Advertisement

Alpha Event-related Desynchronization During Reward Processing in Schizophrenia

Published:January 09, 2023DOI:https://doi.org/10.1016/j.bpsc.2022.12.015

      Abstract

      Background

      Alterations in the brain’s reward system may underlie motivation and pleasure deficits in schizophrenia. Neuro-oscillatory desynchronization in the alpha band is thought to direct resource allocation away from the internal state, to prioritize processing salient environmental events, including reward feedback. We hypothesize reduced reward-related alpha event-related desynchronization (ERD) in schizophrenia, consistent with less externally-focused processing during reward feedback.

      Methods

      EEG was recorded while individuals with schizophrenia (SZ; n=54) and healthy control participants (HC; n= 54) played a simple slot machine task. Total alpha band power (8-14 Hz), a measure of neural oscillation magnitude, was extracted via principal components analysis and compared between groups and reward outcomes. The clinical relevance of hypothesized alpha power alterations was examined by testing associations with negative symptoms within the SZ group and with trait rumination, dimensionally, across groups.

      Results

      A Group X Reward Outcome interaction (p=.018) was explained by HC showing significant posterior-occipital alpha power suppression to wins versus losses (p<.001), in contrast to SZ (p>.1). Among participants with SZ, this alpha ERD was unrelated to negative symptoms (p>.1). Across all participants, less alpha ERD to reward outcomes covaried with greater trait rumination, for both win (p=.005) and loss (p=.002) outcomes, with no group differences in slope.

