Advertisement

The role of puberty and sex on brain structure in adolescents with anxiety following concussion

Published:October 12, 2022DOI:https://doi.org/10.1016/j.bpsc.2022.09.013

      Abstract

      Background

      Adolescence represents a window of vulnerability for developing psychological symptoms following concussion, especially in girls. Concussion-related lesions in emotion regulation circuits may help explain these symptoms. However, the contribution of sex and pubertal maturation remains unclear. Using Neurite Density Index (NDI) in emotion regulation tracts (left/right cingulum bundle, CB; forceps minor, FMIN; and left/right uncinate fasciculus, UF), we sought to elucidate these relationships.

      Methods

      No adolescent had history of anxiety and/or depression. The Screen for Child Anxiety Related Disorders (SCARED) and Children’s Depression Rating Scale (CDRS) were used at scan to assess anxiety and depressive symptoms in 55 concussed (female=41.8%) and 50 control adolescents with no current/history of concussion (female=44%). We evaluated if a mediation-moderation model including NDI (mediation) and sex or pubertal status (moderation) could help explain this relationship.

      Results

      Relative to controls, concussed adolescents showed higher anxiety (P=0.003) and lower NDI with those more advanced pubertal maturation showing greater abnormalities in four clusters: left CB frontal (P=0.002), right CB frontal (P=0.011), FMIN left-sided (P=0.003) and FMIN right-sided (P=0.003). Across all concussed adolescents, lower NDI in the left CB frontal and FMIN left-sided clusters partially mediated the association between concussion and anxiety with the CB being specific to female adolescents. These effects did not explain depressive symptoms.

      Conclusions

      Our findings indicate that lower NDI in the CB and FMIN may help explain anxiety following concussion and that adolescents at more advanced (vs less advanced) status of pubertal maturation may be more vulnerable to concussion-related injuries, especially in girls.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Bryan M.A.
        • Rowhani-Rahbar A.
        • Comstock R.D.
        • Rivara F.
        Sports-and recreation-related concussions in US youth.
        Pediatrics. 2016; 138e20154635
        • Veliz P.
        • McCabe S.E.
        • Eckner J.T.
        • Schulenberg J.E.
        Prevalence of concussion among US adolescents and correlated factors.
        Jama. 2017; 318: 1180-1182
      1. Faul M, Wald MM, Xu L, Coronado VG (2010): Traumatic brain injury in the United States; emergency department visits, hospitalizations, and deaths, 2002-2006.

        • Zhang A.L.
        • Sing D.C.
        • Rugg C.M.
        • Feeley B.T.
        • Senter C.
        The rise of concussions in the adolescent population.
        Orthopaedic journal of sports medicine. 2016; 42325967116662458
        • Field M.
        • Collins M.W.
        • Lovell M.R.
        • Maroon J.
        Does age play a role in recovery from sports-related concussion? A comparison of high school and collegiate athletes.
        J Pediatr. 2003; 142: 546-553
        • Halstead M.E.
        • Walter K.D.
        • Moffatt K.
        Council on Sports Medicine and Fitness.
        American Academy of Pediatrics Clinical report—sport-related concussion in children and adolescents Pediatrics. 2010; 126: 597-615
        • Shenton M.E.
        • Hamoda H.
        • Schneiderman J.
        • Bouix S.
        • Pasternak O.
        • Rathi Y.
        • et al.
        A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury.
        Brain imaging and behavior. 2012; 6: 137-192
        • McCrory P.
        • Meeuwisse W.
        • Dvorak J.
        • Aubry M.
        • Bailes J.
        • Broglio S.
        • et al.
        Consensus statement on concussion in sport—the 5th international conference on concussion in sport held in Berlin, October 2016.
        British Journal of Sports Medicine. 2017; 51: 838-847
        • Kontos A.P.
        • Sufrinko A.
        • Sandel N.
        • Emami K.
        • Collins M.W.
        Sport-related concussion clinical profiles: clinical characteristics, targeted treatments, and preliminary evidence.
        Current sports medicine reports. 2019; 18: 82-92
        • Collins M.W.
        • Kontos A.P.
        • Reynolds E.
        • Murawski C.D.
        • Fu F.H.
        A comprehensive, targeted approach to the clinical care of athletes following sport-related concussion.
        Knee Surgery, Sports Traumatology, Arthroscopy. 2014; 22: 235-246
        • Sandel N.
        • Reynolds E.
        • Cohen P.E.
        • Gillie B.L.
        • Kontos A.P.
        Anxiety and mood clinical profile following sport-related concussion: From risk factors to treatment.
        Sport, exercise, and performance psychology. 2017; 6: 304
        • Davis G.A.
        • Anderson V.
        • Babl F.E.
        • Gioia G.A.
        • Giza C.C.
        • Meehan W.
        • et al.
        What is the difference in concussion management in children as compared with adults? A systematic review.
        British journal of sports medicine. 2017; 51: 949-957
        • McCrory P.
        • Meeuwisse W.
        • Dvorak J.
        • Aubry M.
        • Bailes J.
        • Broglio S.
        • et al.
        Consensus statement on concussion in sport—the 5th international conference on concussion in sport held in Berlin, October 2016.
        British journal of sports medicine. 2017; 51: 838-847
        • Iverson G.L.
        • Gardner A.J.
        • Terry D.P.
        • Ponsford J.L.
        • Sills A.K.
        • Broshek D.K.
        • et al.
        Predictors of clinical recovery from concussion: a systematic review.
        British journal of sports medicine. 2017; 51: 941-948
        • Kontos A.P.
        • Covassin T.
        • Elbin R.
        • Parker T.
        Depression and neurocognitive performance after concussion among male and female high school and collegiate athletes.
        Archives of physical medicine and rehabilitation. 2012; 93: 1751-1756
        • Barlow K.M.
        • Crawford S.
        • Stevenson A.
        • Sandhu S.S.
        • Belanger F.
        • Dewey D.
        Epidemiology of postconcussion syndrome in pediatric mild traumatic brain injury.
        Pediatrics. 2010; 126: e374-381
      2. Ponsford J (2017): Predictors of clinical recovery from concussion: a systematic review.

