Advertisement

Prolonged physiological stress is associated with a lower rate of exploratory learning that is compounded by depression

Published:December 17, 2022DOI:https://doi.org/10.1016/j.bpsc.2022.12.004

      Abstract

      Background

      Stress is a major risk factor for depression, which shares important changes in decision-making patterns. However, decades of research have only weakly connected physiological measurements of stress to the subjective experience of depression. Here, we examined the relationship between prolonged physiological stress, mood, and explore-exploit decision-making in a population navigating a dynamic environment under stress: healthcare workers during the COVID-19 pandemic.

      Methods

      We measured hair cortisol levels in healthcare workers who completed symptom surveys and performed an explore-exploit restless-bandit decision-making task; 32 participants were included in the final analysis. Hidden Markov and reinforcement learning (RL) models assessed task behavior.

      Results

      Participants with higher hair cortisol exhibited less exploration (r = -0.36, p = 0.046). Higher cortisol levels predicted less learning during exploration (beta = -0.42, FDR corrected p = 0.022). Importantly, mood did not independently correlate with cortisol concentration but explained additional variance (beta = 0.46, FDR corrected p = 0.022) and strengthened the relationship between higher cortisol and lower levels of exploratory learning (beta = -0.47, FDR corrected p = 0.022) in a joint model. These results were corroborated by an RL model, which revealed less learning with higher hair cortisol and low mood (beta = -0.67, FDR corrected p = 0.002).