      Conclusion

      These findings demonstrate alpha ERD alterations in schizophrenia during reward outcome processing. Additionally, higher trait rumination is associated with less alpha ERD during reward feedback, suggesting that individual differences in rumination covary with external attention to reward processing, regardless of reward outcome valence or group membership.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Whitton A.E.
        • Treadway M.T.
        • Pizzagalli D.A.
        Reward processing dysfunction in major depression, bipolar disorder and schizophrenia.
        Curr Opin Psychiatry. 2015; 28: 7-12
        • Strauss G.P.
        • Waltz J.A.
        • Gold J.M.
        A review of reward processing and motivational impairment in schizophrenia.
        Schizophr Bull. 2014; 40: S107-116
        • Kring A.M.
        • Moran E.K.
        Emotional response deficits in schizophrenia: insights from affective science.
        Schizophr Bull. 2008; 34: 819-834
        • Gold J.M.
        • Hahn B.
        • Strauss G.P.
        • Waltz J.A.
        Turning it upside down: areas of preserved cognitive function in schizophrenia.
        Neuropsychol Rev. 2009; 19: 294-311
        • Gold J.M.
        • Waltz J.A.
        • Matveeva T.M.
        • Kasanova Z.
        • Strauss G.P.
        • Herbener E.S.
        • et al.
        Negative symptoms and the failure to represent the expected reward value of actions: behavioral and computational modeling evidence.
        Arch Gen Psychiatry. 2012; 69: 129-138
        • Gold J.M.
        • Waltz J.A.
        • Prentice K.J.
        • Morris S.E.
        • Heerey E.A.
        Reward processing in schizophrenia: a deficit in the representation of value.
        Schizophr Bull. 2008; 34: 835-847
        • Roiser J.P.
        • Stephan K.E.
        • den Ouden H.E.
        • Barnes T.R.
        • Friston K.J.
        • Joyce E.M.
        Do patients with schizophrenia exhibit aberrant salience?.
        Psychol Med. 2009; 39: 199-209
        • Barch D.M.
        • Dowd E.C.
        Goal representations and motivational drive in schizophrenia: the role of prefrontal-striatal interactions.
        Schizophr Bull. 2010; 36: 919-934
        • Barch D.M.
        The relationships among cognition, motivation, and emotion in schizophrenia: how much and how little we know.
        Schizophr Bull. 2005; 31: 875-881
        • Glazer J.E.
        • Kelley N.J.
        • Pornpattananangkul N.
        • Mittal V.A.
        • Nusslock R.
        Beyond the FRN: Broadening the time-course of EEG and ERP components implicated in reward processing.
        Int J Psychophysiol. 2018; 132: 184-202
        • Buzsaki G.
        • Draguhn A.
        Neuronal oscillations in cortical networks.
        Science. 2004; 304: 1926-1929
        • Klimesch W.
        alpha-band oscillations, attention, and controlled access to stored information.
        Trends Cogn Sci. 2012; 16: 606-617
        • Basar E.
        • Guntekin B.
        A short review of alpha activity in cognitive processes and in cognitive impairment.
        Int J Psychophysiol. 2012; 86: 25-38
        • Neuper C.
        • Pfurtscheller G.
        Event-related dynamics of cortical rhythms: frequency-specific features and functional correlates.
        Int J Psychophysiol. 2001; 43: 41-58
        • Makeig S.
        • Westerfield M.
        • Jung T.P.
        • Enghoff S.
        • Townsend J.
        • Courchesne E.
        • et al.
        Dynamic brain sources of visual evoked responses.
        Science. 2002; 295: 690-694
        • Pfurtscheller G.
        • Aranibar A.
        Event-related cortical desynchronization detected by power measurements of scalp EEG.
        Electroencephalogr Clin Neurophysiol. 1977; 42: 817-826
        • Byrne A.
        • Kokmotou K.
        • Roberts H.
        • Soto V.
        • Tyson-Carr J.
        • Hewitt D.
        • et al.
        The cortical oscillatory patterns associated with varying levels of reward during an effortful vigilance task.
        Exp Brain Res. 2020; 238: 1839-1859
        • Hughes G.
        • Mathan S.
        • Yeung N.
        EEG indices of reward motivation and target detectability in a rapid visual detection task.
        Neuroimage. 2013; 64: 590-600
        • van den Berg B.
        • Krebs R.M.
        • Lorist M.M.
        • Woldorff M.G.
        Utilization of reward-prospect enhances preparatory attention and reduces stimulus conflict.
        Cogn Affect Behav Neurosci. 2014; 14: 561-577
        • Robison A.J.
        • Thakkar K.N.
        • Diwadkar V.A.
        Cognition and Reward Circuits in Schizophrenia: Synergistic, Not Separate.
        Biol Psychiatry. 2020; 87: 204-214
        • Uhlhaas P.J.
        • Haenschel C.
        • Nikolic D.
        • Singer W.
        The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia.
        Schizophr Bull. 2008; 34: 927-943
        • Uhlhaas P.J.
        • Singer W.
        Abnormal neural oscillations and synchrony in schizophrenia.
        Nat Rev Neurosci. 2010; 11: 100-113
        • Buzsaki G.
        • Logothetis N.
        • Singer W.
        Scaling brain size, keeping timing: evolutionary preservation of brain rhythms.
        Neuron. 2013; 80: 751-764
        • Mathalon D.H.
        • Sohal V.S.
        Neural Oscillations and Synchrony in Brain Dysfunction and Neuropsychiatric Disorders: It's About Time.
        JAMA Psychiatry. 2015; 72: 840-844
        • Abeles I.Y.
        • Gomez-Ramirez M.
        Impairments in background and event-related alpha-band oscillatory activity in patients with schizophrenia.
        PLoS One. 2014; 9e91720
        • Fujimoto T.
        • Okumura E.
        • Takeuchi K.
        • Kodabashi A.
        • Tanaka H.
        • Otsubo T.
        • et al.
        Changes in Event-Related Desynchronization and Synchronization during the Auditory Oddball Task in Schizophrenia Patients.
        Open Neuroimag J. 2012; 6: 26-36
        • Higashima M.
        • Tsukada T.
        • Nagasawa T.
        • Oka T.
        • Okamoto T.
        • Okamoto Y.
        • et al.
        Reduction in event-related alpha attenuation during performance of an auditory oddball task in schizophrenia.
        Int J Psychophysiol. 2007; 65: 95-102
        • Jang K.I.
        • Oh J.
        • Jung W.
        • Lee S.
        • Kim S.
        • Huh S.
        • et al.
        Unsuccessful reduction of high-frequency alpha activity during cognitive activation in schizophrenia.
        Psychiatry Clin Neurosci. 2019; 73: 132-139
        • Martinez A.
        • Gaspar P.A.
        • Hillyard S.A.
        • Bickel S.
        • Lakatos P.
        • Dias E.C.
        • et al.
        Neural oscillatory deficits in schizophrenia predict behavioral and neurocognitive impairments.
        Front Hum Neurosci. 2015; 9: 371
        • Erickson M.A.
        • Albrecht M.A.
        • Robinson B.
        • Luck S.J.
        • Gold J.M.
        Impaired suppression of delay-period alpha and beta is associated with impaired working memory in schizophrenia.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2017; 2: 272-279
        • Danos P.
        • Guich S.
        • Abel L.
        • Buchsbaum M.S.
        Eeg alpha rhythm and glucose metabolic rate in the thalamus in schizophrenia.
        Neuropsychobiology. 2001; 43: 265-272
        • Nuechterlein K.H.
        • Green M.F.
        • Kern R.S.
        • Baade L.E.
        • Barch D.M.
        • Cohen J.D.
        • et al.
        The MATRICS Consensus Cognitive Battery, part 1: test selection, reliability, and validity.
        Am J Psychiatry. 2008; 165: 203-213
        • Nolen-Hoeksema S.
        • Wisco B.E.
        • Lyubomirsky S.
        Rethinking Rumination.
        Perspect Psychol Sci. 2008; 3: 400-424
        • Forner-Phillips N.A.
        • Mills C.
        • Ross R.S.
        Tendency to ruminate and anxiety are associated with altered alpha and beta oscillatory power dynamics during memory for contextual details.
        Cogn Affect Behav Neurosci. 2020; 20: 698-716
        • Whitmer A.J.
        • Gotlib I.H.
        An attentional scope model of rumination.
        Psychol Bull. 2013; 139: 1036-1061
        • Kuehner C.
        • Weber I.
        Responses to depression in unipolar depressed patients: an investigation of Nolen-Hoeksema's response styles theory.
        Psychol Med. 1999; 29: 1323-1333
        • Davis R.N.
        • Nolen-Hoeksema S.
        Cognitive inflexibility among ruminators and nonruminators.
        Cognitive Therapy and Research. 2000; 24: 699-711
        • Meiran N.
        • Diamond G.M.
        • Toder D.
        • Nemets B.
        Cognitive rigidity in unipolar depression and obsessive compulsive disorder: examination of task switching, Stroop, working memory updating and post-conflict adaptation.
        Psychiatry Res. 2011; 185: 149-156
        • Philippot P.
        • Brutoux F.
        Induced rumination dampens executive processes in dysphoric young adults.
        J Behav Ther Exp Psychiatry. 2008; 39: 219-227
        • Ludwig L.
        • Werner D.
        • Lincoln T.M.
        The relevance of cognitive emotion regulation to psychotic symptoms - A systematic review and meta-analysis.
        Clin Psychol Rev. 2019; 72101746
      1. Halari R, Premkumar P, Farquharson L, Fannon D, Kuipers E, Kumari V (2009): Rumination and negative symptoms in schizophrenia. J Nerv Ment Dis. 197:703-706.