        • Zuckerman S.L.
        • Lee Y.M.
        • Odom M.J.
        • Solomon G.S.
        • Forbes J.A.
        • Sills A.K.
        Recovery from sports-related concussion: days to return to neurocognitive baseline in adolescents versus young adults.
        Surgical neurology international. 2012; 3
        • Crowe L.
        • Collie A.
        • Hearps S.
        • Dooley J.
        • Clausen H.
        • Maddocks D.
        • et al.
        Cognitive and physical symptoms of concussive injury in children: a detailed longitudinal recovery study.
        Br J Sports Med. 2016; 50: 311-316
        • Barlow K.M.
        Postconcussion Syndrome: A Review.
        J Child Neurol. 2016; 31: 57-67
        • Bock S.
        • Grim R.
        • Barron T.F.
        • Wagenheim A.
        • Hu Y.E.
        • Hendell M.
        • et al.
        Factors associated with delayed recovery in athletes with concussion treated at a pediatric neurology concussion clinic.
        Child's Nervous System. 2015; 31: 2111-2116
        • Covassin T.
        • Elbin R.
        • Harris W.
        • Parker T.
        • Kontos A.
        The role of age and sex in symptoms, neurocognitive performance, and postural stability in athletes after concussion.
        The American journal of sports medicine. 2012; 40: 1303-1312
        • Ledoux A.-A.
        • Tang K.
        • Yeates K.O.
        • Pusic M.V.
        • Boutis K.
        • Craig W.R.
        • et al.
        Natural progression of symptom change and recovery from concussion in a pediatric population.
        JAMA pediatrics. 2019; 173 (e183820): e183820
        • Zemek R.
        • Barrowman N.
        • Freedman S.B.
        • Gravel J.
        • Gagnon I.
        • McGahern C.
        • et al.
        Clinical risk score for persistent postconcussion symptoms among children with acute concussion in the.
        Jama. 2016; 315: 1014-1025
        • Arnold A.P.
        • Breedlove S.M.
        Organizational and activational effects of sex steroids on brain and behavior: A reanalysis.
        Hormones and Behavior. 1985; 19: 469-498
        • Menzies L.
        • Goddings A.-L.
        • Whitaker K.J.
        • Blakemore S.-J.
        • Viner R.M.
        The effects of puberty on white matter development in boys.
        Developmental cognitive neuroscience. 2015; 11: 116-128
        • Charmandari E.
        • Kino T.
        • Souvatzoglou E.
        • Chrousos G.P.
        Pediatric Stress: Hormonal Mediators and Human Development.
        Hormone Research in Paediatrics. 2003; 59: 161-179
        • Walker E.F.
        • Sabuwalla Z.
        • Huot R.
        Pubertal neuromaturation, stress sensitivity, and psychopathology.
        Development and psychopathology. 2004; 16: 807-824
        • Liao Z.
        • Patel Y.
        • Khairullah A.
        • Parker N.
        • Paus T.
        Pubertal testosterone and the structure of the cerebral cortex in young men.
        Cerebral Cortex. 2021; 31: 2812-2821
        • Giedd J.N.
        • Blumenthal J.
        • Jeffries N.O.
        • Castellanos F.X.
        • Liu H.
        • Zijdenbos A.
        • et al.
        Brain development during childhood and adolescence: a longitudinal MRI study.
        Nature neuroscience. 1999; 2: 861
        • Sowell E.R.
        • Peterson B.S.
        • Thompson P.M.
        • Welcome S.E.
        • Henkenius A.L.
        • Toga A.W.
        Mapping cortical change across the human life span.
        Nature neuroscience. 2003; 6: 309
        • Gogtay N.
        • Giedd J.N.
        • Lusk L.
        • Hayashi K.M.
        • Greenstein D.
        • Vaituzis A.C.
        • et al.
        Dynamic mapping of human cortical development during childhood through early adulthood.
        Proceedings of the National Academy of Sciences. 2004; 101: 8174-8179
        • Toga A.W.
        • Thompson P.M.
        • Sowell E.R.
        Mapping brain maturation.
        Focus. 2006; 29: 148-390
        • Giedd J.N.
        • Rapoport J.L.
        Structural MRI of pediatric brain development: what have we learned and where are we going?.
        Neuron. 2010; 67: 728-734
        • Reiss A.L.
        • Abrams M.T.
        • Singer H.S.
        • Ross J.L.
        • Denckla M.B.
        Brain development, gender and IQ in children: a volumetric imaging study.
        Brain. 1996; 119: 1763-1774
        • Sowell E.R.
        • Thompson P.M.
        • Tessner K.D.
        • Toga A.W.
        Mapping continued brain growth and gray matter density reduction in dorsal frontal cortex: Inverse relationships during postadolescent brain maturation.
        Journal of Neuroscience. 2001; 21: 8819-8829
        • Barnea-Goraly N.
        • Menon V.
        • Eckert M.
        • Tamm L.
        • Bammer R.
        • Karchemskiy A.
        • et al.
        White matter development during childhood and adolescence: a cross-sectional diffusion tensor imaging study.
        Cerebral cortex. 2005; 15: 1848-1854
