Advertisement

Personalized rTMS for Depression: A Review

  • Juha Gogulski
    Affiliations
    Department of Psychiatry & Behavioral Sciences, Stanford University Medical Center, Stanford, CA, 94305, USA

    Department of Clinical Neurophysiology, HUS Diagnostic Center, Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, FI-00029 HUS, Finland
    Search for articles by this author
  • Jessica M. Ross
    Affiliations
    Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA

    Department of Psychiatry & Behavioral Sciences, Stanford University Medical Center, Stanford, CA, 94305, USA
    Search for articles by this author
  • Austin Talbot
    Affiliations
    Department of Psychiatry & Behavioral Sciences, Stanford University Medical Center, Stanford, CA, 94305, USA

    Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
    Search for articles by this author
  • Christopher C. Cline
    Affiliations
    Department of Psychiatry & Behavioral Sciences, Stanford University Medical Center, Stanford, CA, 94305, USA

    Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
    Search for articles by this author
  • Francesco L. Donati
    Affiliations
    Department of Health Sciences, University of Milan, San Paolo Hospital, Milan, 20142, Italy
    Search for articles by this author
  • Saachi Munot
    Affiliations
    Department of Psychiatry & Behavioral Sciences, Stanford University Medical Center, Stanford, CA, 94305, USA

    Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
    Search for articles by this author
  • Naryeong Kim
    Affiliations
    Department of Psychiatry & Behavioral Sciences, Stanford University Medical Center, Stanford, CA, 94305, USA

    Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
    Search for articles by this author
  • Ciara Gibbs
    Affiliations
    Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom
    Search for articles by this author
  • Nikita Bastin
    Affiliations
    Departments of Radiology and Orthopedics, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104
    Search for articles by this author
  • Jessica Yang
    Affiliations
    Department of Psychiatry & Behavioral Sciences, Stanford University Medical Center, Stanford, CA, 94305, USA

    Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
    Search for articles by this author
  • Christopher Minasi
    Affiliations
    Department of Psychiatry & Behavioral Sciences, Stanford University Medical Center, Stanford, CA, 94305, USA

    Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
    Search for articles by this author
  • Manjima Sarkar
    Affiliations
    Department of Psychiatry & Behavioral Sciences, Stanford University Medical Center, Stanford, CA, 94305, USA

    Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
    Search for articles by this author
  • Jade Truong
    Affiliations
    Department of Psychiatry & Behavioral Sciences, Stanford University Medical Center, Stanford, CA, 94305, USA

    Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
    Search for articles by this author
  • Corey J. Keller
    Correspondence
    To whom correspondence should be addressed: Corey Keller, Phone: +1-8025786292.
    Affiliations
    Department of Psychiatry & Behavioral Sciences, Stanford University Medical Center, Stanford, CA, 94305, USA

    Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
    Search for articles by this author
Published:October 28, 2022DOI:https://doi.org/10.1016/j.bpsc.2022.10.006