      2. Hartley S, Haddock G, Vasconcelos ESD, Emsley R, Barrowclough C (2014): An experience sampling study of worry and rumination in psychosis. Psychol Med. 44:1605-1614

      3. van Randenborgh A, Hu¨ffmeier J, LeMoult J, Joormann J (2010): Letting go of unmet goals: does self-focused rumination impair goal disengagement? Motiv Emot. 34.

        • Webb C.A.
        • Auerbach R.P.
        • Bondy E.
        • Stanton C.H.
        • Foti D.
        • Pizzagalli D.A.
        Abnormal neural responses to feedback in depressed adolescents.
        J Abnorm Psychol. 2017; 126: 19-31
        • Abram S.V.
        • Weittenhiller L.P.
        • Bertrand C.E.
        • McQuaid J.R.
        • Mathalon D.H.
        • Ford J.M.
        • et al.
        Psychological Dimensions Relevant to Motivation and Pleasure in Schizophrenia.
        Front Behav Neurosci. 2022; 16827260
        • Alicart H.
        • Cucurell D.
        • Mas-Herrero E.
        • Marco-Pallares J.
        Human oscillatory activity in near-miss events.
        Soc Cogn Affect Neurosci. 2015; 10: 1405-1412
        • Alicart H.
        • Mas-Herrero E.
        • Rifa-Ros X.
        • Cucurell D.
        • Marco-Pallares J.
        Brain oscillatory activity of skill and chance gamblers during a slot machine game.
        Cogn Affect Behav Neurosci. 2019; 19: 1509-1520
        • Fryer S.L.
        • Roach B.J.
        • Holroyd C.B.
        • Paulus M.P.
        • Sargent K.
        • Boos A.
        • et al.
        Electrophysiological investigation of reward anticipation and outcome evaluation during slot machine play.
        Neuroimage. 2021; 232117874
        • Abram S.V.
        • Roach B.J.
        • Holroyd C.B.
        • Paulus M.P.
        • Ford J.M.
        • Mathalon D.H.
        • et al.
        Reward processing electrophysiology in schizophrenia: Effects of age and illness phase.
        Neuroimage Clin. 2020; 28102492
      4. First M, Spitzer R, Gibbon M, Williams J (2002): Structured Clinical Interview for DSM-IV-TR Axis I Disorders, Research Version, Patient Edition. (SCID-I/P). New York State Psychiatric Institute.