        • Paus T.
        Mapping brain maturation and cognitive development during adolescence.
        Trends in cognitive sciences. 2005; 9: 60-68
        • Blakemore S.J.
        • Choudhury S.
        Development of the adolescent brain: implications for executive function and social cognition.
        Journal of child psychology and psychiatry. 2006; 47: 296-312
        • Bubb E.J.
        • Metzler-Baddeley C.
        • Aggleton J.P.
        The cingulum bundle: Anatomy, function, and dysfunction.
        Neuroscience & Biobehavioral Reviews. 2018; 92: 104-127
        • Fabri M.
        • Pierpaoli C.
        • Barbaresi P.
        • Polonara G.
        Functional topography of the corpus callosum investigated by DTI and fMRI.
        World journal of radiology. 2014; 6: 895
        • Von Der Heide R.J.
        • Skipper L.M.
        • Klobusicky E.
        • Olson I.R.
        Dissecting the uncinate fasciculus: disorders, controversies and a hypothesis.
        Brain. 2013; 136: 1692-1707
        • Schmied A.
        • Soda T.
        • Gerig G.
        • Styner M.
        • Swanson M.R.
        • Elison J.T.
        • et al.
        Sex differences associated with corpus callosum development in human infants: A longitudinal multimodal imaging study.
        Neuroimage. 2020; 215
        • Tsuzuki D.
        • Taga G.
        • Watanabe H.
        • Homae F.
        Individual variability in the nonlinear development of the corpus callosum during infancy and toddlerhood: a longitudinal MRI analysis.
        Brain Structure & Function. 2022; 227: 1995-2013
        • Bjornholm L.
        • Nikkinen J.
        • Kiviniemi V.
        • Nordstrom T.
        • Niemela S.
        • Drakesmith M.
        • et al.
        Structural properties of the human corpus callosum: Multimodal assessment and sex differences.
        Neuroimage. 2017; 152: 108-118
        • Shukla A.
        • Ware A.L.
        • Guo S.
        • Goodyear B.
        • Beauchamp M.H.
        • Zemek R.
        • et al.
        Examining brain white matter after pediatric mild traumatic brain injury using neurite orientation dispersion and density imaging: An A-CAP study.
        Neuroimage Clin. 2021; 32102887
        • Skandsen T.
        • Kvistad K.A.
        • Solheim O.
        • Strand I.H.
        • Folvik M.
        • Vik A.
        Prevalence and impact of diffuse axonal injury in patients with moderate and severe head injury: a cohort study of early magnetic resonance imaging findings and 1-year outcome.
        Journal of neurosurgery. 2010; 113: 556-563
        • Browne K.D.
        • Chen X.-H.
        • Meaney D.F.
        • Smith D.H.
        Mild traumatic brain injury and diffuse axonal injury in swine.
        Journal of neurotrauma. 2011; 28: 1747-1755
        • Johnson V.E.
        • Stewart W.
        • Smith D.H.
        Axonal pathology in traumatic brain injury.
        Experimental neurology. 2013; 246: 35-43
        • Smith D.H.
        • Meaney D.F.
        • Shull W.H.
        Diffuse axonal injury in head trauma.
        The Journal of head trauma rehabilitation. 2003; 18: 307-316
        • Khong E.
        • Odenwald N.
        • Hashim E.
        • Cusimano M.D.
        Diffusion tensor imaging findings in post-concussion syndrome patients after mild traumatic brain injury: a systematic review.
        Frontiers in neurology. 2016; 7: 156
        • Lima Santos J.P.
        • Kontos A.P.
        • Mailliard S.
        • Eagle S.R.
        • Holland C.L.
        • Suss Jr., S.J.
        • et al.
        White matter abnormalities associated with prolonged recovery in adolescents following concussion.
        Frontiers in neurology. 2021; 12
        • Yallampalli R.
        • Wilde E.A.
        • Bigler E.D.
        • McCauley S.R.
        • Hanten G.
        • Troyanskaya M.
        • et al.
        Acute white matter differences in the fornix following mild traumatic brain injury using diffusion tensor imaging.
        Journal of Neuroimaging. 2013; 23: 224-227
        • Borich M.
        • Makan N.
        • Boyd L.
        • Virji-Babul N.
        Combining whole-brain voxel-wise analysis with in vivo tractography of diffusion behavior after sports-related concussion in adolescents: a preliminary report.
        Journal of neurotrauma. 2013; 30: 1243-1249
        • Babcock L.
        • Yuan W.
        • Leach J.
        • Nash T.
        • Wade S.
        White matter alterations in youth with acute mild traumatic brain injury.
        Journal of pediatric rehabilitation medicine. 2015; 8: 285-296
        • Fakhran S.
        • Yaeger K.
        • Collins M.
        • Alhilali L.
        Sex differences in white matter abnormalities after mild traumatic brain injury: localization and correlation with outcome.
        Radiology. 2014; 272: 815-823
      3. Bigler ED, Allder S (2021): Earliest Marker of Brain Injury in Repetitive Sports-Related Concussion: Canary in the Midline? : AAN Enterprises.