      Conclusion

      These results imply prolonged physiological stress may limit learning from new information and lead to cognitive rigidity, potentially contributing to burnout. Decision-making measures link subjective mood states to measured physiological stress, suggesting they should be incorporated into future biomarker studies of mood and stress conditions.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Krishnan V.
        • Nestler E.J.
        The molecular neurobiology of depression.
        Nature. 2008; 455: 894-902
        • Addicott M.A.
        • Pearson J.M.
        • Sweitzer M.M.
        • Barack D.L.
        • Platt M.L.
        A Primer on Foraging and the Explore/Exploit Trade-Off for Psychiatry Research.
        Neuropsychopharmacology. 2017; 42: 1931-1939
        • van Dooren R.
        • de Kleijn R.
        • Hommel B.
        • Sjoerds Z.
        The exploration-exploitation trade-off in a foraging task is affected by mood-related arousal and valence.
        Cogn Affect Behav Neurosci. 2021; 21: 549-560
        • Dajani D.R.
        • Uddin L.Q.
        Demystifying cognitive flexibility: Implications for clinical and developmental neuroscience.
        Trends Neurosci. 2015; 38: 571-578
        • Bogdan R.
        • Pizzagalli D.A.
        Acute stress reduces reward responsiveness: implications for depression.
        Biol Psychiatry. 2006; 60: 1147-1154
        • Meiran N.
        • Diamond G.M.
        • Toder D.
        • Nemets B.
        Cognitive rigidity in unipolar depression and obsessive compulsive disorder: examination of task switching, Stroop, working memory updating and post-conflict adaptation.
        Psychiatry Res. 2011; 185: 149-156
        • Remijnse P.L.
        • van den Heuvel O.A.
        • Nielen M.M.A.
        • Vriend C.
        • Hendriks G.-J.
        • Hoogendijk W.J.G.
        • et al.
        Cognitive inflexibility in obsessive-compulsive disorder and major depression is associated with distinct neural correlates.
        PLoS One. 2013; 8e59600
        • Porcelli A.J.
        • Delgado M.R.
        Stress and Decision Making: Effects on Valuation, Learning, and Risk-taking.
        Curr Opin Behav Sci. 2017; 14: 33-39
        • Liston C.
        • Miller M.M.
        • Goldwater D.S.
        • Radley J.J.
        • Rocher A.B.
        • Hof P.R.
        • et al.
        Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting.
        J Neurosci. 2006; 26: 7870-7874
        • Liston C.
        • McEwen B.S.
        • Casey B.J.
        Psychosocial stress reversibly disrupts prefrontal processing and attentional control.
        Proc Natl Acad Sci U S A. 2009; 106: 912-917
        • Lenow J.K.
        • Constantino S.M.
        • Daw N.D.
        • Phelps E.A.
        Chronic and Acute Stress Promote Overexploitation in Serial Decision Making.
        J Neurosci. 2017; 37: 5681-5689
        • Huys Q.J.M.
        • Daw N.D.
        • Dayan P.
        Depression: A Decision-Theoretic Analysis.
        Annual Review of Neuroscience. 2015; 38: 1-23
        • Petzold A.
        • Plessow F.
        • Goschke T.
        • Kirschbaum C.
        Stress reduces use of negative feedback in a feedback-based learning task.
        Behavioral Neuroscience. 2010; 124: 248-255
        • Berghorst L.H.
        • Bogdan R.
        • Frank M.J.
        • Pizzagalli D.A.
        Acute stress selectively reduces reward sensitivity.
        Front Hum Neurosci. 2013; 7: 133
        • Lighthall N.R.
        • Gorlick M.A.
        • Schoeke A.
        • Frank M.J.
        • Mather M.
        Stress modulates reinforcement learning in younger and older adults.
        Psychol Aging. 2013; 28: 35-46
        • Pabst S.
        • Schoofs D.
        • Pawlikowski M.
        • Brand M.
        • Wolf O.T.
        Paradoxical effects of stress and an executive task on decisions under risk.
        Behavioral Neuroscience. 2013; 127: 369-379
        • Admon R.
        • Pizzagalli D.A.
        Dysfunctional Reward Processing in Depression.
        Curr Opin Psychol. 2015; 4: 114-118
        • Brown V.M.
        • Zhu L.
        • Solway A.
        • Wang J.M.
        • McCurry K.L.
        • King-Casas B.
        • et al.
        Reinforcement Learning Disruptions in Individuals With Depression and Sensitivity to Symptom Change Following Cognitive Behavioral Therapy.
        JAMA Psychiatry. 2021; https://doi.org/10.1001/jamapsychiatry.2021.1844
        • Huys Q.J.
        • Pizzagalli D.A.
        • Bogdan R.
        • Dayan P.
        Mapping anhedonia onto reinforcement learning: a behavioural meta-analysis.
        Biol Mood Anxiety Disord. 2013; 3: 12
        • Herzallah M.M.
        • Moustafa A.A.
        • Natsheh J.Y.
        • Abdellatif S.M.
        • Taha M.B.
        • Tayem Y.I.
        • et al.
        Learning from negative feedback in patients with major depressive disorder is attenuated by SSRI antidepressants.
        Front Integr Neurosci. 2013; 7: 67
        • Kunisato Y.
        • Okamoto Y.
        • Ueda K.
        • Onoda K.
        • Okada G.
        • Yoshimura S.
        • et al.
        Effects of depression on reward-based decision making and variability of action in probabilistic learning.
        J Behav Ther Exp Psychiatry. 2012; 43: 1088-1094
        • Domenech P.
        • Rheims S.
        • Koechlin E.
        Neural mechanisms resolving exploitation-exploration dilemmas in the medial prefrontal cortex.
        Science. 2020; 369https://doi.org/10.1126/science.abb0184
        • Belleau E.L.
        • Treadway M.T.
        • Pizzagalli D.A.
        The Impact of Stress and Major Depressive Disorder on Hippocampal and Medial Prefrontal Cortex Morphology.
        Biol Psychiatry. 2019; 85: 443-453
        • d’Ettorre G.
        • Ceccarelli G.
        • Santinelli L.
        • Vassalini P.
        • Innocenti G.P.
        • Alessandri F.
        • et al.
        Post-Traumatic Stress Symptoms in Healthcare Workers Dealing with the COVID-19 Pandemic: A Systematic Review.
        Int J Environ Res Public Health. 2021; 18https://doi.org/10.3390/ijerph18020601
        • Prasad K.
        • McLoughlin C.
        • Stillman M.
        • Poplau S.
        • Goelz E.
        • Taylor S.
        • et al.
        Prevalence and correlates of stress and burnout among U.S. healthcare workers during the COVID-19 pandemic: A national cross-sectional survey study.
        EClinicalMedicine. 2021; 35100879
        • Pappa S.
        • Ntella V.
        • Giannakas T.
        • Giannakoulis V.G.
        • Papoutsi E.
        • Katsaounou P.
        Prevalence of depression, anxiety, and insomnia among healthcare workers during the COVID-19 pandemic: A systematic review and meta-analysis.
        Brain Behav Immun. 2020; 88: 901-907
        • Holsboer F.
        The Corticosteroid Receptor Hypothesis of Depression.
        Neuropsychopharmacology. 2000; 23: 477-501
        • Menke A.
        Is the HPA Axis as Target for Depression Outdated, or Is There a New Hope?.
        Front Psychiatry. 2019; 10: 101
        • Enkavi A.Z.
        • Poldrack R.A.
        Implications of the Lacking Relationship Between Cognitive Task and Self-report Measures for Psychiatry. Biological Psychiatry.
        Cognitive Neuroscience and Neuroimaging. 2021, July; 6: 670-672
        • Hughes M.E.
        • Waite L.J.
        • Hawkley L.C.
        • Cacioppo J.T.
        A Short Scale for Measuring Loneliness in Large Surveys: Results From Two Population-Based Studies.
        Res Aging. 2004; 26: 655-672
      1. American Psychiatric Association (2013): Diagnostic and Statistical Manual of Mental Disorders (DSM-5®). American Psychiatric Pub.

