Advertisement

Early Childhood Development of Node Centrality in the White Matter Connectome and its Relationship to IQ at 6 years

Published:September 23, 2022DOI:https://doi.org/10.1016/j.bpsc.2022.09.005

      Abstract

      Background

      The white matter (WM) connectome is important for cognitive development and intelligence and is altered in neuropsychiatric illnesses. Little is known about how the WM connectome develops or its relationship to IQ in early childhood.

      Methods

      The development of node centrality in the WM connectome was studied in a longitudinal cohort of 226 (123 female) children from the University of North Carolina (UNC) Early Brain Development Study. Structural and diffusion weighted images were acquired after birth and at 1, 2, 4 and 6 years and IQ was assessed at 6 years. Eigenvector centrality, betweenness centrality, and the global graph metrics of global efficiency, small worldness and modularity were determined at each age.

      Results

      The greatest developmental change in eigenvector centrality and betweenness centrality occurred in the first year of life with relative stability between ages 1 and 6 years. Most of the high centrality hubs at age 6 were also high centrality hubs at 1 year, and many were already high centrality hubs at birth. There were generally small but significant changes in global efficiency and modularity from birth to 6 years, while small worldness increased between 2 and 4 years. Individual node centrality was not significantly correlated with IQ at 6 years.

      Conclusions

      Node centrality in the WM connectome is established very early in childhood and is relatively stable from age 1 to 6 years. Many high centrality hubs are established before birth and most are present by age 1.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • van den Heuvel M.P.
        • Kahn R.S.
        • Goni J.
        • Sporns O.
        High-cost high capacity backbone for global brain communication.
        Proc Natl Acad Sci USA. 2012; 109: 11372-11377
        • Li Y.
        • Liu Y.
        • Li J.
        • Qin W.
        • Li K.
        • Yu C.
        • Jiang T.
        Brain anatomical network and intelligence.
        PLoS Comput Biol. 2009; 5e1000395
        • Bathelt J.
        • Gathercole S.E.
        • Butterfield S.
        • Astle D.E.
        • CALM Team
        Children's academic attainment is linked to the global organization of the white matter connectome.
        Dev Sci. 2018; 21e12662
        • Bathelt J.
        • Scerif G.
        • Nobre A.C.
        • Astle D.E.
        Whole-brain white matter organization, intelligence, and educational attainment.
        Trends Neurosci Educ. 2019; 15: 38-47
        • Suprano I.
        • Kocevar G.
        • Stamile C.
        • Hannoun S.
        • Fourneret P.
        • Revol O.
        • et al.
        White matter microarchitecture and structural network integrity correlate with children intelligence quotient.
        Sci Rep. 2020; 1020722
        • Crossley N.A.
        • Mechelli A.
        • Scott J.
        • Carletti F.
        • Fox P.T.
        • McGuire P.
        • Bullmore E.T.
        The hubs of the human connectome are generally implicated in the anatomy of brain disorders.
        Brain. 2014; 137: 2382-2395
        • Klauser P.
        • Baker S.T.
        • Cropley V.L.
        • Bousman C.
        • Fornito A.
        • Cocchi L.
        • et al.
        White matter disruptions in schizophrenia are spatially widespread and topologically converge on brain network hubs.
        Schizophr Bull. 2017; 43: 425-435
        • van den Heuvel M.P.
        • Sporns O.
        A cross disorder connectome landscape of brain dysconnecitivity.
        Nature Reviews. 2019; 20: 435-446
      1. de Lange SC, Scholtens LH, I. Alzheimer's Disease Neuroimaging, van den Berg LH, Boks MP, Bozzali M, et al. (2019): Shared vulnerability for connectome alterations across psychiatric and neurological brain disorders. Nat Hum Behav 3: 988-998.