        • Kay S.R.
        • Fiszbein A.
        • Opler L.A.
        The positive and negative syndrome scale (PANSS) for schizophrenia.
        Schizophr Bull. 1987; 13: 261-276
        • Kring A.M.
        • Gur R.E.
        • Blanchard J.J.
        • Horan W.P.
        • Reise S.P.
        The Clinical Assessment Interview for Negative Symptoms (CAINS): final development and validation.
        Am J Psychiatry. 2013; 170: 165-172
        • Horan W.P.
        • Kring A.M.
        • Gur R.E.
        • Reise S.P.
        • Blanchard J.J.
        Development and psychometric validation of the Clinical Assessment Interview for Negative Symptoms (CAINS).
        Schizophr Res. 2011; 132: 140-145
        • Nolen-Hoeksema S.
        • Morrow J.
        A prospective study of depression and posttraumatic stress symptoms after a natural disaster: the 1989 Loma Prieta Earthquake.
        J Pers Soc Psychol. 1991; 61: 115-121
        • Treynor W.
        • Gonzalez R.
        • Nolen-Hoeksema S.
        Rumination Reconsidered: A Psychometric Analysis.
        Cognitive Therapy and Research. 2003; 27: 247-259
        • Lopez-Calderon J.
        • Luck S.J.
        ERPLAB: an open-source toolbox for the analysis of event-related potentials.
        Front Hum Neurosci. 2014; 8: 213
        • Nolan H.
        • Whelan R.
        • Reilly R.B.
        FASTER: Fully Automated Statistical Thresholding for EEG artifact Rejection.
        J Neurosci Methods. 2010; 192: 152-162
        • Mognon A.
        • Jovicich J.
        • Bruzzone L.
        • Buiatti M.
        ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features.
        Psychophysiology. 2011; 48: 229-240
        • Kort N.S.
        • Ford J.M.
        • Roach B.J.
        • Gunduz-Bruce H.
        • Krystal J.H.
        • Jaeger J.
        • et al.
        Role of N-Methyl-D-Aspartate Receptors in Action-Based Predictive Coding Deficits in Schizophrenia.
        Biol Psychiatry. 2017; 81: 514-524
        • Mathalon D.H.
        • Roach B.J.
        • Ferri J.M.
        • Loewy R.L.
        • Stuart B.K.
        • Perez V.B.
        • et al.
        Deficient auditory predictive coding during vocalization in the psychosis risk syndrome and in early illness schizophrenia: the final expanded sample.
        Psychol Med. 2018; : 1-8
      5. Oostenveld R, Fries P, Maris E, Schoffelen JM (2011): FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci. 2011:156869.

