Advertisement
Archival Report|Articles in Press

No Meta-Analytic Evidence for Risks due to Prenatal MRI in Animal Models

Published:February 08, 2023DOI:https://doi.org/10.1016/j.bpsc.2023.02.002

      Abstract

      Background

      Magnetic resonance imaging (MRI) is a powerful, non-invasive tool for both clinical practice and research. Though the safety of MRI has been endorsed by many professional societies and government bodies, some concerns have remained about potential risk from prenatal MRI. Case-control animal studies of MRI scanning during gestation and effects on offspring are the most direct test available for potential risks. Herein, we provide a meta-analysis of extant animal studies of prenatal MRI examining reproductive and offspring outcomes.

      Methods

      Relevant articles were identified through PubMed search and citation searching of known articles and review papers. Eighteen relevant studies were identified with case-control designs of prenatal scanning conducted in vivo with mammalian species using MRI-relevant field strength. Standardized mean difference effect sizes were analyzed across k=81 outcomes assessed across n=649 unexposed dams, n=622 exposed dams, n=3031 unexposed offspring, n=3378 exposed offspring, using a multi-level meta-analysis approach that clustered effect sizes within publication.

      Results

      The meta-analysis indicated no significant evidence for an effect of prenatal MRI (SMD=0.17, 95% CI=[-0.19,0.54], t=0.94, p=.35) across outcomes. Similarly, no effects were observed when separately examining the four most commonly assessed outcomes: birth weight, litter size, fetal viability, and physical malformations (p>.05).

      Conclusions

      Case-control mammalian animal studies indicate no significant known risks of prenatal MRI to reproductive outcomes or offspring development. This is largely mirrored in human research, though the lack of randomized case-control designs limits direct comparison. The current findings provide additional support to the prevailing consensus that prenatal MRI poses no known risk to offspring.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Edelman R.R.
        The history of MR imaging as seen through the pages of radiology.
        Radiology. 2014; 273: S181-200
        • Jain C.
        ACOG committee opinion no. 723: Guidelines for diagnostic imaging during pregnancy and lactation.
        Obstetrics and Gynecology. 2019, January; 133: 186
        • Jabehdar Maralani P.
        • Kapadia A.
        • Liu G.
        • Moretti F.
        • Ghandehari H.
        • Clarke S.E.
        • et al.
        Canadian Association of radiologists recommendations for the safe use of MRI during pregnancy.
        Can Assoc Radiol J. 2022; 73: 56-67
        • Greenberg T.D.
        • Hoff M.N.
        • Gilk T.B.
        • Jackson E.F.
        • Kanal E.
        • et al.
        • ACR Committee on MR Safety
        ACR guidance document on MR safe practices: Updates and critical information 2019.
        J Magn Reson Imaging. 2020; 51: 331-338
      1. Medicines and Healthcare Products Regulatory Agency (2015): Safety Guidelines for Magnetic Resonance Imaging Equipment in Clinical Use.

        • Lum M.
        • Tsiouris A.J.
        MRI safety considerations during pregnancy.
        Clin Imaging. 2020; 62: 69-75
        • Calamante F.
        • Faulkner Jr., W.H.
        • Ittermann B.
        • Kanal E.
        • Kimbrell V.
        • Owman T.
        • et al.
        MR system operator: recommended minimum requirements for performing MRI in human subjects in a research setting.
        J Magn Reson Imaging. 2015; 41: 899-902
      2. Goischke H-K (2016, August): MRI with gadolinium-based contrast agents: Practical help to ensure patient safety. Journal of the American College of Radiology: JACR, vol. 13. Elsevier BV, p 890.

        • Fraum T.J.
        • Ludwig D.R.
        • Bashir M.R.
        • Fowler K.J.
        Gadolinium-based contrast agents: A comprehensive risk assessment.
        J Magn Reson Imaging. 2017; 46: 338-353
        • Cross N.M.
        • Hoff M.N.
        • Kanal K.M.
        Avoiding MRI-related accidents: A practical approach to implementing MR safety.
        J Am Coll Radiol. 2018; 15: 1738-1744
        • Delfino J.G.
        • Krainak D.M.
        • Flesher S.A.
        • Miller D.L.
        MRI-related FDA adverse event reports: A 10-yr review.
        Med Phys. 2019; 46: 5562-5571
        • Gowland P.A.
        • De Wilde J.
        Temperature increase in the fetus due to radio frequency exposure during magnetic resonance scanning.
        Phys Med Biol. 2008; 53: L15-L18
        • Hibbeln J.F.
        • Shors S.M.
        • Byrd S.E.
        MRI: is there a role in obstetrics?.
        Clin Obstet Gynecol. 2012; 55: 352-366
        • Prayer D.
        • Malinger G.
        • Brugger P.C.
        • Cassady C.
        • De Catte L.
        • De Keersmaecker B.
        • et al.
        ISUOG Practice Guidelines: performance of fetal magnetic resonance imaging.
        Ultrasound Obstet Gynecol. 2017; 49: 671-680
        • OB Imaging
        • Sussman B.L.
        • Chopra P.
        • Poder L.
        • Bulas D.I.
        • Burger I.
        • et al.
        • Expert Panel on GYN
        ACR appropriateness criteria® second and third trimester screening for fetal anomaly.
        J Am Coll Radiol. 2021; 18 (–S198): S189
        • D’Antonio F.
        • Iacovella C.
        • Palacios-Jaraquemada J.
        • Bruno C.H.
        • Manzoli L.
        • Bhide A.
        Prenatal identification of invasive placentation using magnetic resonance imaging: systematic review and meta-analysis.
        Ultrasound Obstet Gynecol. 2014; 44: 8-16
      3. Holman R (2022): Common indications and techniques in prenatal MRI. Ectopic Pregnancy and Prenatal Diagnosis. IntechOpen.