        • Hagmann P.
        • Sporns O.
        • Maden N.
        • Cammoun L.
        • Pienaar R.
        • Wedeen V.J.
        • et al.
        White matter maturation reshapes structural connectivity in the late developing human brain.
        Proc Natl Acad Sci USA. 2010; 107: 19067-19072
        • Yap P.T.
        • Fan Y.
        • Chen Y.
        • Gilmore J.H.
        • Lin W.
        • Shen D.
        Development trends of white matter connectivity in the first years of life.
        PLOS One. 2011; 6e24678
        • Huang H.
        • Shu N.
        • Mishra V.
        • Jeon T.
        • Chalak L.
        • Wang Z.J.
        • et al.
        Development of human brain structural networks through infancy and childhood.
        Cereb Cortex. 2015; 25: 1389-1404
        • Ball G.
        • Aljabar P.
        • Zebari S.
        • Tusor N.
        • Arichi T.
        • Merchant N.
        • et al.
        Rich-club organization of the newborn human brain.
        Proc Natl Acad Sci USA. 2014; 111: 7456-7461
        • van den Heuvel M.P.
        • Kersbergen K.J.
        • de Reus M.A.
        • Keunen K.
        • Kahn R.S.
        • Groenendall F.
        • et al.
        The neonatal connectome during preterm development.
        Cereb Cortex. 2015; 25: 3000-3013
        • Batalle D.
        • Hughes E.J.
        • Zhang H.
        • Tournier J.D.
        • Tusor N.
        • Aljabar P.
        • et al.
        Early development of structural networks and the impact of prematurity on brain connectivity.
        NeuroImage. 2017; 149: 379-392
        • Cao M.
        • Huang H.
        • Peng Y.
        • Dong Q.
        • He Y.
        Toward developmental connectomics of the human brain.
        Front Neuroanat. 2016; 10: 25
        • Oldham S.
        • Fornito A.
        The development of brain network hubs.
        Dev Cogn Neurosci. 2019; 36100607
        • van den Heuvel M.P.
        • Sporns O.
        Network hubs in the human brain.
        Trend Cogn Sci. 2013; 17: 683-696
        • Donahue C.J.
        • Sotiropouplo S.N.
        • Jabadi S.
        • Hernandez-Fernandez M.
        • Behrens T.E.
        • Dyrby T.B.
        • et al.
        Using diffusion tractography to predict cortical connection strength and distance: a quantitative comparison with tracers in the monkey.
        J Neurosci. 2016; 36: 6758-6770
        • Shen K.
        • Bezgin G.
        • Schirner M.
        • Ritter P.
        • Everling S.
        • McIntosh A.R.
        A macaque connectome for large scale network simulations in TheVirtualBrain.
        Scientific Data. 2019; 6: 123
        • Shen K.
        • Goulas A.
        • Grayson D.S.
        • Eusebio J.
        • Gati J.S.
        • Menon R.S.
        • et al.
        Exploring the limits of network topography estimation using diffusion-based tractography and tracer studies in the macaque cortex.
        NeuroImage. 2019; 191: 81-92
        • Haber S.N.
        • Tang W.
        • Choi E.Y.
        • Yendiki A.
        • Liu H.
        • Jbabdi S.
        • et al.
        Circuits networks and neuropsychiatric disease: transitioning from anatomy to imaging.
        Biol Psychiatry. 2020; 87: 318-327
        • Misic B.
        • Betzel R.F.
        • de Reus M.A.
        • van den Heuvel M.P.
        • Berman M.G.
        • McIntosh A.R.
        • Sporns O.
        Network-level structure-function relationships in human neocortex.
        Cereb Cortex. 2016; 26: 3285-3295
        • Rubinov M.
        • Sporns O.
        Complex measures of brain connectivity: uses and interpretation.
        NeuroImage. 2010; 52: 1059-1069
        • Gilmore J.H.
        • Knickmeyer R.C.
        • Gao W.
        Imaging structural and functional brain development in early childhood.
        Nature Reviews Neuroscience. 2018; 19: 123-137
        • Zamora C.
        • Sams C.
        • Cornea E.A.
        • Yuan Z.
        • Smith J.K.
        • Gilmore J.H.
        Subdural hemorrhage in asymptomatic neonates: neurodevelopmental outcomes and MRI findings at 2 Years.
        Radiology. 2021; 298: 173-179
      2. Kübler U (2013): Structured Clinical Interview for DSM-IV (SCID). Encycl Behav Med. New York, NY: Springer New York, pp 1919–1920.

