Advertisement

Adaptive design optimization as a promising tool for reliable and efficient computational fingerprinting

Published:December 17, 2022DOI:https://doi.org/10.1016/j.bpsc.2022.12.003

      Abstract

      A key challenge in understanding mental (dys)functions is their etiological and functional heterogeneity, and several multi-dimensional assessments have been proposed for their comprehensive characterization. However, such assessments require lengthy testing, which may hinder reliable and efficient characterization of individual differences due to increased fatigue and distraction especially in clinical populations. Computational modeling may address the challenge as it often provides more reliable measures of latent neurocognitive processes underlying observed behaviors and captures individual differences better than traditional assessments. However, even with a state-of-art hierarchical modeling approach, reliable estimation of model parameters still requires a large number of trials. Recent works suggest that Bayesian adaptive design optimization (ADO) is a promising way to address the challenges. With ADO, experimental design is optimized adaptively from trial to trial to extract the maximum amount of information about an individual’s characteristics. In this review, we first describe the ADO methodology and then summarize recent works demonstrating that ADO increases reliability and efficiency of latent neurocognitive measures. We conclude by discussing the challenges and future directions of ADO and propose we develop ADO-based computational fingerprints to reliably and efficiently characterize the heterogeneous profiles of psychiatric disorders.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Cuthbert B.N.
        • Insel T.R.
        Toward the future of psychiatric diagnosis: the seven pillars of RDoC.
        Bmc Med. 2013; 11 (126–126)
        • Paulus M.P.
        • Huys Q.J.M.
        • Maia T.V.
        A Roadmap for the Development of Applied Computational Psychiatry.
        Biological Psychiatry Cognitive Neurosci Neuroimaging. 2016; 1: 386-392
        • García-Gutiérrez M.S.
        • Navarrete F.
        • Sala F.
        • Gasparyan A.
        • Austrich-Olivares A.
        • Manzanares J.
        Biomarkers in Psychiatry: Concept, Definition, Types and Relevance to the Clinical Reality.
        Frontiers Psychiatry. 2020; 11: 432
        • Kwako L.E.
        • Momenan R.
        • Litten R.Z.
        • Koob G.F.
        • Goldman D.
        Addictions Neuroclinical Assessment: A Neuroscience-Based Framework for Addictive Disorders.
        Biol Psychiat. 2016; 80: 179-189
        • Marder S.R.
        • Fenton W.
        Measurement and Treatment Research to Improve Cognition in Schizophrenia: NIMH MATRICS initiative to support the development of agents for improving cognition in schizophrenia.
        Schizophr Res. 2004; 72: 5-9
        • Carter C.S.
        • Barch D.M.
        Cognitive Neuroscience-Based Approaches to Measuring and Improving Treatment Effects on Cognition in Schizophrenia: The CNTRICS Initiative.
        Schizophrenia Bull. 2007; 33: 1131-1137
        • Kwako L.E.
        • Momenan R.
        • Litten R.Z.
        • Koob G.F.
        • Goldman D.
        Addictions Neuroclinical Assessment: A Neuroscience-Based Framework for Addictive Disorders.
        Biol Psychiat. 2016; 80: 179-189
      1. Haines N, Kvam PD, Irving LH, Smith C, Beauchaine TP, Pitt MA, et al. (2020): Theoretically Informed Generative Models Can Advance the Psychological and Brain Sciences: Lessons from the Reliability Paradox. https://doi.org/10.31234/osf.io/xr7y3

        • Hedge C.
        • Powell G.
        • Sumner P.
        The reliability paradox: Why robust cognitive tasks do not produce reliable individual differences.
        Behav Res Methods. 2018; 50: 1166-1186
      2. Collaboration OS (2015): Estimating the reproducibility of psychological science. 349: aac4716–aac4716.