      Abstract

      Personalized treatments are gaining momentum across all fields of medicine. Precision medicine can be applied to neuromodulatory techniques, where focused brain stimulation treatments such as repetitive transcranial magnetic stimulation (rTMS) modulate brain circuits and alleviate clinical symptoms. rTMS is well-tolerated and clinically effective for treatment-resistant depression (TRD) and other neuropsychiatric disorders. Despite its wide stimulation parameter space (location, angle, pattern, frequency, and intensity can be adjusted), rTMS is currently applied in a one-size-fits-all manner, potentially contributing to its suboptimal clinical response (∼50%). In this review, we examine components of rTMS that can be optimized to account for inter-individual variability in neural function and anatomy. We discuss current treatment options for TRD, the neural mechanisms thought to underlie treatment, targeting strategies, stimulation parameter selection, and adaptive closed-loop treatment. We conclude that a better understanding of the wide and modifiable parameter space of rTMS will greatly improve clinical outcome.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Downar J.
        • Blumberger D.M.
        • Daskalakis Z.J.
        The Neural Crossroads of Psychiatric Illness: An Emerging Target for Brain Stimulation.
        Trends Cogn Sci. 2016; 20: 107-120
        • Lefaucheur J.-P.
        • Aleman A.
        • Baeken C.
        • Benninger D.H.
        • Brunelin J.
        • Di Lazzaro V.
        • et al.
        Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018).
        Clin Neurophysiol. 2020; 131: 474-528
        • Rossi S.
        • Antal A.
        • Bestmann S.
        • Bikson M.
        • Brewer C.
        • Brockmöller J.
        • et al.
        Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines.
        Clin Neurophysiol. 2021; 132: 269-306
        • Ziemann U.
        • Paulus W.
        • Nitsche M.A.
        • Pascual-Leone A.
        • Byblow W.D.
        • Berardelli A.
        • et al.
        Consensus: Motor cortex plasticity protocols.
        Brain Stimulat. 2008; 1: 164-182
        • Lusicic A.
        • Schruers K.R.
        • Pallanti S.
        • Castle D.J.
        Transcranial magnetic stimulation in the treatment of obsessive–compulsive disorder: current perspectives.
        Neuropsychiatr Dis Treat. 2018; 14: 1721-1736
        • Zangen A.
        • Moshe H.
        • Martinez D.
        • Barnea‐Ygael N.
        • Vapnik T.
        • Bystritsky A.
        • et al.
        Repetitive transcranial magnetic stimulation for smoking cessation: a pivotal multicenter double‐blind randomized controlled trial.
        World Psychiatry. 2021; 20: 397-404
        • Reuter U.
        • McClure C.
        • Liebler E.
        • Pozo-Rosich P.
        Non-invasive neuromodulation for migraine and cluster headache: a systematic review of clinical trials.
        J Neurol Neurosurg Psychiatry. 2019; 90: 796-804
        • Perera T.
        • George M.S.
        • Grammer G.
        • Janicak P.G.
        • Pascual-Leone A.
        • Wirecki T.S.
        The Clinical TMS Society Consensus Review and Treatment Recommendations for TMS Therapy for Major Depressive Disorder.
        Brain Stimulat. 2016; 9: 336-346
        • Mutz J.
        • Edgcumbe D.R.
        • Brunoni A.R.
        • Fu C.H.Y.
        Efficacy and acceptability of non-invasive brain stimulation for the treatment of adult unipolar and bipolar depression: A systematic review and meta-analysis of randomised sham-controlled trials.
        Neurosci Biobehav Rev. 2018; 92: 291-303
        • Mutz J.
        • Vipulananthan V.
        • Carter B.
        • Hurlemann R.
        • Fu C.H.Y.
        • Young A.H.
        Comparative efficacy and acceptability of non-surgical brain stimulation for the acute treatment of major depressive episodes in adults: systematic review and network meta-analysis.
        BMJ. 2019; 364: l1079
        • Teng S.
        • Guo Z.
        • Peng H.
        • Xing G.
        • Chen H.
        • He B.
        • et al.
        High-frequency repetitive transcranial magnetic stimulation over the left DLPFC for major depression: Session-dependent efficacy: A meta-analysis.
        Eur Psychiatry J Assoc Eur Psychiatr. 2017; 41: 75-84
        • Berlim M.T.
        • van den Eynde F.
        • Tovar-Perdomo S.
        • Daskalakis Z.J.
        Response, remission and drop-out rates following high-frequency repetitive transcranial magnetic stimulation (rTMS) for treating major depression: a systematic review and meta-analysis of randomized, double-blind and sham-controlled trials.
        Psychol Med. 2014; 44: 225-239
        • Voineskos D.
        • Blumberger D.M.
        • Rogasch N.C.
        • Zomorrodi R.
        • Farzan F.
        • Foussias G.
        • et al.
        Neurophysiological effects of repetitive transcranial magnetic stimulation (rTMS) in treatment resistant depression.
        Clin Neurophysiol. 2021; 132: 2306-2316
        • Castaneda-Ramirez S.
        • Becker T.D.
        • Bruges-Boude A.
        • Kellner C.
        • Rice T.R.
        Systematic review: Electroconvulsive therapy for treatment-resistant mood disorders in children and adolescents.
        Eur Child Adolesc Psychiatry. 2022; https://doi.org/10.1007/s00787-022-01942-7
        • Hermida A.P.
        • Glass O.M.
        • Shafi H.
        • McDonald W.M.
        Electroconvulsive Therapy in Depression: Current Practice and Future Direction.
        Psychiatr Clin North Am. 2018; 41: 341-353
        • Kellner C.H.
        • Greenberg R.M.
        • Murrough J.W.
        • Bryson E.O.
        • Briggs M.C.
        • Pasculli R.M.
        ECT in treatment-resistant depression.
        Am J Psychiatry. 2012; 169: 1238-1244
        • Canady V.A.
        FDA approves esketamine treatment for MDD, suicidal ideation.
        Ment Health Wkly. 2020; 30: 6-7
        • Canuso C.M.
        • Singh J.B.
        • Fedgchin M.
        • Alphs L.
        • Lane R.
        • Lim P.
        • et al.
        Efficacy and Safety of Intranasal Esketamine for the Rapid Reduction of Symptoms of Depression and Suicidality in Patients at Imminent Risk for Suicide: Results of a Double-Blind, Randomized, Placebo-Controlled Study.
        Am J Psychiatry. 2018; 175: 620-630
        • Kallioniemi E.
        • McClintock S.M.
        • Deng Z.-D.
        • Husain M.M.
        • Lisanby S.H.
        Magnetic seizure therapy: Towards personalized seizure therapy for major depression.
        Pers Med Psychiatry. 2019; 17–18: 37-42
        • Roet M.
        • Boonstra J.
        • Sahin E.
        • Mulders A.E.P.
        • Leentjens A.F.G.
        • Jahanshahi A.
        Deep Brain Stimulation for Treatment-Resistant Depression: Towards a More Personalized Treatment Approach.
        J Clin Med. 2020; 9
        • Holtzheimer P.E.
        • Husain M.M.
        • Lisanby S.H.
        • Taylor S.F.
        • Whitworth L.A.
        • McClintock S.
        • et al.
        Subcallosal cingulate deep brain stimulation for treatment-resistant depression: a multisite, randomised, sham-controlled trial.
        Lancet Psychiatry. 2017; 4: 839-849
        • Dougherty D.D.
        • Rezai A.R.
        • Carpenter L.L.
        • Howland R.H.
        • Bhati M.T.
        • O’Reardon J.P.
        • et al.
        A Randomized Sham-Controlled Trial of Deep Brain Stimulation of the Ventral Capsule/Ventral Striatum for Chronic Treatment-Resistant Depression.
        Biol Psychiatry. 2015; 78: 240-248
        • Johnson R.L.
        • Wilson C.G.
        A review of vagus nerve stimulation as a therapeutic intervention.
        J Inflamm Res. 2018; 11: 203-213
        • Moffa A.H.
        • Martin D.
        • Alonzo A.
        • Bennabi D.
        • Blumberger D.M.
        • Benseñor I.M.
        • et al.
        Efficacy and acceptability of transcranial direct current stimulation (tDCS) for major depressive disorder: An individual patient data meta-analysis.
        Prog Neuropsychopharmacol Biol Psychiatry. 2020; 99109836
        • Davis A.K.
        • Barrett F.S.
        • May D.G.
        • Cosimano M.P.
        • Sepeda N.D.
        • Johnson M.W.
        • et al.
        Effects of Psilocybin-Assisted Therapy on Major Depressive Disorder: A Randomized Clinical Trial.
        JAMA Psychiatry. 2021; 78: 481-489
        • Philip N.S.
        • Barredo J.
        • Aiken E.
        • Carpenter L.L.
        Neuroimaging Mechanisms of Therapeutic Transcranial Magnetic Stimulation for Major Depressive Disorder.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2018; 3: 211-222
        • Fischer A.S.
        • Keller C.J.
        • Etkin A.
        The Clinical Applicability of Functional Connectivity in Depression: Pathways Toward More Targeted Intervention.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2016; 1: 262-270
        • Fried P.J.
        • Santarnecchi E.
        • Antal A.
        • Bartres-Faz D.
        • Bestmann S.
        • Carpenter L.L.
        • et al.
        Training in the practice of noninvasive brain stimulation: Recommendations from an IFCN committee.
        Clin Neurophysiol. 2021; 132: 819-837
        • Taylor J.J.
        • Newberger N.G.
        • Stern A.P.
        • Phillips A.
        • Feifel D.
        • Betensky R.A.
        • et al.
        Seizure risk with repetitive TMS: Survey results from over a half-million treatment sessions.
        Brain Stimulat. 2021; 14: 965-973
        • Jones B.D.M.
        • Razza L.B.
        • Weissman C.R.
        • Karbi J.
        • Vine T.
        • Mulsant L.S.
        • et al.
        Magnitude of the Placebo Response Across Treatment Modalities Used for Treatment-Resistant Depression in Adults.
        JAMA Netw Open. 2021; 4e2125531
        • Amassian V.E.
        • Eberle L.
        • Maccabee P.J.
        • Cracco R.Q.
        Modelling magnetic coil excitation of human cerebral cortex with a peripheral nerve immersed in a brain-shaped volume conductor: the significance of fiber bending in excitation.
        Electroencephalogr Clin Neurophysiol. 1992; 85: 291-301
        • Barker A.T.
        • Jalinous R.
        • Freeston I.L.
        NON-INVASIVE MAGNETIC STIMULATION OF HUMAN MOTOR CORTEX.
        The Lancet. 1985; 325: 1106-1107
      1. Ellaway PH, Davey NJ, Maskill DW, Rawlinson SR, Lewis HS, Anissimova NP. Variability in the amplitude of skeletal muscle responses to magnetic stimulation of the motor cortex in man1Presented in part to the Physiological Society, Bristol, UK, 1994 and the Symposium `Alpha and Gamma Motor Systems,’ London, UK, 1994.1. Electroencephalogr Clin Neurophysiol Mot Control. 1998;109:104–113.

