer network switching rate predicts brain performance.
        Proc Natl Acad Sci U S A. 2018; 115: 13376-13381
        • Bassett D.S.
        • Wymbs N.F.
        • Porter M.A.
        • Mucha P.J.
        • Carlson J.M.
        • Grafton S.T.
        Dynamic reconfiguration of human brain networks during learning.
        Proc Natl Acad Sci U S A. 2011; 108: 7641-7646
        • Liu C.Y.
        • Han T.
        • Xu Z.X.
        • Liu J.H.
        • Zhang M.
        • Du J.L.
        • et al.
        Modulating Gamma Oscillations Promotes Brain Connectivity to Improve Cognitive Impairment.
        Cereb Cortex. 2022; 32: 2644-2656
        • Wu K.
        • Wang C.
        • Liu J.
        Evolutionary Multitasking Multilayer Network Reconstruction.
        Ieee Transactions on Cybernetics. 2021;
        • Battiston F.
        • Nicosia V.
        • Chavez M.
        • Latora V.
        Multilayer motif analysis of brain networks.
        Chaos. 2017; 27047404
        • Fan L.Z.
        • Li H.
        • Zhuo J.J.
        • Zhang Y.
        • Wang J.J.
        • Chen L.F.
        • et al.
        The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture.
        Cereb Cortex. 2016; 26: 3508-3526
        • Leonardi N.
        • Van De Ville D.
        On spurious and real fluctuations of dynamic functional connectivity during rest.
        Neuroimage. 2015; 104: 430-436
        • Pedersen M.
        • Omidvarnia A.
        • Zalesky A.
        • Jackson G.D.
        On the relationship between instantaneous phase synchrony and correlation-based sliding windows for time-resolved fMRI connectivity analysis.
        Neuroimage. 2018; 181: 85-94
        • Zalesky A.
        • Breakspear M.
        Towards a statistical test for functional connectivity dynamics.
        Neuroimage. 2015; 114: 466-470
        • Bassett D.S.
        • Porter M.A.
        • Wymbs N.F.
        • Grafton S.T.
        • Carlson J.M.
        • Mucha P.J.
        Robust detection of dynamic community structure in networks.
        Chaos. 2013; 23013142
        • Baltruschat S.
        • Candido A.
        • Megias A.
        • Maldonado A.
        • Catena A.
        Risk proneness modulates the impact of impulsivity on brain functional connectivity.
        Hum Brain Mapp. 2020; 41: 943-951
        • Jiang R.T.
        • Zuo N.M.
        • Ford J.M.
        • Qi S.L.
        • Zhi D.M.
        • Zhuo C.J.
        • et al.
        Task-induced brain connectivity promotes the detection of individual differences in brain-behavior relationships.
        Neuroimage. 2020; 207116370
        • Zhu Y.F.
        • Li X.S.
        • Qiao Y.F.
        • Shang R.H.
        • Shi G.
        • Shang Y.Y.
        • et al.
        Widespread plasticity of cognition-related brain networks in single-sided deafness revealed by randomize d window-base d dynamic functional connectivity.
        Med Image Anal. 2021; 73102163
        • Wang Q.
        • Hu K.
        • Wang M.
        • Zhao Y.X.
        • Liu Y.
        • Fan L.Z.
        • et al.
        Predicting brain age during typical and atypical development based on structural and functional neuroimaging.
        Hum Brain Mapp. 2021; 42: 5943-5955
        • Yan C.G.
        • Cheung B.
        • Kelly C.
        • Colcombe S.
        • Craddock R.C.
        • Di Martino A.
        • et al.
        A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics.
        Neuroimage. 2013; 76: 183-201
        • Lei T.
        • Liao X.
        • Chen X.
        • Zhao T.
        • Xu Y.
        • Xia M.
        • et al.
        Progressive Stabilization of Brain Network Dynamics during Childhood and Adolescence.
        Cereb Cortex. 2022; 32: 1024-1039
        • He L.
        • Zhuang K.
        • Li Y.
        • Sun J.
        • Meng J.
        • Zhu W.
        • et al.
        Brain flexibility associated with need for cognition contributes to creative achievement.
        Psychophysiology. 2019; 56e13464
        • Sporns O.
        • Betzel R.F.
        Modular brain networks.
        Annu Rev Psychol. 2016; 67: 613-640
        • Chang C.
        • Glover G.H.
        Time–frequency dynamics of resting-state brain connectivity measured with fMRI.
        Neuroimage. 2010; 50: 81-98
        • Leng X.
        • Qin C.
        • Lin H.
        • Li M.
        • Zhao K.
        • Wang H.
        • et al.