        • Kelly R.E.
        • Hoptman M.J.
        Replicability in Brain Imaging.
        Brain Sci. 2022; 12: 397
        • Pashler H.
        • Wagenmakers E.
        Editors’ Introduction to the Special Section on Replicability in Psychological Science.
        Perspect Psychol Sci. 2012; 7: 528-530
        • Hedge C.
        • Powell G.
        • Sumner P.
        The reliability paradox: Why robust cognitive tasks do not produce reliable individual differences.
        Behavior Research Methods. 2017; 103: 1-21
        • Enkavi A.Z.
        • Eisenberg I.W.
        • Bissett P.G.
        • Mazza G.L.
        • MacKinnon D.P.
        • Marsch L.A.
        • Poldrack R.A.
        Large-scale analysis of test–retest reliabilities of self-regulation measures.
        Proc National Acad Sci. 2019; 116: 5472-5477
        • Eisenberg I.W.
        • Bissett P.G.
        • Enkavi A.Z.
        • Li J.
        • MacKinnon D.P.
        • Marsch L.A.
        • Poldrack R.A.
        Uncovering the structure of self-regulation through data-driven ontology discovery.
        Nat Commun. 2019; 10: 2319
        • Strickland J.C.
        • Johnson M.W.
        Rejecting Impulsivity as a Psychological Construct: A Theoretical, Empirical, and Sociocultural Argument.
        Psychol Rev. 2021; 128: 336-361
        • Elliott M.L.
        • Knodt A.R.
        • Ireland D.
        • Morris M.L.
        • Poulton R.
        • Ramrakha S.
        • et al.
        What Is the Test-Retest Reliability of Common Task-Functional MRI Measures? New Empirical Evidence and a Meta-Analysis.
        Psychol Sci. 2020; 31: 792-806
        • Kennedy J.T.
        • Harms M.P.
        • Korucuoglu O.
        • Astafiev S.V.
        • Barch D.M.
        • Thompson W.K.
        • et al.
        Reliability and stability challenges in ABCD task fMRI data.
        Neuroimage. 2022; 252119046
      3. Haines N, Kvam PD, Irving LH, Smith C, Beauchaine TP, Pitt MA, et al. (2020): Theoretically Informed Generative Models Can Advance the Psychological and Brain Sciences: Lessons from the Reliability Paradox. https://doi.org/10.31234/osf.io/xr7y3