      3. Roid GH. (2003): Stanford-Binet intelligence scales (5th ed.) Itasca, IL: Riverside.

        • Girault J.B.
        • Cornea E.
        • Goldman B.D.
        • Jha S.C.
        • Murphy V.A.
        • Li G.
        • et al.
        Cortical structure and cognition in infants and toddlers.
        Cereb Cortex. 2020; 30: 786-800
        • Gilmore J.H.
        • Langworthy B.
        • Girault J.B.
        • Fine J.
        • Jha S.C.
        • Kim S.H.
        • et al.
        Individual variation of human cortical structure is established in the first year of life.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2020; 5: 971-980
        • Wang J.
        • Vachet C.
        • Rumple A.
        • Gouttard S.
        • Ouziel C.
        • Perrot E.
        • et al.
        Multi-atlas segmentation of subcortical brain structures via the AutoSeg software pipeline.
        Frontiers in Neuroinformatics. 2014; 8: 7
        • Shaw P.
        • Malek M.
        • Watson B.
        • Sharp W.
        • Evans A.
        • et al.
        Development of cortical surface area and gyrification in attention-deficit/hyperactivity disorder.
        Biological Psychiatry. 2012; 72: 191-197
        • Shaw P.
        • Malek M.
        • Watson B.
        • Sharp W.
        • Evans A.
        • Greenstein D.
        Neurodevelopmental trajectories of the human cerebral cortex.
        J Neurosci. 2008; 28: 3586-3594
        • Prastawa M.
        • Gilmore J.H.
        • Lin W.
        • Gerig G.
        Automatic segmentation of MR images of the developing newborn brain.
        Medical Image Analysis. 2005; 9: 457-466
        • Jha S.C.
        • Xai K.
        • Schmitt J.E.
        • Ahn M.
        • Girault J.B.
        • Murphy V.A.
        • et al.
        Genetic influences on neonatal cortical thickness and surface area.
        Hum Brain Mapp. 2018; 12: 5616-5625
        • Tzourio-Mazoyer N.
        • et al.
        Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.
        Neuroimage. 2002; 15: 273-289
        • Oguz I.
        • Farzinfar M.
        • Matsui J.
        • Budin F.
        • Liu Z.
        • Gerig G.
        • et al.
        DTIPrep: quality control of diffusion-weighted images.
        Front Neuroinform. 2014; 8: 4
        • Avants B.B.
        • Tustison N.J.
        • Song G.
        • Cook P.A.
        • Klein A.
        • Gee J.C.
        • et al.
        A reproducible evaluation of ANTs similarity metric performance in brain image registration.
        Neuroimage. 2011; 54: 2033-2044
        • Puechmaille D.
        • Styner M.
        • Prieto J.C.
        CIVILITY: Cloud based interactive visualization of tractography brain connectome.
        Proc SPIE Int Soc Opt Eng. 2017; 10137
        • Whitfield-Gabrieli S.
        • Nieto-Castanon A.
        Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks.
        Brain Connect. 2012; 2: 125-141
        • Jean-Philippe Fortin J.-P.
        • Cullen N.
        • Sheline Y.I.
        • Taylor W.D.
        • Aselcioglu I.
        • Cook P.A.
        • et al.
        Harmonization of cortical thickness measurements across scanners and sites.
        NeuroImage. 2018; 167: 104-120
        • Stephens R.L.
        • Langworthy B.W.
        • Short S.J.
        • Girault J.B.
        • Styner M.A.
        • Gilmore J.H.
        White matter development from birth to 6 years of age: a longitudinal study.
        Cereb Cortex. 2020; 30: 6152-6168
        • Baum G.L.
        • Cui Z.
        • Roalf D.R.
        • Ciric R.
        • Betzel R.F.
        • Larsen B.
        • et al.
        Development of structure-function coupling in human brain networks during youth.
        Proc Natl Acad Sci USA. 2020; 117: 771-778
        • Gao W.
        • Alcauter S.
        • Smith J.K.
        • Gilmore J.H.
        • Lin W.
        Development of human brain cortical network architecture during infancy.
        Brain Struct Funct. 2015; 220: 1173-1186
        • Cao M.
        • Huang H.
        • He Y.
        Developmental connectomics from infancy through early childhood.
        Trends Neurosci. 2017; 40: 494-506
        • Chen H.
        • Liu J.
        • Chen Y.