        • Ashbaugh A.R.
        • Houle-Johnson S.
        • Herbert C.
        • El-Hage W.
        • Brunet A.
        Psychometric Validation of the English and French Versions of the Posttraumatic Stress Disorder Checklist for DSM-5 (PCL-5).
        PLoS One. 2016; 11e0161645
        • Sherbourne C.D.
        • Stewart A.L.
        The MOS social support survey.
        Soc Sci Med. 1991; 32: 705-714
        • Liu H.
        • Liu K.
        • Zhao Q.
        Learning in a Changing World: Restless Multiarmed Bandit With Unknown Dynamics.
        IEEE Trans Inf Theory. 2013; 59: 1902-1916
        • Hampton A.N.
        • Bossaerts P.
        • O’Doherty J.P.
        The role of the ventromedial prefrontal cortex in abstract state-based inference during decision making in humans.
        J Neurosci. 2006; 26: 8360-8367
        • Ebitz R.B.
        • Albarran E.
        • Moore T.
        Exploration Disrupts Choice-Predictive Signals and Alters Dynamics in Prefrontal Cortex.
        Neuron. 2018; 97: 475
        • Chen C.S.
        • Knep E.
        • Han A.
        • Ebitz R.B.
        • Grissom N.M.
        Sex differences in learning from exploration.
        Elife. 2021; 10https://doi.org/10.7554/eLife.69748
        • Daw N.D.
        • O’Doherty J.P.
        • Dayan P.
        • Seymour B.
        • Dolan R.J.
        Cortical substrates for exploratory decisions in humans.
        Nature. 2006; 441: 876-879
        • Marković D.
        • Goschke T.
        • Kiebel S.J.
        Meta-control of the exploration-exploitation dilemma emerges from probabilistic inference over a hierarchy of time scales.
        Cogn Affect Behav Neurosci. 2021; 21: 509-533
        • Schlagenhauf F.
        • Huys Q.J.M.
        • Deserno L.
        • Rapp M.A.
        • Beck A.
        • Heinze H.-J.
        • et al.
        Striatal dysfunction during reversal learning in unmedicated schizophrenia patients.
        Neuroimage. 2014; 89: 171-180
      2. Bilmes (1998): A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models. International Computer Science Institute. Retrieved from http://www.leap.ee.iisc.ac.in/sriram/teaching/MLSP_18/refs/GMM_Bilmes.pdf