        • Rouder J.N.
        • Haaf J.M.
        A psychometrics of individual differences in experimental tasks.
        Psychon B Rev. 2019; 26: 452-467
        • O’Doherty J.P.
        • Hampton A.
        • Kim H.
        Model‐Based fMRI and Its Application to Reward Learning and Decision Making.
        Ann Ny Acad Sci. 2007; 1104: 35-53
        • Ratcliff R.
        • Philiastides M.G.
        • Sajda P.
        Quality of evidence for perceptual decision making is indexed by trial-to-trial variability of the EEG.
        Proc National Acad Sci. 2009; 106: 6539-6544
        • Ahn W.Y.
        • Dai J.
        • Vassileva J.
        • Busemeyer J.R.
        • Stout J.C.
        Chapter 3 Computational modeling for addiction medicine From cognitive models to clinical applications.
        Prog Brain Res. 2016; 224: 53-65
        • Mollick J.A.
        • Kober H.
        Computational Models of Drug Use and Addiction: A Review.
        J Abnorm Psychol. 2020; 129: 544-555
        • Szalisznyó K.
        • Silverstein D.N.
        Computational Predictions for OCD Pathophysiology and Treatment: A Review.
        Frontiers Psychiatry. 2021; 12687062
        • Valton V.
        • Romaniuk L.
        • Steele J.D.
        • Lawrie S.
        • Seriès P.
        Comprehensive review: Computational modelling of schizophrenia.
        Neurosci Biobehav Rev. 2017; 83: 631-646
        • Adams R.A.
        • Huys Q.J.M.
        • Roiser J.P.
        Computational Psychiatry: towards a mathematically informed understanding of mental illness.
        J Neurology Neurosurg Psychiatry. 2016; 87: 53-63
        • Bishop S.J.
        • Gagne C.
        Anxiety, Depression, and Decision Making: A Computational Perspective.
        Annu Rev Neurosci. 2018; 41: 1-18
        • Robinson O.J.
        • Chase H.W.
        Learning and Choice in Mood Disorders: Searching for the Computational Parameters of Anhedonia.
        Comput Psychiatry. 2017; 1: 208-233
        • Sharp P.B.
        • Eldar E.
        Computational Models of Anxiety: Nascent Efforts and Future Directions.
        Curr Dir Psychol Sci. 2019; 28: 170-176
        • Rusch T.
        • Steixner-Kumar S.
        • Doshi P.
        • Spezio M.
        • Gläscher J.
        Theory of mind and decision science: Towards a typology of tasks and computational models.
        Neuropsychologia. 2020; 146107488
        • Raymond J.G.
        • Steele J.D.
        • Seriès P.
        Modeling Trait Anxiety: From Computational Processes to Personality.
        Frontiers Psychiatry. 2017; 8: 1
        • Hauser T.U.
        • Fiore V.G.
        • Moutoussis M.
        • Dolan R.J.
        Computational Psychiatry of ADHD: Neural Gain Impairments across Marrian Levels of Analysis.
        Trends Neurosci. 2016; 39: 63-73
        • Fradkin I.
        • Adams R.A.
        • Parr T.
        • Roiser J.P.
        • Huppert J.D.
        Searching for an anchor in an unpredictable world: A computational model of obsessive compulsive disorder.
        Psychol Rev. 2020; 127: 672-699
        • Loosen A.M.
        • Hauser T.U.
        Towards a computational psychiatry of juvenile obsessive-compulsive disorder.
        Neurosci Biobehav Rev. 2020; 118: 631-642
        • Schultz W.
        Dopamine reward prediction error coding.
        Dialogues Clin Neurosci. 2016; 18: 23-32
        • Sokol-Hessner P.
        • Hsu M.
        • Curley N.G.
        • Delgado M.R.
        • Camerer C.F.
        • Phelps E.A.
        Thinking like a trader selectively reduces individuals’ loss aversion.
        P Natl Acad Sci Usa. 2009; 106: 5035-5040
        • Tversky A.
        • Fox C.R.
        Weighing Risk and Uncertainty.
        Psychol Rev. 1995; 102: 269-283
      4. Mazur JE (1987): An adjusting procedure for studying delayed reinforcement. In: Commons ML, Mazur JE, Nevin JA, Rachlin H, editors. The Effect of Delay and of Intervening Events on Reinforcement Value, vol. 5. Lawrence Erlbaum Associates, Inc., pp 55–73.