        • Goetz S.M.
        • Luber B.
        • Lisanby S.H.
        • Peterchev A.V.
        A Novel Model Incorporating Two Variability Sources for Describing Motor Evoked Potentials.
        Brain Stimulat. 2014; 7: 541-552
        • Fadiga L.
        • Craighero L.
        • Buccino G.
        • Rizzolatti G.
        Speech listening specifically modulates the excitability of tongue muscles: a TMS study: Tongue involvement during speech listening.
        Eur J Neurosci. 2002; 15: 399-402
        • Gordon C.L.
        • Spivey M.J.
        • Balasubramaniam R.
        Corticospinal excitability during the processing of handwritten and typed words and non-words.
        Neurosci Lett. 2017; 651: 232-236
        • Janssens S.E.W.
        • Sack A.T.
        Spontaneous Fluctuations in Oscillatory Brain State Cause Differences in Transcranial Magnetic Stimulation Effects Within and Between Individuals.
        Front Hum Neurosci. 2021; 15
        • Faisal A.A.
        • Selen L.P.J.
        • Wolpert D.M.
        Noise in the nervous system.
        Nat Rev Neurosci. 2008; 9: 292-303
        • Kujirai T.
        • Caramia M.D.
        • Rothwell J.C.
        • Day B.L.
        • Thompson P.D.
        • Ferbert A.
        • et al.
        Corticocortical inhibition in human motor cortex.
        J Physiol. 1993; 471: 501-519
        • Valls-Solé J.
        • Pascual-Leone A.
        • Wassermann E.M.
        • Hallett M.
        Human motor evoked responses to paired transcranial magnetic stimuli.
        Electroencephalogr Clin Neurophysiol Potentials Sect. 1992; 85: 355-364
      2. Oberman L. Repetitive Transcranial Magnetic Stimulation (rTMS) Protocols. In: Rotenberg A, Horvath JC, Pascual-Leone A, editors. Transcranial Magnetic Stimulation. New York, NY: Springer; 2014. p. 129–139.