        • Churchill N.W.
        • Hutchison M.G.
        • Graham S.J.
        • Schweizer T.A.
        Acute and chronic effects of multiple concussions on midline brain structures.
        Neurology. 2021; 97: e1170-e1181
        • Zhang H.
        • Schneider T.
        • Wheeler-Kingshott C.A.
        • Alexander D.C.
        NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain.
        Neuroimage. 2012; 61: 1000-1016
        • Zhang H.
        • Schneider T.
        • Wheeler-Kingshott C.A.
        • Alexander D.C.
        NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain.
        Neuroimage. 2012; 61: 1000-1016
        • Fukutomi H.
        • Glasser M.F.
        • Zhang H.
        • Autio J.A.
        • Coalson T.S.
        • Okada T.
        • et al.
        Neurite imaging reveals microstructural variations in human cerebral cortical gray matter.
        NeuroImage. 2018; 182: 488-499
        • Beck D.
        • de Lange A.-M.G.
        • Maximov II,
        • Richard G.
        • Andreassen O.A.
        • Nordvik J.E.
        • et al.
        White matter microstructure across the adult lifespan: A mixed longitudinal and cross-sectional study using advanced diffusion models and brain-age prediction.
        NeuroImage. 2021; 224117441
        • Sato K.
        • Kerever A.
        • Kamagata K.
        • Tsuruta K.
        • Irie R.
        • Tagawa K.
        • et al.
        Understanding microstructure of the brain by comparison of neurite orientation dispersion and density imaging (NODDI) with transparent mouse brain.
        Acta radiologica open. 2017; 62058460117703816
        • Wang Z-x
        • Zhu W-z
        • Zhang S.
        • Shaghaghi M.
        • Cai K-j
        Neurite orientation dispersion and density imaging of rat brain microstructural changes due to middle cerebral artery occlusion at a 3T MRI.
        Current Medical Science. 2021; 41: 167-172
        • McCunn P.
        • Xu X.
        • Moszczynski A.
        • Li A.
        • Brown A.
        • Bartha R.
        Neurite orientation dispersion and density imaging in a rodent model of acute mild traumatic brain injury.
        J Neuroimaging. 2021; 31: 879-892
        • Shultz S.R.
        • MacFabe D.F.
        • Foley K.A.
        • Taylor R.
        • Cain D.P.
        Sub-concussive brain injury in the Long-Evans rat induces acute neuroinflammation in the absence of behavioral impairments.
        Behavioural Brain Research. 2012; 229: 145-152
        • Giza C.C.
        • Hovda D.A.
        The new neurometabolic cascade of concussion.
        Neurosurgery. 2014; 75: S24-33
        • Howell D.R.
        • Southard J.
        The Molecular Pathophysiology of Concussion.
        Clin Sports Med. 2021; 40: 39-51
        • Churchill N.W.
        • Caverzasi E.
        • Graham S.J.
        • Hutchison M.G.
        • Schweizer T.A.
        White matter during concussion recovery: Comparing diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI).
        Human brain mapping. 2019; 40: 1908-1918
        • Palacios E.M.
        • Owen J.P.
        • Yuh E.L.
        • Wang M.B.
        • Vassar M.J.
        • Ferguson A.R.
        • et al.
        The evolution of white matter microstructural changes after mild traumatic brain injury: a longitudinal DTI and NODDI study.
        Science advances. 2020; 6eaaz6892
        • Churchill N.W.
        • Caverzasi E.
        • Graham S.J.
        • Hutchison M.G.
        • Schweizer T.A.
        White matter microstructure in athletes with a history of concussion: comparing diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI).
        Human brain mapping. 2017; 38: 4201-4211
      4. Caron B, Bullock D, Kitchell L, McPherson BC, Kellar DA, Cheng H, et al. (2020): Advanced mapping of the human white matter microstructure better separates elite sports participation.