        • Katthagen T.
        • Kaminski J.
        • Heinz A.
        • Buchert R.
        • Schlagenhauf F.
        Striatal Dopamine and Reward Prediction Error Signaling in Unmedicated Schizophrenia Patients.
        Schizophrenia Bull. 2020; 46: 1535-1546
        • Culbreth A.J.
        • Westbrook A.
        • Xu Z.
        • Barch D.M.
        • Waltz J.A.
        Intact Ventral Striatal Prediction Error Signaling in Medicated Schizophrenia Patients.
        Biological Psychiatry Cognitive Neurosci Neuroimaging. 2016; 1: 474-483
        • Hernaus D.
        • Xu Z.
        • Brown E.C.
        • Ruiz R.
        • Frank M.J.
        • Gold J.M.
        • Waltz J.A.
        Motivational deficits in schizophrenia relate to abnormalities in cortical learning rate signals.
        Cognitive Affect Behav Neurosci. 2018; 18: 1338-1351
        • Macoveanu J.
        • Stougaard M.E.
        • Kjærstad H.L.
        • Knudsen G.M.
        • Vinberg M.
        • Kessing L.V.
        • Miskowiak K.W.
        Trajectory of aberrant reward processing in patients with bipolar disorder – A longitudinal fMRI study.
        J Affect Disorders. 2022; 312: 235-244
        • Bakker J.M.
        • Goossens L.
        • Kumar P.
        • Lange I.M.J.
        • Michielse S.
        • Schruers K.
        • et al.
        From laboratory to life: associating brain reward processing with real-life motivated behaviour and symptoms of depression in non-help-seeking young adults.
        Psychol Med. 2019; 49: 2441-2451
        • Romeu R.J.
        • Haines N.
        • Ahn W.-Y.
        • Busemeyer J.R.
        • Vassileva J.
        A computational model of the Cambridge gambling task with applications to substance use disorders.
        Drug Alcohol Depen. 2020; 206107711
        • Kumar P.
        • Goer F.
        • Murray L.
        • Dillon D.G.
        • Beltzer M.L.
        • Cohen A.L.
        • et al.
        Impaired reward prediction error encoding and striatal-midbrain connectivity in depression.
        Neuropsychopharmacol. 2018; 43: 1581-1588
        • Chen C.
        • Takahashi T.
        • Nakagawa S.
        • Inoue T.
        • Kusumi I.
        Reinforcement learning in depression: A review of computational research.
        Neurosci Biobehav Rev. 2015; 55: 247-267
        • Hauser T.U.
        • Iannaccone R.
        • Ball J.
        • Mathys C.
        • Brandeis D.
        • Walitza S.
        • Brem S.
        Role of the Medial Prefrontal Cortex in Impaired Decision Making in Juvenile Attention-Deficit/Hyperactivity Disorder.
        Jama Psychiat. 2014; 71: 1165-1173
        • Hauser T.U.
        • Iannaccone R.
        • Dolan R.J.
        • Ball J.
        • Hättenschwiler J.
        • Drechsler R.
        • et al.
        Increased fronto-striatal reward prediction errors moderate decision making in obsessive–compulsive disorder.
        Psychol Med. 2017; 47: 1246-1258
        • Rouder J.N.
        • Lu J.
        An introduction to Bayesian hierarchical models with an application in the theory of signal detection.
        Psychon B Rev. 2005; 12: 573-604
        • Lee M.D.
        • Webb M.R.
        Modeling individual differences in cognition.
        Psychon B Rev. 2005; 12: 605-621
        • Huys Q.J.M.
        • Cools R.
        • Gölzer M.
        • Friedel E.
        • Heinz A.
        • Dolan R.J.
        • Dayan P.
        Disentangling the Roles of Approach, Activation and Valence in Instrumental and Pavlovian Responding.
        Plos Comput Biol. 2011; 7e1002028
        • Woltman H.
        • Feldstain A.
        • MacKay J.C.
        • Rocchi M.
        An introduction to hierarchical linear modeling.
        Tutorials Quantitative Methods Psychology. 2012; 8: 52-69
        • Brown V.M.
        • Chen J.
        • Gillan C.M.
        • Price R.B.
        Improving the Reliability of Computational Analyses: Model-Based Planning and Its Relationship With Compulsivity.
        Biological Psychiatry Cognitive Neurosci Neuroimaging. 2020; 5: 601-609
        • Waltmann M.
        • Schlagenhauf F.
        • Deserno L.
        Sufficient reliability of the behavioral and computational readouts of a probabilistic reversal learning task.
        Behav Res Methods. 2022; : 1-22
        • Efron B.
        • Morris C.
        Stein’s Paradox in Statistics.
        Sci Am. 1977; 236: 119-127
        • Ahn W.-Y.
        • Krawitz A.
        • Kim W.
        • Busemeyer J.R.
        • Brown J.W.
        A Model-Based fMRI Analysis With Hierarchical Bayesian Parameter Estimation.
        J Neurosci Psychology Econ. 2011; 4: 95-110
      5. Lehmann EL, Casella G (2006): Theory of Point Estimation. Springer Science & Business Media.