        • Clapp W.C.
        • Hamm J.P.
        • Kirk I.J.
        • Teyler T.J.
        Translating long-term potentiation from animals to humans: a novel method for noninvasive assessment of cortical plasticity.
        Biol Psychiatry. 2012; 71: 496-502
        • Berardelli A.
        • Inghilleri M.
        • Rothwell J.C.
        • Romeo S.
        • Currà A.
        • Gilio F.
        • et al.
        Facilitation of muscle evoked responses after repetitive cortical stimulation in man.
        Exp Brain Res. 1998; 122: 79-84
        • Muellbacher W.
        • Ziemann U.
        • Boroojerdi B.
        • Hallett M.
        Effects of low-frequency transcranial magnetic stimulation on motor excitability and basic motor behavior.
        Clin Neurophysiol. 2000; 111: 1002-1007
        • Somani A.
        • Kar S.K.
        Efficacy of repetitive transcranial magnetic stimulation in treatment-resistant depression: the evidence thus far.
        Gen Psychiatry. 2019; 32e100074
        • Bilek E.
        • Schäfer A.
        • Ochs E.
        • Esslinger C.
        • Zangl M.
        • Plichta M.M.
        • et al.
        Application of High-Frequency Repetitive Transcranial Magnetic Stimulation to the DLPFC Alters Human Prefrontal–Hippocampal Functional Interaction.
        J Neurosci. 2013; 33: 7050-7056
        • Ye Y.
        • Wang J.
        • Che X.
        Concurrent TMS-EEG to Reveal the Neuroplastic Changes in the Prefrontal and Insular Cortices in the Analgesic Effects of DLPFC-rTMS.
        Cereb Cortex. 2022; : bhab493
        • Liston C.
        • Chen A.C.
        • Zebley B.D.
        • Drysdale A.T.
        • Gordon R.
        • Leuchter B.
        • et al.
        Default Mode Network Mechanisms of Transcranial Magnetic Stimulation in Depression.
        Biol Psychiatry. 2014; 76: 517-526
        • Siegle G.J.
        • Thompson W.K.
        • Collier A.
        • Berman S.R.
        • Feldmiller J.
        • Thase M.E.
        • et al.
        Toward Clinically Useful Neuroimaging in Depression Treatment: Prognostic Utility of Subgenual Cingulate Activity for Determining Depression Outcome in Cognitive Therapy Across Studies, Scanners, and Patient Characteristics.
        Arch Gen Psychiatry. 2012; 69: 913-924
        • Cash R.F.H.
        • Zalesky A.
        • Thomson R.H.
        • Tian Y.
        • Cocchi L.
        • Fitzgerald P.B.
        Subgenual Functional Connectivity Predicts Antidepressant Treatment Response to Transcranial Magnetic Stimulation: Independent Validation and Evaluation of Personalization.
        Biol Psychiatry. 2019; 86 (e5–7)
        • Cash R.F.H.
        • Weigand A.
        • Zalesky A.
        • Siddiqi S.H.
        • Downar J.
        • Fitzgerald P.B.
        • et al.
        Using Brain Imaging to Improve Spatial Targeting of Transcranial Magnetic Stimulation for Depression.
        Biol Psychiatry. 2020; https://doi.org/10.1016/j.biopsych.2020.05.033
        • Cash R.F.H.
        • Cocchi L.
        • Lv J.
        • Fitzgerald P.B.
        • Zalesky A.
        Functional Magnetic Resonance Imaging–Guided Personalization of Transcranial Magnetic Stimulation Treatment for Depression.
        JAMA Psychiatry. 2021; 78: 337
        • Fox M.D.
        • Buckner R.L.
        • White M.P.
        • Greicius M.D.
        • Pascual-Leone A.
        Efficacy of Transcranial Magnetic Stimulation Targets for Depression Is Related to Intrinsic Functional Connectivity with the Subgenual Cingulate.
        Biol Psychiatry. 2012; 72: 595-603
        • Lozano A.M.
        • Mayberg H.S.
        • Giacobbe P.
        • Hamani C.
        • Craddock R.C.
        • Kennedy S.H.
        Subcallosal Cingulate Gyrus Deep Brain Stimulation for Treatment-Resistant Depression.
        Biol Psychiatry. 2008; 64: 461-467
        • Weigand A.
        • Horn A.
        • Caballero R.
        • Cooke D.
        • Stern A.P.
        • Taylor S.F.
        • et al.
        Prospective Validation That Subgenual Connectivity Predicts Antidepressant Efficacy of Transcranial Magnetic Stimulation Sites.
        Biol Psychiatry. 2018; 84: 28-37
        • Deng Z.-D.
        • Lisanby S.H.
        • Peterchev A.V.
        Electric field depth-focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs.
        Brain Stimulat. 2013; 6: 1-13
        • Nieminen J.O.
        • Koponen L.M.
        • Ilmoniemi R.J.
        Experimental Characterization of the Electric Field Distribution Induced by TMS Devices.
        Brain Stimulat. 2015; 8: 582-589
        • Ueno S.
        • Tashiro T.
        • Harada K.
        Localized stimulation of neural tissues in the brain by means of a paired configuration of time‐varying magnetic fields.
        J Appl Phys. 1988; 64: 5862-5864
      3. Ruohonen J. Physical principles for transcranial magnetic stimulation. Handb Transcranial Magn Stimul. 2002.