        • Ellis M.J.
        • Ritchie L.J.
        • Koltek M.
        • Hosain S.
        • Cordingley D.
        • Chu S.
        • et al.
        Psychiatric outcomes after pediatric sports-related concussion.
        Journal of Neurosurgery: Pediatrics. 2015; 16: 709-718
        • Miller J.H.
        • Gill C.
        • Kuhn E.N.
        • Rocque B.G.
        • Menendez J.Y.
        • O'Neill J.A.
        • et al.
        Predictors of delayed recovery following pediatric sports-related concussion: a case-control study.
        Journal of Neurosurgery: Pediatrics. 2016; 17: 491-496
        • Chiang Colvin A.
        • Mullen J.
        • Lovell M.R.
        • Vereeke West R.
        • Collins M.W.
        • Groh M.
        The role of concussion history and gender in recovery from soccer-related concussion.
        The American journal of sports medicine. 2009; 37: 1699-1704
        • Henry L.C.
        • Elbin R.
        • Collins M.W.
        • Marchetti G.
        • Kontos A.P.
        Examining recovery trajectories after sport-related concussion with a multimodal clinical assessment approach.
        Neurosurgery. 2016; 78: 232-241
        • Berz K.
        • Divine J.
        • Foss K.B.
        • Heyl R.
        • Ford K.R.
        • Myer G.D.
        Sex-specific differences in the severity of symptoms and recovery rate following sports-related concussion in young athletes.
        The Physician and sportsmedicine. 2013; 41: 58-63
        • Baker J.G.
        • Leddy J.J.
        • Darling S.R.
        • Shucard J.
        • Makdissi M.
        • Willer B.S.
        Gender differences in recovery from sports-related concussion in adolescents.
        Clinical pediatrics. 2016; 55: 771-775
        • Eisenberg M.A.
        • Andrea J.
        • Meehan W.
        • Mannix R.
        Time interval between concussions and symptom duration.
        Pediatrics. 2013; 132: 8-17
        • Thomas D.J.
        • Coxe K.
        • Li H.
        • Pommering T.L.
        • Young J.A.
        • Smith G.A.
        • et al.
        Length of recovery from sports-related concussions in pediatric patients treated at concussion clinics.
        Clinical journal of sport medicine. 2018; 28: 56-63
        • Kostyun R.O.
        • Hafeez I.
        Protracted recovery from a concussion: a focus on gender and treatment interventions in an adolescent population.
        Sports health. 2015; 7: 52-57
        • Neidecker J.M.
        • Gealt D.B.
        • Luksch J.R.
        • Weaver M.D.
        First-Time Sports-Related Concussion Recovery: The Role of Sex, Age, and Sport.
        J Am Osteopath Assoc. 2017; 117: 635-642
        • Scott C.
        • McKinlay A.
        • McLellan T.
        • Britt E.
        • Grace R.
        • MacFarlane M.
        A comparison of adult outcomes for males compared to females following pediatric traumatic brain injury.
        Neuropsychology. 2015; 29: 501-508
        • Covassin T.
        • Elbin III, R.J.
        • Larson E.
        • Kontos A.P.
        Sex and age differences in depression and baseline sport-related concussion neurocognitive performance and symptoms.
        Clinical Journal of Sport Medicine. 2012; 22: 98-104
        • Gornall A.
        • Takagi M.
        • Clarke C.
        • Babl F.E.
        • Davis G.A.
        • Dunne K.
        • et al.
        Behavioral and Emotional Difficulties after Pediatric Concussion.
        J Neurotrauma. 2020; 37: 163-169
        • Corman S.R.
        • Adame B.J.
        • Tsai J.-Y.
        • Ruston S.W.
        • Beaumont J.S.
        • Kamrath J.K.
        • et al.
        Socioecological influences on concussion reporting by NCAA Division 1 athletes in high-risk sports.
        PloS one. 2019; 14 (e0215424): e0215424
        • Beesdo-Baum K.
        • Knappe S.
        Developmental epidemiology of anxiety disorders.
        Child and Adolescent Psychiatric Clinics. 2012; 21: 457-478
        • Dunlop K.
        • Victoria L.W.
        • Downar J.
        • Gunning F.M.
        • Liston C.
        Accelerated brain aging predicts impulsivity and symptom severity in depression.
        Neuropsychopharmacology. 2021; 46: 911-919
        • Han S.
        • Chen Y.
        • Zheng R.
        • Li S.
        • Jiang Y.
        • Wang C.
        • et al.
        The stage-specifically accelerated brain aging in never-treated first-episode patients with depression.
        Human Brain Mapping. 2021; (n/a)
        • Han L.K.M.
        • Dinga R.
        • Hahn T.
        • Ching C.R.K.
        • Eyler L.T.
        • Aftanas L.
        • et al.