      6. Farrell S, Lewandowsky S (2018): Computational Models of Cognition and Behavior. Sage Publications.

      7. Busemeyer JR, Diederich A (2010): Cognitive Modeling. Sage Publications.

      8. Rouder J, Kumar A, Haaf JM (2019): Why Most Studies of Individual Differences With Inhibition Tasks Are Bound To Fail. https://doi.org/10.31234/osf.io/3cjr5

        • Myung J.I.
        • Pitt M.A.
        Optimal experimental design for model discrimination.
        Psychol Rev. 2009; 116: 499-518
        • Myung J.I.
        • Cavagnaro D.R.
        • Pitt M.A.
        A tutorial on adaptive design optimization.
        J Math Psychol. 2013; 57: 53-67
        • Lindley D.V.
        On a Measure of the Information Provided by an Experiment.
        Ann Math Statistics. 1956; 27: 986-1005
      9. Atkinson A, Donev A (1992): Optimum Experimental Designs. Oxford University Press.

        • Cavagnaro D.R.
        • Myung J.I.
        • Pitt M.A.
        • Kujala J.V.
        Adaptive Design Optimization: A Mutual Information-Based Approach to Model Discrimination in Cognitive Science.
        Neural Comput. 2010; 22: 887-905
        • Chaloner K.
        • Verdinelli I.
        Bayesian Experimental Design: A Review.
        Stat Sci. 1995; 10: 273-304
      10. Cover TM, Thomas JA (2018): Elements of Information Theory. Wiley Ser Telecommun. https://doi.org/10.1002/0471200611