        • Trapp N.T.
        • Bruss J.
        • Johnson M.K.
        • Uitermarkt B.D.
        • Garrett L.
        • Heinzerling A.
        • et al.
        Reliability of targeting methods in TMS for depression: Beam F3 vs. 5.5 cm.
        Brain Stimul Basic Transl Clin Res Neuromodulation. 2020; 13: 578-581
        • Herwig U.
        • Padberg F.
        • Unger J.
        • Spitzer M.
        • Schönfeldt-Lecuona C.
        Transcranial magnetic stimulation in therapy studies: examination of the reliability of “standard” coil positioning by neuronavigation.
        Biol Psychiatry. 2001; 50: 58-61
        • Beam W.
        • Borckardt J.J.
        • Reeves S.T.
        • George M.S.
        An efficient and accurate new method for locating the F3 position for prefrontal TMS applications.
        Brain Stimulat. 2009; 2: 50-54
        • Herwig U.
        • Padberg F.
        • Unger J.
        • Spitzer M.
        • Schönfeldt-Lecuona C.
        Transcranial magnetic stimulation in therapy studies: examination of the reliability of “standard” coil positioning by neuronavigation.
        Biol Psychiatry. 2001; 50: 58-61
        • Ahdab R.
        • Ayache S.S.
        • Brugières P.
        • Goujon C.
        • Lefaucheur J.-P.
        Comparison of “standard” and “navigated” procedures of TMS coil positioning over motor, premotor and prefrontal targets in patients with chronic pain and depression.
        Neurophysiol Clin Neurophysiol. 2010; 40: 27-36
        • Mueller S.
        • Wang D.
        • Fox M.D.
        • Yeo B.T.T.
        • Sepulcre J.
        • Sabuncu M.R.
        • et al.
        Individual Variability in Functional Connectivity Architecture of the Human Brain.
        Neuron. 2013; 77: 586-595
        • Berlim M.T.
        • Van den Eynde F.
        • Jeff Daskalakis Z.
        Clinically Meaningful Efficacy and Acceptability of Low-Frequency Repetitive Transcranial Magnetic Stimulation (rTMS) for Treating Primary Major Depression: A Meta-Analysis of Randomized, Double-Blind and Sham-Controlled Trials.
        Neuropsychopharmacology. 2013; 38: 543-551
        • Stern W.M.
        • Tormos J.M.
        • Press D.Z.
        • Pearlman C.
        • Pascual-Leone A.
        Antidepressant Effects of High and Low Frequency Repetitive Transcranial Magnetic Stimulation to the Dorsolateral Prefrontal Cortex.
        J Neuropsychiatry Clin Neurosci. 2007; 19: 179-186
        • Bakker N.
        • Shahab S.
        • Giacobbe P.
        • Blumberger D.M.
        • Daskalakis Z.J.
        • Kennedy S.H.
        • et al.
        rTMS of the Dorsomedial Prefrontal Cortex for Major Depression: Safety, Tolerability, Effectiveness, and Outcome Predictors for 10 Hz Versus Intermittent Theta-burst Stimulation.
        Brain Stimul Basic Transl Clin Res Neuromodulation. 2015; 8: 208-215
        • Dunlop K.
        • Gaprielian P.
        • Blumberger D.
        • Daskalakis Z.J.
        • Kennedy S.H.
        • Giacobbe P.
        • et al.
        MRI-guided dmPFC-rTMS as a Treatment for Treatment-resistant Major Depressive Disorder.
        JoVE J Vis Exp. 2015; e53129
        • Feffer K.
        • Fettes P.
        • Giacobbe P.
        • Daskalakis Z.J.
        • Blumberger D.M.
        • Downar J.
        1Hz rTMS of the right orbitofrontal cortex for major depression: Safety, tolerability and clinical outcomes.
        Eur Neuropsychopharmacol. 2018; 28: 109-117
        • Zhang T.
        • Huang Y.
        • Jin Y.
        • Ma X.
        • Liu Z.
        Treatment for Major Depressive Disorder by Repetitive Transcranial Magnetic Stimulation in Different Parameters: A Randomized Double-Blinded Controlled Trial.
        Front Psychiatry. 2021; 12623765
        • Turi Z.
        • Lenz M.
        • Paulus W.
        • Mittner M.
        • Vlachos A.
        Selecting stimulation intensity in repetitive transcranial magnetic stimulation studies: A systematic review between 1991 and 2020.
        Eur J Neurosci. 2021; 53: 3404-3415
        • Rothwell J.C.
        • Hallett M.
        • Berardelli A.
        • Eisen A.
        • Rossini P.
        • Paulus W.
        Magnetic stimulation: motor evoked potentials. The International Federation of Clinical Neurophysiology.
        Electroencephalogr Clin Neurophysiol Suppl. 1999; 52: 97-103
        • Ah Sen C.B.
        • Fassett H.J.
        • El-Sayes J.
        • Turco C.V.
        • Hameer M.M.
        • Nelson A.J.
        Active and resting motor threshold are efficiently obtained with adaptive threshold hunting.
        PLOS ONE. 2017; 12e0186007
        • Herbsman T.
        • Forster L.
        • Molnar C.
        • Dougherty R.
        • Christie D.
        • Koola J.
        • et al.
        Motor threshold in transcranial magnetic stimulation: The impact of white matter fiber orientation and skull-to-cortex distance.
        Hum Brain Mapp. 2009; 30: 2044-2055
        • Ruddy K.
        • Balsters J.
        • Mantini D.
        • Liu Q.
        • Kassraian-Fard P.
        • Enz N.
        • et al.
        Neural activity related to volitional regulation of cortical excitability.
        eLife. 2018; 7e40843
        • Bell S.J.
        • Lauer A.
        • Lench D.H.
        • Hanlon C.A.
        Visual Attention Affects the Amplitude of the Transcranial Magnetic Stimulation-associated Motor-evoked Potential: A Preliminary Study With Clinical Utility.
        J Psychiatr Pract. 2018; 24: 220-229
        • Danner N.
        • Julkunen P.
        • Könönen M.
        • Säisänen L.
        • Nurkkala J.
        • Karhu J.
        Navigated transcranial magnetic stimulation and computed electric field strength reduce stimulator-dependent differences in the motor threshold.
        J Neurosci Methods. 2008; 174: 116-122
        • Cotovio G.
        • Oliveira-Maia A.J.
        • Paul C.
        • Faro Viana F.
        • Rodrigues da Silva D.
        • Seybert C.
        • et al.
        Day-to-day variability in motor threshold during rTMS treatment for depression: Clinical implications.
        Brain Stimulat. 2021; 14: 1118-1125
        • McConnell K.A.
        • Nahas Z.
        • Shastri A.
        • Lorberbaum J.P.
        • Kozel F.A.
        • Bohning D.E.
        • et al.
        The transcranial magnetic stimulation motor threshold depends on the distance from coil to underlying cortex: a replication in healthy adults comparing two methods of assessing the distance to cortex.
        Biol Psychiatry. 2001; 49: 454-459
      4. Deng Z-D, Liston C, Gunning FM, Dubin MJ, Fridgeirsson EA, Lilien J, et al. Electric Field Modeling for Transcranial Magnetic Stimulation and Electroconvulsive Therapy. In: Makarov S, Horner M, Noetscher G, editors. Brain and Human Body Modeling. Cham: Springer International Publishing; 2019. p. 75–84.

        • Stokes M.G.
        • Chambers C.D.
        • Gould I.C.
        • English T.
        • McNaught E.
        • McDonald O.
        • et al.
        Distance-adjusted motor threshold for transcranial magnetic stimulation.
        Clin Neurophysiol. 2007; 118: 1617-1625
      5. Trojak B, Meille V, Chauvet-Gelinier J-C, Bonin B. Does the Intensity of Transcranial Magnetic Stimulation Need to be Adjusted to Scalp-Cortex Distance? J Neuropsychiatry Clin Neurosci. 2012;24:E13–E13.