        Brain aging in major depressive disorder: results from the ENIGMA major depressive disorder working group.
        Molecular Psychiatry. 2020;
        • Cole D.A.
        • Peeke L.G.
        • Martin J.M.
        • Truglio R.
        • Seroczynski A.
        A longitudinal look at the relation between depression and anxiety in children and adolescents.
        Journal of consulting and clinical psychology. 1998; 66: 451
        • Bittner A.
        • Goodwin R.D.
        • Wittchen H.-U.
        • Beesdo K.
        • Höfler M.
        • Lieb R.
        What characteristics of primary anxiety disorders predict subsequent major depressive disorder?.
        The Journal of clinical psychiatry. 2004; 65 (0): 0
        • Costello E.J.
        • Mustillo S.
        • Erkanli A.
        • Keeler G.
        • Angold A.
        Prevalence and development of psychiatric disorders in childhood and adolescence.
        Archives of general psychiatry. 2003; 60: 837-844
        • McLaughlin K.A.
        • King K.
        Developmental trajectories of anxiety and depression in early adolescence.
        Journal of abnormal child psychology. 2015; 43: 311-323
        • Goodwin R.D.
        • Fergusson D.M.
        • Horwood L.J.
        Early anxious/withdrawn behaviours predict later internalising disorders.
        Journal of Child Psychology and Psychiatry. 2004; 45: 874-883
        • Späni C.B.
        • Braun D.J.
        • Van Eldik L.J.
        Sex-related responses after traumatic brain injury: Considerations for preclinical modeling.
        Frontiers in neuroendocrinology. 2018; 50: 52-66
        • Wasserthal J.
        • Neher P.
        • Maier-Hein K.H.
        Tractseg-fast and accurate white matter tract segmentation.
        NeuroImage. 2018; 183: 239-253
        • Wasserthal J.
        • Neher P.F.
        • Maier-Hein K.H.
        Tract orientation mapping for bundle-specific tractography. International Conference on Medical Image Computing and Computer-Assisted Intervention.
        Springer. 2018; : 36-44
        • Lynch K.M.
        • Cabeen R.P.
        • Toga A.W.
        • Clark K.A.
        Magnitude and timing of major white matter tract maturation from infancy through adolescence with NODDI.
        Neuroimage. 2020; 212116672
        • Genc S.
        • Malpas C.B.
        • Holland S.K.
        • Beare R.
        • Silk T.J.
        Neurite density index is sensitive to age related differences in the developing brain.
        Neuroimage. 2017; 148: 373-380
        • Sheehan D.V.
        • Sheehan K.H.
        • Shytle R.D.
        • Janavs J.
        • Bannon Y.
        • Rogers J.E.
        • et al.
        Reliability and validity of the mini international neuropsychiatric interview for children and adolescents (MINI-KID).
        The Journal of clinical psychiatry. 2010;
        • Petersen A.C.
        • Crockett L.
        • Richards M.
        • Boxer A.
        A self-report measure of pubertal status: Reliability, validity, and initial norms.
        Journal of youth and adolescence. 1988; 17: 117-133
        • Broshek D.K.
        • Freeman J.R.
        Psychiatric and neuropsychological issues in sport medicine.
        Clin Sports Med. 2005; 24 (x): 663-679
        • Putukian M.
        • Kreher J.B.
        • Coppel D.B.
        • Glazer J.L.
        • McKeag D.B.
        • White R.D.
        Attention deficit hyperactivity disorder and the athlete: an American Medical Society for Sports Medicine position statement.
        Clin J Sport Med. 2011; 21: 392-401
        • Parr J.W.
        Attention-deficit hyperactivity disorder and the athlete: new advances and understanding.
        Clin Sports Med. 2011; 30: 591-610
        • Gökçen C.
        • Unal A.
        • Alpak G.
        • Cöpoglu U.S.
        • Abakay U.
        • Bayar H.
        • et al.
        Is there any relationship between ADHD symptoms and choosing sports education at the university?.
        Int J Psychiatry Med. 2013; 46: 169-178
        • Birmaher B.
        • Brent D.A.
        • Chiappetta L.
        • Bridge J.
        • Monga S.
        • Baugher M.
        Psychometric properties of the Screen for Child Anxiety Related Emotional Disorders (SCARED): a replication study.
        Journal of the American academy of child & adolescent psychiatry. 1999; 38: 1230-1236
        • Shirtcliff E.A.
        • Dahl R.E.
        • Pollak S.D.
        Pubertal development: correspondence between hormonal and physical development.
        Child development. 2009; 80: 327-337
      5. Poznanski EO, Mokros HB (1996): Children's depression rating scale, revised (CDRS-R). Western Psychological Services Los Angeles.