        • Hou F.
        • Lesmes L.A.
        • Kim W.
        • Gu H.
        • Pitt M.A.
        • Myung J.I.
        • Lu Z.-L.
        Evaluating the performance of the quick CSF method in detecting contrast sensitivity function changes.
        J Vision. 2016; 16: 18
        • Cavagnaro D.R.
        • Aranovich G.J.
        • McClure S.M.
        • Pitt M.A.
        • Myung J.I.
        On the functional form of temporal discounting: An optimized adaptive test.
        J Risk Uncertainty. 2016; 52: 233-254
        • Cavagnaro D.R.
        • Pitt M.A.
        • Gonzalez R.
        • Myung J.I.
        Discriminating among probability weighting functions using adaptive design optimization.
        J Risk Uncertainty. 2013; 47: 255-289
        • Villarreal M.
        • Stark C.E.L.
        • Lee M.D.
        Adaptive design optimization for a Mnemonic Similarity Task.
        J Math Psychol. 2022; 108102665
        • Melinscak F.
        • Bach D.R.
        Computational optimization of associative learning experiments.
        Plos Comput Biol. 2020; 16e1007593
        • Gu H.
        • Kim W.
        • Hou F.
        • Lesmes L.A.
        • Pitt M.A.
        • Lu Z.-L.
        • Myung J.I.
        A hierarchical Bayesian approach to adaptive vision testing: A case study with the contrast sensitivity function.
        J Vision. 2016; 16: 15
        • Xu P.
        • Lesmes L.A.
        • Yu D.
        • Lu Z.-L.
        A novel Bayesian adaptive method for mapping the visual field.
        J Vision. 2019; 19: 16
        • Zhao Y.
        • Lesmes L.
        • Lu Z.-L.
        Efficient assessment of the time course of perceptual sensitivity change.
        Vision Res. 2019; 154: 21-43
        • Toubia O.
        • Johnson E.
        • Evgeniou T.
        • Delquié P.
        Dynamic Experiments for Estimating Preferences: An Adaptive Method of Eliciting Time and Risk Parameters.
        Manage Sci. 2013; 59: 613-640
        • Soutschek A.
        • Gvozdanovic G.
        • Kozak R.
        • Duvvuri S.
        • Martinis N de
        • Harel B.
        • et al.
        Dopaminergic D1 Receptor Stimulation Affects Effort and Risk Preferences.
        Biol Psychiat. 2020; 87: 678-685
        • Soutschek A.
        • Burke C.J.
        • Beharelle A.R.
        • Schreiber R.
        • Weber S.C.
        • Karipidis II,
        • et al.
        The dopaminergic reward system underpins gender differences in social preferences.
        Nat Hum Behav. 2017; 1: 819-827
        • Sanchez G.
        • Daunizeau J.
        • Maby E.
        • Bertrand O.
        • Bompas A.
        • Mattout J.
        Toward a New Application of Real-Time Electrophysiology: Online Optimization of Cognitive Neurosciences Hypothesis Testing.
        Brain Sci. 2014; 4: 49-72
        • Sanchez G.
        • Lecaignard F.
        • Otman A.
        • Maby E.
        • Mattout J.
        Active SAmpling Protocol (ASAP) to Optimize Individual Neurocognitive Hypothesis Testing: A BCI-Inspired Dynamic Experimental Design.
        Front Hum Neurosci. 2016; 10: 347
        • Bahg G.
        • Sederberg P.B.
        • Myung J.I.
        • Li X.
        • Pitt M.A.
        • Lu Z.-L.
        • Turner B.M.
        Real-time Adaptive Design Optimization Within Functional MRI Experiments.
        Comput Brain Behav. 2020; 3: 400-429
        • Ahn W.-Y.
        • Gu H.
        • Shen Y.
        • Haines N.
        • Hahn H.A.
        • Teater J.E.
        • et al.
        Rapid, precise, and reliable measurement of delay discounting using a Bayesian learning algorithm.
        Sci Rep-uk. 2020; 1012091
        • Rachlin H.
        • Raineri A.
        • Cross D.
        Subjective probability and delay.
        J Exp Anal Behav. 1991; 55: 233-244
        • Aranovich G.J.
        • Cavagnaro D.R.
        • Pitt M.A.
        • Myung J.I.
        • Mathews C.A.
        A model-based analysis of decision making under risk in obsessive-compulsive and hoarding disorders.
        J Psychiatr Res. 2017; 90: 126-132
        • Pitt M.A.
        • Myung J.I.
        Robust Modeling Through Design Optimization.
        Comput Brain Behav. 2019; 2: 200-201
        • Chang J.
        • Kim J.
        • Zhang B.-T.
        • Pitt M.A.
        • Myung J.I.
        Data-driven experimental design and model development using Gaussian process with active learning.
        Cognitive Psychol. 2021; 125101360
        • Lee S.H.
        • Kim D.
        • Opfer J.E.
        • Pitt M.A.
        • Myung J.I.
        A number-line task with a Bayesian active learning algorithm provides insights into the development of non-symbolic number estimation.
        Psychon B Rev. 2022; 29: 971-984
        • Ahn W.-Y.
        • Busemeyer J.R.
        Challenges and promises for translating computational tools into clinical practice.
        Curr Opin Behav Sci. 2016; 11: 1-7
        • Yang J.
        • Pitt M.A.
        • Ahn W.-Y.
        • Myung J.I.
        ADOpy: a python package for adaptive design optimization.
        Behav Res Methods. 2021; 53: 874-897
        • Gueguen M.C.
        • Schweitzer E.M.
        • Konova A.B.
        Computational theory-driven studies of reinforcement learning and decision-making in addiction: what have we learned?.
        Curr Opin Behav Sci. 2021; 38: 40-48
        • Yechiam E.
        • Busemeyer J.R.
        • Stout J.C.
        • Bechara A.
        Using Cognitive Models to Map Relations Between Neuropsychological Disorders and Human Decision-Making Deficits.
        Psychol Sci. 2005; 16: 973-978
        • Maia T.V.
        • Huys Q.J.M.
        • Frank M.J.
        Theory-Based Computational Psychiatry.
        Biol Psychiat. 2017; 82: 382-384