        • Kozel F.A.
        • Nahas Z.
        • deBrux C.
        • Molloy M.
        • Lorberbaum J.P.
        • Bohning D.
        • et al.
        How Coil–Cortex Distance Relates to Age, Motor Threshold, and Antidepressant Response to Repetitive Transcranial Magnetic Stimulation.
        J Neuropsychiatry Clin Neurosci. 2000; 12: 376-384
        • Sandrini M.
        • Umiltà C.
        • Rusconi E.
        The use of transcranial magnetic stimulation in cognitive neuroscience: A new synthesis of methodological issues.
        Neurosci Biobehav Rev. 2011; 35: 516-536
        • Turi Z.
        • Normann C.
        • Domschke K.
        • Vlachos A.
        Transcranial Magnetic Stimulation in Psychiatry: Is There a Need for Electric Field Standardization?.
        Front Hum Neurosci. 2021; 15639640
        • Opitz A.
        • Windhoff M.
        • Heidemann R.M.
        • Turner R.
        • Thielscher A.
        How the brain tissue shapes the electric field induced by transcranial magnetic stimulation.
        NeuroImage. 2011; 58: 849-859
      6. Thielscher A, Antunes A, Saturnino GB. Field modeling for transcranial magnetic stimulation: A useful tool to understand the physiological effects of TMS? In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Milan: IEEE; 2015. p. 222–225.