        • Andersson J.L.
        • Skare S.
        • Ashburner J.
        How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging.
        Neuroimage. 2003; 20: 870-888
        • Smith S.M.
        • Jenkinson M.
        • Woolrich M.W.
        • Beckmann C.F.
        • Behrens T.E.
        • Johansen-Berg H.
        • et al.
        Advances in functional and structural MR image analysis and implementation as FSL.
        Neuroimage. 2004; 23: S208-S219
        • Tournier J.-D.
        • Calamante F.
        • Connelly A.
        Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution.
        Neuroimage. 2007; 35: 1459-1472
        • Jeurissen B.
        • Tournier J.-D.
        • Dhollander T.
        • Connelly A.
        • Sijbers J.
        Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data.
        NeuroImage. 2014; 103: 411-426
        • Tournier J.-D.
        • Smith R.
        • Raffelt D.
        • Tabbara R.
        • Dhollander T.
        • Pietsch M.
        • et al.
        MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation.
        NeuroImage. 2019; 116137
      6. Core Team R (2017): R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria: URL https://www R-project org/[Google Scholar].

      7. Hayes AF (2017): Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. Guilford publications.

        • Preacher K.J.
        • Hayes A.F.
        SPSS and SAS procedures for estimating indirect effects in simple mediation models.
        Behavior research methods, instruments, & computers. 2004; 36: 717-731
        • Fritz M.S.
        • MacKinnon D.P.
        Required sample size to detect the mediated effect.
        Psychological science. 2007; 18: 233-239
        • Benjamini Y.
        • Hochberg Y.
        Controlling the false discovery rate: a practical and powerful approach to multiple testing.
        Journal of the Royal statistical society: series B (Methodological). 1995; 57: 289-300
        • Axelson D.A.
        • Birmaher B.
        Relation between anxiety and depressive disorders in childhood and adolescence.
        Depress Anxiety. 2001; 14: 67-78
        • Liao Z.
        • Patel Y.
        • Khairullah A.
        • Parker N.
        • Paus T.
        Pubertal Testosterone and the Structure of the Cerebral Cortex in Young Men.
        Cereb Cortex. 2021; 31: 2812-2821
        • Laube C.
        • van den Bos W.
        • Fandakova Y.
        The relationship between pubertal hormones and brain plasticity: Implications for cognitive training in adolescence.
        Developmental cognitive neuroscience. 2020; 42100753
        • Ladouceur C.D.
        • Peper J.S.
        • Crone E.A.
        • Dahl R.E.
        White matter development in adolescence: the influence of puberty and implications for affective disorders.
        Developmental cognitive neuroscience. 2012; 2: 36-54
        • Blakemore S.J.
        • Burnett S.
        • Dahl R.E.
        The role of puberty in the developing adolescent brain.
        Human brain mapping. 2010; 31: 926-933
        • Asato M.R.
        • Terwilliger R.
        • Woo J.
        • Luna B.
        White matter development in adolescence: a DTI study.
        Cerebral cortex. 2010; 20: 2122-2131
        • Casey B.J.
        • Getz S.
        • Galvan A.
        The adolescent brain.
        Developmental review. 2008; 28: 62-77
      8. Kolb B, Whishaw IQ (2009): Fundamentals of Human Neuropsychology. Worth Publishers.