        Altered Topological Properties of Static/Dynamic Functional Networks and Cognitive Function After Radiotherapy for Nasopharyngeal Carcinoma Using Resting-State fMRI.
        Front Neurosci. 2021; 15690743
        • Hellyer P.J.
        • Shanahan M.
        • Scott G.
        • Wise R.J.
        • Sharp D.J.
        • Leech R.
        The control of global brain dynamics: opposing actions of frontoparietal control and default mode networks on attention.
        J Neurosci. 2014; 34: 451-461
        • Kaiser R.H.
        • Andrews-Hanna J.R.
        • Wager T.D.
        • Pizzagalli D.A.
        Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity.
        JAMA psychiatry. 2015; 72: 603-611
        • Yang Z.
        • Telesford Q.K.
        • Franco A.R.
        • Lim R.
        • Gu S.
        • Xu T.
        • et al.
        Measurement reliability for individual differences in multilayer network dynamics: Cautions and considerations.
        NeuroImage. 2021; 225117489
        • Marchitelli R.
        • Paillère-Martinot M.-L.
        • Bourvis N.
        • Guerin-Langlois C.
        • Kipman A.
        • Trichard C.
        • et al.
        Dynamic Functional Connectivity in Adolescence-Onset Major Depression: Relationships With Severity and Symptom Dimensions.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2022; 7: 385-396
        • Han S.Q.
        • Cui Q.
        • Wang X.
        • Li L.
        • Li D.
        • He Z.L.
        • et al.
        Resting state functional network switching rate is differently altered in bipolar disorder and major depressive disorder.
        Hum Brain Mapp. 2020; 41: 3295-3304
        • Raichle M.E.
        The Brain's Default Mode Network.
        Annu Rev Neurosci. 2015; 38: 433-447
        • Pang Y.J.
        • Wei Q.
        • Zhao S.S.
        • Li N.
        • Li Z.H.
        • Lu F.M.
        • et al.
        Enhanced default mode network functional connectivity links with electroconvulsive therapy response in major depressive disorder.
        J Affect Disord. 2022; 306: 47-54
        • Menon V.
        Large-scale brain networks and psychopathology: a unifying triple network model.
        Trends Cogn Sci. 2011; 15: 483-506
        • Catani M.
        • Dell'Acqua F.
        • Thiebaut de Schotten M.
        A revised limbic system model for memory, emotion and behaviour.
        Neurosci Biobehav Rev. 2013; 37: 1724-1737
        • Holtzheimer P.E.
        • Mayberg H.S.
        Stuck in a rut: rethinking depression and its treatment.
        Trends Neurosci. 2011; 34: 1-9
        • Hampshire A.
        • Chamberlain S.R.
        • Monti M.M.
        • Duncan J.
        • Owen A.M.
        The role of the right inferior frontal gyrus: inhibition and attentional control.
        Neuroimage. 2010; 50: 1313-1319
        • Stevens F.L.
        • Hurley R.A.
        • Taber K.H.
        Anterior cingulate cortex: unique role in cognition and emotion.
        J Neuropsychiatry Clin Neurosci. 2011; 23: 121-125
        • Liberzon I.
        • Martis B.
        Neuroimaging studies of emotional responses in PTSD.
        Ann N Y Acad Sci. 2006; 1071: 87-109
        • Thomaes K.
        • Dorrepaal E.
        • Draijer N.
        • de Ruiter M.B.
        • van Balkom A.J.
        • Smit J.H.
        • et al.
        Reduced anterior cingulate and orbitofrontal volumes in child abuse-related complex PTSD.
        J Clin Psychiatry. 2010; 71: 1636-1644
        • Fonzo G.A.
        • Goodkind M.S.
        • Oathes D.J.
        • Zaiko Y.V.
        • Harvey M.
        • Peng K.K.
        • et al.
        Selective effects of psychotherapy on frontopolar cortical function in PTSD.
        Am J Psychiatry. 2017; 174: 1175-1184
        • Peelen M.V.
        • He C.
        • Han Z.
        • Caramazza A.
        • Bi Y.
        Nonvisual and visual object shape representations in occipitotemporal cortex: evidence from congenitally blind and sighted adults.
        J Neurosci. 2014; 34: 163-170
        • Zachariou V.
        • Klatzky R.
        • Behrmann M.
        Ventral and dorsal visual stream contributions to the perception of object shape and object location.
        J Cogn Neurosci. 2014; 26: 189-209
        • Kroes M.
        • Whalley M.
        • Rugg M.
        • Brewin C.
        Association between flashbacks and structural brain abnormalities in posttraumatic stress disorder.
        Eur Psychiatry. 2011; 26: 525-531
        • Dossi G.