        • Weise K.
        • Numssen O.
        • Thielscher A.
        • Hartwigsen G.
        • Knösche T.R.
        A novel approach to localize cortical TMS effects.
        NeuroImage. 2020; 209116486
        • Gomez-Tames J.
        • Hamasaka A.
        • Laakso I.
        • Hirata A.
        • Ugawa Y.
        Atlas of optimal coil orientation and position for TMS: A computational study.
        Brain Stimulat. 2018; 11: 839-848
        • Janssen A.M.
        • Oostendorp T.F.
        • Stegeman D.F.
        The coil orientation dependency of the electric field induced by TMS for M1 and other brain areas.
        J NeuroEngineering Rehabil. 2015; 12: 47
        • Fecchio M.
        • Pigorini A.
        • Comanducci A.
        • Sarasso S.
        • Casarotto S.
        • Premoli I.
        • et al.
        The spectral features of EEG responses to transcranial magnetic stimulation of the primary motor cortex depend on the amplitude of the motor evoked potentials.
        PLOS ONE. 2017; 12e0184910
        • Casarotto S.
        • Comanducci A.
        • Rosanova M.
        • Sarasso S.
        • Fecchio M.
        • Napolitani M.
        • et al.
        Stratification of unresponsive patients by an independently validated index of brain complexity.
        Ann Neurol. 2016; 80: 718-729
        • Sarasso S.
        • D’Ambrosio S.
        • Fecchio M.
        • Casarotto S.
        • Viganò A.
        • Landi C.
        • et al.
        Local sleep-like cortical reactivity in the awake brain after focal injury.
        Brain. 2020; 143: 3672-3684
        • Vittala A.
        • Murphy N.
        • Maheshwari A.
        • Krishnan V.
        Understanding Cortical Dysfunction in Schizophrenia With TMS/EEG.
        Front Neurosci. 2020; 14: 554
        • Voineskos D.
        • Blumberger D.M.
        • Zomorrodi R.
        • Rogasch N.C.
        • Farzan F.
        • Foussias G.
        • et al.
        Altered Transcranial Magnetic Stimulation–Electroencephalographic Markers of Inhibition and Excitation in the Dorsolateral Prefrontal Cortex in Major Depressive Disorder.
        Biol Psychiatry. 2019; 85: 477-486
        • Eshel N.
        • Keller C.J.
        • Wu W.
        • Jiang J.
        • Mills-Finnerty C.
        • Huemer J.
        • et al.
        Global connectivity and local excitability changes underlie antidepressant effects of repetitive transcranial magnetic stimulation.
        Neuropsychopharmacology. 2020; 45: 1018-1025
        • Kerwin L.J.
        • Keller C.J.
        • Wu W.
        • Narayan M.
        • Etkin A.
        Test-retest reliability of transcranial magnetic stimulation EEG evoked potentials.
        Brain Stimulat. 2018; 11: 536-544
        • Casarotto S.
        • Fecchio M.
        • Rosanova M.
        • Varone G.
        • D’Ambrosio S.
        • Sarasso S.
        • et al.
        The rt-TEP tool: real-time visualization of TMS-Evoked Potential to maximize cortical activation and minimize artifacts.
        preprint. Neuroscience. 2021;
        • Cotovio G.
        • Oliveira-Maia A.J.
        • Paul C.
        • Viana F.F.
        • Rodrigues da Silva D.
        • Seybert C.
        • et al.
        Reply: Variability in motor threshold.
        Brain Stimulat. 2021; 14: 1523-1524
        • Berman R.M.
        • Narasimhan M.
        • Sanacora G.
        • Miano A.P.
        • Hoffman R.E.
        • Hu X.S.
        • et al.
        A randomized clinical trial of repetitive transcranial magnetic stimulation in the treatment of major depression.
        Biol Psychiatry. 2000; 47: 332-337
        • Brunelin J.
        • Jalenques I.
        • Trojak B.
        • Attal J.
        • Szekely D.
        • Gay A.
        • et al.
        The efficacy and safety of low frequency repetitive transcranial magnetic stimulation for treatment-resistant depression: the results from a large multicenter French RCT.
        Brain Stimulat. 2014; 7: 855-863
        • Figiel G.S.
        • Epstein C.
        • McDonald W.M.
        • Amazon-Leece J.
        • Figiel L.
        • Saldivia A.
        • et al.
        The Use of Rapid-Rate Transcranial Magnetic Stimulation (rTMS) in Refractory Depressed Patients.
        J Neuropsychiatry Clin Neurosci. 1998; 10: 20-25
        • Kimbrell T.A.
        • Little J.T.
        • Dunn R.T.
        • Frye M.A.
        • Greenberg B.D.
        • Wassermann E.M.
        • et al.
        Frequency dependence of antidepressant response to left prefrontal repetitive transcranial magnetic stimulation (rTMS) as a function of baseline cerebral glucose metabolism.
        Biol Psychiatry. 1999; 46: 1603-1613
        • Klein E.
        • Kreinin I.
        • Chistyakov A.
        • Koren D.
        • Mecz L.
        • Marmur S.
        • et al.
        Therapeutic efficacy of right prefrontal slow repetitive transcranial magnetic stimulation in major depression: a double-blind controlled study.
        Arch Gen Psychiatry. 1999; 56: 315-320
        • Pascual-Leone A.
        • Rubio B.
        • Pallardó F.
        • Catalá M.D.
        Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression.
        Lancet Lond Engl. 1996; 348: 233-237
        • McCalley D.M.
        • Lench D.H.
        • Doolittle J.D.
        • Imperatore J.P.
        • Hoffman M.
        • Hanlon C.A.
        Determining the optimal pulse number for theta burst induced change in cortical excitability.
        Sci Rep. 2021; 11: 8726
        • Di Lazzaro V.
        • Dileone M.
        • Pilato F.
        • Capone F.
        • Musumeci G.
        • Ranieri F.
        • et al.
        Modulation of motor cortex neuronal networks by rTMS: comparison of local and remote effects of six different protocols of stimulation.
        J Neurophysiol. 2011; 105: 2150-2156
        • Blumberger D.M.
        • Vila-Rodriguez F.
        • Thorpe K.E.
        • Feffer K.
        • Noda Y.
        • Giacobbe P.
        • et al.
        Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): a randomised non-inferiority trial.
        The Lancet. 2018; 391: 1683-1692
        • Cole E.J.
        • Phillips A.L.
        • Bentzley B.S.
        • Stimpson K.H.
        • Nejad R.
        • Barmak F.
        • et al.
        Stanford Neuromodulation Therapy (SNT): A Double-Blind Randomized Controlled Trial.
        Am J Psychiatry. 2022; 179: 132-141
        • Chen L.
        • Thomas E.H.X.
        • Kaewpijit P.
        • Miljevic A.
        • Hughes R.
        • Hahn L.
        • et al.
        Accelerated theta burst stimulation for the treatment of depression: A randomised controlled trial.
        Brain Stimulat. 2021; 14: 1095-1105
        • Cole E.J.
        • Stimpson K.H.
        • Bentzley B.S.
        • Gulser M.
        • Cherian K.
        • Tischler C.
        • et al.
        Stanford Accelerated Intelligent Neuromodulation Therapy for Treatment-Resistant Depression.
        Am J Psychiatry. 2020; 177: 716-726
        • Holtzheimer P.E.
        • McDonald W.M.
        • Mufti M.
        • Kelley M.E.
        • Quinn S.
        • Corso G.
        • et al.
        Accelerated repetitive transcranial magnetic stimulation for treatment-resistant depression.
        Depress Anxiety. 2010; 27: 960-963
        • Loo C.K.
        • Mitchell P.B.
        • McFarquhar T.F.
        • Malhi G.S.
        • Sachdev P.S.
        A sham-controlled trial of the efficacy and safety of twice-daily rTMS in major depression.
        Psychol Med. 2007; 37: 341-349
        • McGirr A.
        • Van den Eynde F.
        • Tovar-Perdomo S.
        • Fleck M.P.A.
        • Berlim M.T.
        Effectiveness and acceptability of accelerated repetitive transcranial magnetic stimulation (rTMS) for treatment-resistant major depressive disorder: an open label trial.
        J Affect Disord. 2015; 173: 216-220
        • Baeken C.
        • Vanderhasselt M.-A.
        • Remue J.
        • Herremans S.
        • Vanderbruggen N.
        • Zeeuws D.
        • et al.
        Intensive HF-rTMS treatment in refractory medication-resistant unipolar depressed patients.
        J Affect Disord. 2013; 151: 625-631
        • Dardenne A.
        • Baeken C.
        • Crunelle C.L.
        • Bervoets C.
        • Matthys F.
        • Herremans S.C.
        Accelerated HF-rTMS in the elderly depressed: A feasibility study.
        Brain Stimulat. 2018; 11: 247-248
        • Desmyter S.
        • Duprat R.
        • Baeken C.
        • Van Autreve S.
        • Audenaert K.
        • van Heeringen K.
        Accelerated Intermittent Theta Burst Stimulation for Suicide Risk in Therapy-Resistant Depressed Patients: A Randomized, Sham-Controlled Trial.
        Front Hum Neurosci. 2016; 10: 480
        • Duprat R.
        • Desmyter S.
        • Rudi D.R.
        • van Heeringen K.
        • Van den Abbeele D.
        • Tandt H.
        • et al.
        Accelerated intermittent theta burst stimulation treatment in medication-resistant major depression: A fast road to remission?.
        J Affect Disord. 2016; 200: 6-14
        • Williams N.R.
        • Sudheimer K.D.
        • Bentzley B.S.
        • Pannu J.
        • Stimpson K.H.
        • Duvio D.
        • et al.
        High-dose spaced theta-burst TMS as a rapid-acting antidepressant in highly refractory depression.
        Brain J Neurol. 2018; 141: e18
        • Tor P.-C.
        • Gálvez V.
        • Goldstein J.
        • George D.
        • Loo C.K.
        Pilot Study of Accelerated Low-Frequency Right-Sided Transcranial Magnetic Stimulation for Treatment-Resistant Depression.
        J ECT. 2016; 32: 180-182
        • Chistyakov A.V.
        • Kreinin B.
        • Marmor S.
        • Kaplan B.
        • Khatib A.
        • Darawsheh N.
        • et al.
        Preliminary assessment of the therapeutic efficacy of continuous theta-burst magnetic stimulation (cTBS) in major depression: a double-blind sham-controlled study.
        J Affect Disord. 2015; 170: 225-229
        • Frank A.C.
        • Scangos K.W.
        • Larson P.S.
        • Norbu T.
        • Lee A.T.
        • Lee A.M.
        Identification of a personalized intracranial biomarker of depression and response to DBS therapy.
        Brain Stimulat. 2021; 14: 1002-1004
        • Scangos K.W.
        • Khambhati A.N.
        • Daly P.M.
        • Makhoul G.S.
        • Sugrue L.P.
        • Zamanian H.
        • et al.
        Closed-loop neuromodulation in an individual with treatment-resistant depression.
        Nat Med. 2021; 27: 1696-1700
        • Wu W.
        • Zhang Y.
        • Jiang J.
        • Lucas M.V.
        • Fonzo G.A.
        • Rolle C.E.
        • et al.
        An electroencephalographic signature predicts antidepressant response in major depression.
        Nat Biotechnol. 2020; 38: 439-447
      7. Zabczyk J. Mathematical Control Theory: An Introduction. Cham: Springer International Publishing; 2020.