        • Rescorla R.A.
        Informational Variables in Pavlovian Conditioning.
        Psychology of Learning and Motivation. 1972; : 1-46
        • Wilson R.C.
        • Collins A.G.
        Ten simple rules for the computational modeling of behavioral data.
        Elife. 2019; 8https://doi.org/10.7554/eLife.49547
        • Gow R.
        • Thomson S.
        • Rieder M.
        • Van Uum S.
        • Koren G.
        An assessment of cortisol analysis in hair and its clinical applications.
        Forensic Sci Int. 2010; 196: 32-37
        • Kapoor A.
        • Lubach G.
        • Hedman C.
        • Ziegler T.E.
        • Coe C.L.
        Hormones in infant rhesus monkeys’ (Macaca mulatta) hair at birth provide a window into the fetal environment.
        Pediatric Research. 2014; 75: 476-481
        • Kapoor A.
        • Lubach G.R.
        • Ziegler T.E.
        • Coe C.L.
        Hormone levels in neonatal hair reflect prior maternal stress exposure during pregnancy.
        Psychoneuroendocrinology. 2016; 66: 111-117
        • Chumbley J.R.
        • Krajbich I.
        • Engelmann J.B.
        • Russell E.
        • Van Uum S.
        • Koren G.
        • et al.
        Endogenous cortisol predicts decreased loss aversion in young men.
        Psychol Sci. 2014; 25: 2102-2105
        • Russell E.
        • Kirschbaum C.
        • Laudenslager M.L.
        • Stalder T.
        • de Rijke Y.
        • van Rossum E.F.C.
        • et al.
        Toward standardization of hair cortisol measurement: results of the first international interlaboratory round robin.
        Ther Drug Monit. 2015; 37: 71-75
        • Stalder T.
        • Steudte-Schmiedgen S.
        • Alexander N.
        • Vater A.
        • Wichmann S.
        • Kirschbaum C.
        • et al.
        Stress-related and basic determinants of hair cortisol in humans: A meta-analysis.
        Psychoneuroendocrinology. 2016; 71: 74-75
        • Marcil M.-J.
        • Cyr S.
        • Marin M.-F.
        • Rosa C.
        • Tardif J.-C.
        • Guay S.
        • et al.
        Hair cortisol change at COVID-19 pandemic onset predicts burnout among health personnel.
        Psychoneuroendocrinology. 2021; 138105645
        • Russell E.
        • Koren G.
        • Rieder M.
        • Van Uum S.
        Hair cortisol as a biological marker of chronic stress: current status, future directions and unanswered questions.
        Psychoneuroendocrinology. 2012; 37: 589-601
        • Iob E.
        • Steptoe A.
        Cardiovascular Disease and Hair Cortisol: a Novel Biomarker of Chronic Stress.
        Curr Cardiol Rep. 2019; 21: 116
        • Vliegenthart J.
        • Noppe G.
        • van Rossum E.F.C.
        • Koper J.W.
        • Raat H.
        • van den Akker E.L.T.
        Socioeconomic status in children is associated with hair cortisol levels as a biological measure of chronic stress.
        Psychoneuroendocrinology. 2016; 65: 9-14
        • Mayer S.E.
        • Lopez-Duran N.L.
        • Sen S.
        • Abelson J.L.
        Chronic stress, hair cortisol and depression: A prospective and longitudinal study of medical internship.
        Psychoneuroendocrinology. 2018; 92: 57-65
        • Stalder T.
        • Tietze A.
        • Steudte S.
        • Alexander N.
        • Dettenborn L.
        • Kirschbaum C.
        Elevated hair cortisol levels in chronically stressed dementia caregivers.
        Psychoneuroendocrinology. 2014; 47: 26-30
        • Kapoor A.
        • Schultz-Darken N.
        • Ziegler T.E.
        Radiolabel validation of cortisol in the hair of rhesus monkeys.
        Psychoneuroendocrinology. 2018; 97: 190-195
        • Chen C.S.
        • Ebitz R.B.
        • Bindas S.R.
        • Redish A.D.
        • Hayden B.Y.
        • Grissom N.M.
        Divergent Strategies for Learning in Males and Females.
        Curr Biol. 2020; https://doi.org/10.1016/j.cub.2020.09.075
        • Koutsimani P.
        • Montgomery A.
        • Georganta K.
        The Relationship Between Burnout, Depression, and Anxiety: A Systematic Review and Meta-Analysis.
        Front Psychol. 2019; 10: 284
        • Arnsten A.F.T.
        Stress signalling pathways that impair prefrontal cortex structure and function.
        Nat Rev Neurosci. 2009; 10: 410-422
        • Durning S.J.
        • Costanzo M.
        • Artino Jr., A.R.
        • Dyrbye L.N.
        • Beckman T.J.
        • Schuwirth L.
        • et al.
        Functional Neuroimaging Correlates of Burnout among Internal Medicine Residents and Faculty Members.
        Front Psychiatry. 2013; 4: 131
        • Chou P.-H.
        • Lin W.-H.
        • Hung C.-A.
        • Chang C.-C.
        • Li W.-R.
        • Lan T.-H.
        • et al.
        Perceived Occupational Stress is associated with Decreased Cortical Activity of the Prefrontal Cortex: A Multichannel Near-infrared Spectroscopy Study.
        Sci Rep. 2016; 639089
        • Kumar P.
        • Waiter G.
        • Ahearn T.
        • Milders M.
        • Reid I.
        • Steele J.D.
        Abnormal temporal difference reward-learning signals in major depression.
        Brain. 2008; 131 (–2093): 2084
        • Rupprechter S.
        • Stankevicius A.
        • Huys Q.J.M.
        • Steele J.D.
        • Seriès P.
        Major Depression Impairs the Use of Reward Values for Decision-Making.
        Sci Rep. 2018; 813798
        • Denning M.
        • Goh E.T.
        • Tan B.
        • Kanneganti A.
        • Almonte M.
        • Scott A.
        • et al.
        Determinants of burnout and other aspects of psychological well-being in healthcare workers during the Covid-19 pandemic: A multinational cross-sectional study.
        PLoS One. 2021; 16e0238666
        • Sasangohar F.
        • Jones S.L.
        • Masud F.N.
        • Vahidy F.S.
        • Kash B.A.
        Provider Burnout and Fatigue During the COVID-19 Pandemic: Lessons Learned From a High-Volume Intensive Care Unit.
        Anesth Analg. 2020; 131: 106-111
        • Koumantarou Malisiova E.
        • Mourikis I.
        • Darviri C.
        • Nicolaides N.C.
        • Zervas I.M.
        • Papageorgiou C.
        • et al.
        Hair cortisol concentrations in mental disorders: A systematic review.
        Physiol Behav. 2021; 229113244
      3. Redish DA, Kepecs A, Anderson L, Calvin O, Grissom N, Haynos A, et al. (n.d.): Computational validity: Using computation to translate behaviors across species. Philos Trans R Soc Lond B Biol Sci. https://doi.org/10.1098/rstb.2020.0525