        • Leonowicz Z.
        • Karvanen J.
        • Shishkin S.L.
        Trimmed estimators for robust averaging of event-related potentials.
        J Neurosci Methods. 2005; 142: 17-26
        • Roach B.J.
        • Ford J.M.
        • Loewy R.L.
        • Stuart B.K.
        • Mathalon D.H.
        Theta Phase Synchrony Is Sensitive to Corollary Discharge Abnormalities in Early Illness Schizophrenia but Not in the Psychosis Risk Syndrome.
        Schizophr Bull. 2020;
        • Perez V.B.
        • Roach B.J.
        • Woods S.W.
        • Srihari V.H.
        • McGlashan T.H.
        • Ford J.M.
        • et al.
        Early auditory gamma-band responses in patients at clinical high risk for schizophrenia.
        Suppl Clin Neurophysiol. 2013; 62: 147-162
        • Kayser J.
        • Tenke C.E.
        Optimizing PCA methodology for ERP component identification and measurement: theoretical rationale and empirical evaluation.
        Clin Neurophysiol. 2003; 114: 2307-2325
        • Bernat E.M.
        • Williams W.J.
        • Gehring W.J.
        Decomposing ERP time-frequency energy using PCA.
        Clin Neurophysiol. 2005; 116: 1314-1334
        • Dien J.
        The ERP PCA Toolkit: an open source program for advanced statistical analysis of event-related potential data.
        J Neurosci Methods. 2010; 187: 138-145
        • Horan W.P.
        • Foti D.
        • Hajcak G.
        • Wynn J.K.
        • Green M.F.
        Impaired neural response to internal but not external feedback in schizophrenia.
        Psychol Med. 2012; 42: 1637-1647
        • Morris S.E.
        • Holroyd C.B.
        • Mann-Wrobel M.C.
        • Gold J.M.
        Dissociation of response and feedback negativity in schizophrenia: electrophysiological and computational evidence for a deficit in the representation of value.
        Front Hum Neurosci. 2011; 5: 123
        • Sambrook T.D.
        • Goslin J.
        A neural reward prediction error revealed by a meta-analysis of ERPs using great grand averages.
        Psychol Bull. 2015; 141: 213-235
        • Bernat E.M.
        • Nelson L.D.
        • Baskin-Sommers A.R.
        Time-frequency theta and delta measures index separable components of feedback processing in a gambling task.
        Psychophysiology. 2015; 52: 626-637
        • Bernat E.M.
        • Nelson L.D.
        • Steele V.R.
        • Gehring W.J.
        • Patrick C.J.
        Externalizing psychopathology and gain-loss feedback in a simulated gambling task: dissociable components of brain response revealed by time-frequency analysis.
        J Abnorm Psychol. 2011; 120: 352-364
        • Cavanagh J.F.
        Cortical delta activity reflects reward prediction error and related behavioral adjustments, but at different times.
        Neuroimage. 2015; 110: 205-216
        • Cavanagh J.F.
        • Frank M.J.
        • Klein T.J.
        • Allen J.J.
        Frontal theta links prediction errors to behavioral adaptation in reinforcement learning.
        Neuroimage. 2010; 49: 3198-3209
        • Cohen M.X.
        • Elger C.E.
        • Ranganath C.
        Reward expectation modulates feedback-related negativity and EEG spectra.
        Neuroimage. 2007; 35: 968-978
        • Gruber M.J.
        • Watrous A.J.
        • Ekstrom A.D.
        • Ranganath C.
        • Otten L.J.
        Expected reward modulates encoding-related theta activity before an event.
        Neuroimage. 2013; 64: 68-74
        • Marco-Pallares J.
        • Cucurell D.
        • Cunillera T.
        • Garcia R.
        • Andres-Pueyo A.
        • Munte T.F.
        • et al.
        Human oscillatory activity associated to reward processing in a gambling task.
        Neuropsychologia. 2008; 46: 241-248
        • Yaroslavsky I.
        • Allard E.S.
        • Sanchez-Lopez A.
        Can't look Away: Attention control deficits predict Rumination, depression symptoms and depressive affect in daily Life.
        J Affect Disord. 2019; 245: 1061-1069
        • Drysdale A.T.
        • Grosenick L.
        • Downar J.
        • Dunlop K.
        • Mansouri F.
        • Meng Y.
        • et al.
        Resting-state connectivity biomarkers define neurophysiological subtypes of depression.
        Nat Med. 2017; 23: 28-38
        • Whitfield-Gabrieli S.
        • Ford J.M.
        Default mode network activity and connectivity in psychopathology.
        Annu Rev Clin Psychol. 2012; 8: 49-76
        • Mo J.
        • Liu Y.
        • Huang H.
        • Ding M.
        Coupling between visual alpha oscillations and default mode activity.
        Neuroimage. 2013; 68: 112-118
        • Mathalon D.H.
        • Ford J.M.
        Neurobiology of schizophrenia: search for the elusive correlation with symptoms.
        Front Hum Neurosci. 2012; 6: 136
        • Palva S.
        • Palva J.M.
        New vistas for alpha-frequency band oscillations.
        Trends Neurosci. 2007; 30: 150-158
      6. Wechsler D (2001): Wechsler Test of Adult Reading: WTAR. San Antonio, TX: The Psychological Corporation.

        • Woods S.W.
        Chlorpromazine equivalent doses for the newer atypical antipsychotics.
        J Clin Psychiatry. 2003; 64: 663-667