        • Salzwedel A.
        • Cornea E.
        • Gilmore J.H.
        • Gao W.
        Developmental heatmaps of brain functional connectivity from newborns to 6-year-olds.
        Dev Cogn Neurosci. 2021; 50100976
        • van den Heuvel M.P.
        • Sporns O.
        Rich-club organization of the human connectome.
        Journal of Neuroscience. 2011; 31: 15775-15786
        • Chen Z.
        • Liu M.
        • Gross D.W.
        • Beaulieu C.
        Graph theoretical analysis of developmental patterns of the white matter network.
        Front Hum Neurosci. 2013; 7: 716
        • Assaf Y.
        • Bouznach A.
        • Zomet O.
        • Marom A.
        • Yovel Y.
        Conservation of brain connectivity and wiring across the mammalian class.
        Nat Neurosci. 2020; 23: 805-808
        • Kaiser M.
        Mechanisms of connectome development.
        Trends Cogn Sci. 2017; 21: 703-717
        • Goulas A.
        • Betzel R.F.
        • Hilgetag C.C.
        Spatiotemporal ontogeny of brain wiring.
        Sci Adv. 2019; 5eaav9694
        • Arnatkeviciute A.
        • Fulcher B.D.
        • Oldham S.
        • Tiego J.
        • Paquola C.
        • Gerring Z.
        • et al.
        Genetic influences on hub connectivity of the human connectome.
        Nat Commun. 2021; 12: 4237
        • Ingalhalikar M.
        • Smith A.
        • Parkler D.
        • Satterhwaite T.D.
        • Elliott M.A.
        • Ruparel K.
        • et al.
        Sex differences in the structural connectome of the human brain.
        Proc Natl Acad Sci USA. 2014; 111: 823-828
        • Wang B.
        • Zhan Q.
        • Yan T.
        • Imtiaz S.
        • Xiang J.
        • Niu Y.
        • et al.
        Hemisphere and gender differences in the rich-club organization of structural networks.
        Cereb Cortex. 2019; 29: 4889-4901
        • Kaczkurkin A.N.
        • Raznahan A.
        • Satterthwaite T.D.
        Sex differences in the developing brain: insights from multimodal neuroimaging.
        Neuropsychopharmacology. 2019; 44: 71-85
        • Tamnes C.K.
        • Roalf D.R.
        • Goddings A.L.
        • Lebel C.
        Diffusion MRI of white matter microstructure development in childhood and adolescence: Methods challenges and progress.
        Dev Cogn Neurosci. 2018; 33: 161-175
        • Kawahara J.
        • Brown C.J.
        • Miller S.P.
        • Booth B.G.
        • Chau V.
        • Grunau R.E.
        • et al.
        BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment.
        Neuroimage. 2017; 146: 1038-1049
        • Girault J.B.
        • Munsell B.C.
        • Puechmaille D.
        • Goldman B.D.
        • Prieto J.C.
        • Styner M.
        • Gilmore J.H.
        White matter connectomes at birth accurately predict cognitive abilities at age 2.
        NeuroImage. 2019; 192: 145-155
        • Munsell B.C.
        • Gleichgerrcht E.
        • Hofesmann E.
        • Delgaizo J.
        • McDonald C.R.
        • Marebwa B.
        • et al.
        Personalized connectome fingerprints: Their importance in cognition from childhood to adult years.
        Neuroimage. 2020; 221117122
        • Chen M.
        • Li H.
        • Wang J.
        • Yuan W.
        • Altaye M.
        • Parikh N.A.
        • He L.
        Early prediction of cognitive deficit in very preterm infants using brain structural connectome with transfer learning enhanced deep convolutional neural networks.
        Front Neurosci. 2020; 14: 858
        • Gilmore J.
        • Bagonis M.
        • Williams J.
        • Stephens R.
        • Cornea E.
        • Styner M.
        • Munsell B.
        The white matter connectome as an early imaging biomarker.
        Biological Psychiatry. 2021; 89: S30
        • Kim D.J.
        • Davis E.P.
        • Sandman C.A.
        • Sporns O.
        • O'Donnell B.F.
        • Buss C.
        • Hetrick W.P.
        Children's intellectual ability is associated with structural network integrity.
        NeuroImage. 2016; 124: 550-556
        • Xia M.
        • Wang J.
        • He Y.
        BrainNet Viewer: A network visualization tool for human brain connectomics.
        PLOS One. 2013; 8e68910