        • Delvecchio G.
        • Prunas C.
        • Soares J.C.
        • Brambilla P.
        Neural Bases of Cognitive Impairments in Post-Traumatic Stress Disorders: A Mini-Review of Functional Magnetic Resonance Imaging Findings.
        Front Psychiatry. 2020; 11: 176
        • Cheng B.C.
        • Huang X.Q.
        • Li S.G.
        • Hu X.Y.
        • Luo Y.
        • Wang X.L.
        • et al.
        Gray matter alterations in post-traumatic stress disorder, obsessive-compulsive disorder, and social anxiety disorder.
        Front Behav Neurosci. 2015; 9: 219
        • Daniels J.K.
        • Frewen P.
        • Theberge J.
        • Lanius R.A.
        Structural brain aberrations associated with the dissociative subtype of post-traumatic stress disorder.
        Acta Psychiatr Scand. 2016; 133: 232-240
        • Bourne C.
        • Mackay C.E.
        • Holmes E.A.
        The neural basis of flashback formation: the impact of viewing trauma.
        Psychol Med. 2013; 43: 1521-1532
        • Jeon S.
        • Lee Y.J.
        • Park I.
        • Kim N.
        • Kim S.
        • Jun J.Y.
        • et al.
        Resting state functional connectivity of the thalamus in North Korean refugees with and without posttraumatic stress disorder.
        Sci Rep. 2020; 10: 3194
        • Luo Y.F.
        • Liu Y.
        • Qing Z.
        • Zhang L.
        • Weng Y.F.
        • Zhang X.J.
        • et al.
        Sex Differences in Re-experiencing Symptoms Between Husbands and Wives Who Lost Their Only Child in China: A Resting-State Functional Connectivity Study of Hippocampal Subfields.
        Front Hum Neurosci. 2021; 15655044
        • Shvil E.
        • Sullivan G.M.
        • Schafer S.
        • Markowitz J.C.
        • Campeas M.
        • Wager T.D.
        • et al.
        Sex differences in extinction recall in posttraumatic stress disorder: a pilot fMRI study.
        Neurobiol Learn Mem. 2014; 113: 101-108
        • Woon F.
        • Hedges D.W.
        Gender does not moderate hippocampal volume deficits in adults with posttraumatic stress disorder: a meta-analysis.
        Hippocampus. 2011; 21: 243-252
        • Suo X.L.
        • Lei D.
        • Li W.B.
        • Sun H.Q.
        • Qin K.
        • Yang J.
        • et al.
        Psychoradiological abnormalities in treatment-naive noncomorbid patients with posttraumatic stress disorder.
        Depress Anxiety. 2022; 39: 83-91
        • Shen K.
        • Hutchison R.M.
        • Bezgin G.
        • Everling S.
        • McIntosh A.R.
        Network structure shapes spontaneous functional connectivity dynamics.
        Journal of Neuroscience. 2015; 35: 5579-5588
        • Sharot T.
        • Martorella E.A.
        • Delgado M.R.
        • Phelps E.A.
        How personal experience modulates the neural circuitry of memories of September 11.
        Proc Natl Acad Sci U S A. 2007; 104: 389-394
        • Pang Y.J.
        • Zhao S.S.
        • Li Z.H.
        • Li N.
        • Yu J.R.
        • Zhang R.
        • et al.
        Enduring effect of abuse: Childhood maltreatment links to altered theory of mind network among adults.
        Hum Brain Mapp. 2022; 43: 2276-2288
      3. Goldfarb EV, Scheinost D, Fogelman N, Seo D, Sinha R. (2022): High-risk drinkers engage distinct stress-predictive brain networks. Biol Psychiatry Cogn Neurosci Neuroimaging:S2451-9022(2422)00049-00040.

      4. Li T, Yang Y, Krueger F, Feng C, Wang J. (2021): Static and Dynamic Topological Organizations of the Costly Punishment Network Predict Individual Differences in Punishment Propensity. Cerebral Cortex. https://doi.org/10.1093/cercor/bhab462

        • Lui S.
        • Zhou X.H.J.
        • Sweeney J.A.
        • Gong Q.Y.
        Psychoradiology: The Frontier of Neuroimaging in Psychiatry.
        Radiology. 2016; 281: 357-372
      5. Gong Q. (2020): Psychoradiology. New York: Elsevier Inc Neuroimaging Clinics of North America 30:1-123.

        • Li F.
        • Sun H.
        • Biswal B.B.
        • Sweeney J.A.
        • Gong Q.
        Artificial intelligence applications in psychoradiology.
        Psychoradiology. 2021; 1: 94-107