        • Gerhard D.M.
        • Meyer H.C.
        • Lee F.S.
        An Adolescent Sensitive Period for Threat Responding: Impacts of Stress and Sex.
        Biological Psychiatry. 2021; 89: 651-658
        • Knudsen E.I.
        Sensitive periods in the development of the brain and behavior.
        Journal of cognitive neuroscience. 2004; 16: 1412-1425
        • Frankenhuis W.E.
        • Walasek N.
        Modeling the evolution of sensitive periods.
        Developmental Cognitive Neuroscience. 2020; 41100715
        • Fawcett T.W.
        • Frankenhuis W.E.
        Adaptive explanations for sensitive windows in development.
        Frontiers in Zoology. 2015; 12: S3
        • Covassin T.
        • Elbin R.J.
        • Harris W.
        • Parker T.
        • Kontos A.
        The Role of Age and Sex in Symptoms, Neurocognitive Performance, and Postural Stability in Athletes After Concussion.
        American Journal of Sports Medicine. 2012; 40: 1303-1312
        • Williams R.M.
        • Puetz T.W.
        • Giza C.C.
        • Broglio S.P.
        Concussion recovery time among high school and collegiate athletes: a systematic review and meta-analysis.
        Sports Med. 2015; 45: 893-903
        • Nelson L.D.
        • Guskiewicz K.M.
        • Barr W.B.
        • Hammeke T.A.
        • Randolph C.
        • Ahn K.W.
        • et al.
        Age Differences in Recovery After Sport-Related Concussion: A Comparison of High School and Collegiate Athletes.
        J Athl Train. 2016; 51: 142-152
        • Iverson G.L.
        • Gardner A.J.
        • Terry D.P.
        • Ponsford J.L.
        • Sills A.K.
        • Broshek D.K.
        • et al.
        Predictors of clinical recovery from concussion: a systematic review.
        British Journal of Sports Medicine. 2017; 51: 10
        • Ware A.L.
        • Yeates K.O.
        • Tang K.
        • Shukla A.
        • Onicas A.I.
        • Guo S.
        • et al.
        Longitudinal white matter microstructural changes in pediatric mild traumatic brain injury: An A-CAP study.
        Hum Brain Mapp. 2022;
        • De Bellis M.D.
        • Keshavan M.S.
        • Beers S.R.
        • Hall J.
        • Frustaci K.
        • Masalehdan A.
        • et al.
        Sex differences in brain maturation during childhood and adolescence.
        Cerebral cortex. 2001; 11: 552-557
        • Koolschijn P.C.M.
        • Crone E.A.
        Sex differences and structural brain maturation from childhood to early adulthood.
        Developmental cognitive neuroscience. 2013; 5: 106-118
        • Piussi R.
        • Berghdal T.
        • Sundemo D.
        • Grassi A.
        • Zaffagnini S.
        • Sansone M.
        • et al.
        Self-Reported Symptoms of Depression and Anxiety After ACL Injury: A Systematic Review.
        Orthop J Sports Med. 2022; 1023259671211066493
        • Tayebi M.
        • Holdsworth S.J.
        • Champagne A.A.
        • Cook D.J.
        • Nielsen P.
        • Lee T.-R.
        • et al.
        The role of diffusion tensor imaging in characterizing injury patterns on athletes with concussion and subconcussive injury: a systematic review.
        Brain injury. 2021; 35: 621-644
        • Manning K.Y.
        • Schranz A.
        • Bartha R.
        • Dekaban G.A.
        • Barreira C.
        • Brown A.
        • et al.
        Multiparametric MRI changes persist beyond recovery in concussed adolescent hockey players.
        Neurology. 2017; 89: 2157-2166
        • Wilde E.A.
        • McCauley S.R.
        • Barnes A.
        • Wu T.C.
        • Chu Z.
        • Hunter J.V.
        • et al.
        Serial measurement of memory and diffusion tensor imaging changes within the first week following uncomplicated mild traumatic brain injury.
        Brain imaging and behavior. 2012; 6: 319-328