        • Kaelbling L.P.
        • Littman M.L.
        • Moore A.W.
        Reinforcement Learning: A Survey.
        J Artif Intell Res. 1996; 4: 237-285
      8. Frazier PI. A Tutorial on Bayesian Optimization. ArXiv180702811 Cs Math Stat. 2018.

      9. Lenhart S, Workman JT. Optimal Control Applied to Biological Models. 0 edition. Chapman and Hall/CRC; 2007.

      10. Fan J, Wang Z, Xie Y, Yang Z. A Theoretical Analysis of Deep Q-Learning. In: Proceedings of the 2nd Conference on Learning for Dynamics and Control. PMLR; 2020. p. 486–489.

        • AbuZekry A.
        Comparative Study of NeuroEvolution Algorithms in Reinforcement Learning for Self-Driving Cars.
        Eur J Eng Sci Technol. 2019; https://doi.org/10.33422/EJEST.2019.09.38
      11. Guez A, Vincent RD, Avoli M, Pineau J. Adaptive treatment of epilepsy via batch-mode reinforcement learning. In: Proceedings of the 20th national conference on Innovative applications of artificial intelligence - Volume 3. Chicago, Illinois: AAAI Press; 2008. p. 1671–1678.

        • Parbhoo S.
        • Bogojeska J.
        • Zazzi M.
        • Roth V.
        • Doshi-Velez F.
        Combining Kernel and Model Based Learning for HIV Therapy Selection.
        AMIA Jt Summits Transl Sci Proc AMIA Jt Summits Transl Sci. 2017; 2017: 239-248
      12. Snoek J, Larochelle H, Adams RP. Practical Bayesian Optimization of Machine Learning Algorithms. In: Advances in Neural Information Processing Systems. Curran Associates, Inc.; 2012.

      13. Tervo AE, Nieminen JO, Lioumis P, Metsomaa J, Souza VH, Sinisalo H, et al. Closed-loop optimization of transcranial magnetic stimulation with electroencephalography feedback. preprint. Bioengineering; 2021.

      14. Ceron JSO, Castro PS. Revisiting rainbow: Promoting more insightful and inclusive deep reinforcement learning research. In: International Conference on Machine Learning. PMLR; 2021. p. 1373–1383.

        • Zhang Y.
        • Wu W.
        • Toll R.T.
        • Naparstek S.
        • Maron-Katz A.
        • Watts M.
        • et al.
        Identification of psychiatric disorder subtypes from functional connectivity patterns in resting-state electroencephalography.
        Nat Biomed Eng. 2021; 5: 309-323
        • Fried E.I.
        • Nesse R.M.
        Depression is not a consistent syndrome: An investigation of unique symptom patterns in the STAR*D study.
        J Affect Disord. 2015; 172: 96-102
        • Drysdale A.T.
        • Grosenick L.
        • Downar J.
        • Dunlop K.
        • Mansouri F.
        • Meng Y.
        • et al.
        Resting-state connectivity biomarkers define neurophysiological subtypes of depression.
        Nat Med. 2017; 23: 28-38
        • Chou P.-H.
        • Lin Y.-F.
        • Lu M.-K.
        • Chang H.-A.
        • Chu C.-S.
        • Chang W.H.
        • et al.
        Personalization of Repetitive Transcranial Magnetic Stimulation for the Treatment of Major Depressive Disorder According to the Existing Psychiatric Comorbidity.
        Clin Psychopharmacol Neurosci. 2021; 19: 190-205
        • Donse L.
        • Padberg F.
        • Sack A.T.
        • Rush A.J.
        • Arns M.
        Simultaneous rTMS and psychotherapy in major depressive disorder: Clinical outcomes and predictors from a large naturalistic study.
        Brain Stimulat. 2018; 11: 337-345
        • Carmi L.
        • Tendler A.
        • Bystritsky A.
        • Hollander E.
        • Blumberger D.M.
        • Daskalakis J.
        • et al.
        Efficacy and Safety of Deep Transcranial Magnetic Stimulation for Obsessive-Compulsive Disorder: A Prospective Multicenter Randomized Double-Blind Placebo-Controlled Trial.
        Am J Psychiatry. 2019; 176: 931-938
        • Isserles M.
        • Tendler A.
        • Roth Y.
        • Bystritsky A.
        • Blumberger D.M.
        • Ward H.
        • et al.
        Deep Transcranial Magnetic Stimulation Combined With Brief Exposure for Posttraumatic Stress Disorder: A Prospective Multisite Randomized Trial.
        Biol Psychiatry. 2021; 90: 721-728
        • Fitzgerald P.B.
        Targeting repetitive transcranial magnetic stimulation in depression: do we really know what we are stimulating and how best to do it?.
        Brain Stimulat. 2021; 14: 730-736