        • Gholipour A.
        • Estroff J.A.
        • Barnewolt C.E.
        • Robertson R.L.
        • Grant P.E.
        • Gagoski B.
        • et al.
        Fetal MRI: A technical update with educational aspirations.
        Concepts Magn Reson Part A Bridg Educ Res. 2014; 43: 237-266
        • Pugash D.
        • Brugger P.C.
        • Bettelheim D.
        • Prayer D.
        Prenatal ultrasound and fetal MRI: the comparative value of each modality in prenatal diagnosis.
        Eur J Radiol. 2008; 68: 214-226
        • Aertsen M.
        • Diogo M.C.
        • Dymarkowski S.
        • Deprest J.
        • Prayer D.
        Fetal MRI for dummies: what the fetal medicine specialist should know about acquisitions and sequences.
        Prenat Diagn. 2020; 40: 6-17
        • Rajagopalan V.
        • Deoni S.
        • Panigrahy A.
        • Thomason M.E.
        Is fetal MRI ready for neuroimaging prime time? An examination of progress and remaining areas for development.
        Dev Cogn Neurosci. 2021; 51100999
        • Welsh R.C.
        • Nemec U.
        • Thomason M.E.
        Fetal magnetic resonance imaging at 3.0 T.
        Top Magn Reson Imaging. 2011; 22: 119-131
      4. Sussman TJ, Pagliaccio D (2022): Pregnancy testing before MRI for neuroimaging research: Balancing risks to fetuses with risks to youth and adult participants. Biol Psychiatry Cogn Neurosci Neuroimaging. https://doi.org/10.1016/j.bpsc.2022.08.006

        • Glover P.
        • Hykin J.
        • Gowland P.
        • Wright J.
        • Johnson I.
        • Mansfield P.
        An assessment of the intrauterine sound intensity level during obstetric echo-planar magnetic resonance imaging.
        Br J Radiol. 1995; 68: 1090-1094
        • Ruckhäberle E.
        • Nekolla S.G.
        • Ganter C.
        • Schneider K.T.M.
        • Peter A.
        • Raidt A.
        • et al.
        In vivo intrauterine sound pressure and temperature measurements during magnetic resonance imaging (1.5 T) in pregnant ewes.
        Fetal Diagn Ther. 2008; 24: 203-210
        • Cannie M.M.
        • De Keyzer F.
        • Van Laere S.
        • Leus A.
        • de Mey J.
        • Fourneau C.
        • et al.
        Potential heating effect in the gravid uterus by using 3-T MR imaging protocols: Experimental study in miniature pigs.
        Radiology. 2016; 279: 754-761
        • Levine D.
        • Zuo C.
        • Faro C.B.
        • Chen Q.
        Potential heating effect in the gravid uterus during MR HASTE imaging.
        J Magn Reson Imaging. 2001; 13: 856-861
        • Ray J.G.
        • Vermeulen M.J.
        • Bharatha A.
        • Montanera W.J.
        • Park A.L.
        Association between MRI exposure during pregnancy and fetal and childhood outcomes.
        JAMA. 2016; 316: 952
        • Chartier A.L.
        • Bouvier M.J.
        • McPherson D.R.
        • Stepenosky J.E.
        • Taysom D.A.
        • Marks R.M.
        The safety of maternal and fetal MRI at 3 T.
        AJR Am J Roentgenol. 2019; 213: 1170-1173
        • Strizek B.
        • Jani J.C.
        • Mucyo E.
        • De Keyzer F.
        • Pauwels I.
        • Ziane S.
        • et al.
        Safety of MR imaging at 1.5 T in fetuses: A retrospective case-control study of birth weights and the effects of acoustic noise.
        Radiology. 2015; 275: 530-537
        • Leithner K.
        • Pörnbacher S.
        • Assem-Hilger E.
        • Krampl-Bettelheim E.
        • Prayer D.
        Prenatal magnetic resonance imaging: towards optimized patient information.
        Ultrasound Obstet Gynecol. 2009; 34: 182-187
        • Page M.J.
        • McKenzie J.E.
        • Bossuyt P.M.
        • Boutron I.
        • Hoffmann T.C.
        • Mulrow C.D.
        • et al.
        The PRISMA 2020 statement: an updated guideline for reporting systematic reviews.
        BMJ. 2021; 372: n71
        • Sharma R.
        • Gulati S.
        • Kaur A.
        • Sinhababu A.
        • Chakravarty R.
        Research discovery and visualization using ResearchRabbit: A use case of AI in libraries.
        COLLNET Journal of Scientometrics and Information Management. 2022; 16: 215-237
      5. ResearchRabbit, Version 2.0 (n.d.): Human Intelligence Technologies, Incorporated.

      6. Lewis JD (2022): Introducing Scite. Ai, Inciteful. Xyz, and Research Rabbit.

        • McRobbie D.
        • Foster M.A.
        Pulsed magnetic field exposure during pregnancy and implications for NMR foetal imaging: a study with mice.
        Magn Reson Imaging. 1985; 3: 231-234
        • Heinrichs W.L.
        • Fong P.
        • Flannery M.
        • Heinrichs S.C.
        • Crooks L.E.
        • Spindle A.
        • Pedersen R.A.
        Midgestational exposure of pregnant BALB/c mice to magnetic resonance imaging conditions.
        Magn Reson Imaging. 1988; 6: 305-313
        • Tyndall D.A.
        • Sulik K.K.
        Effects of magnetic resonance imaging on eye development in the C57BL/6J mouse.
        Teratology. 1991; 43: 263-275
        • Murakami J.
        • Torii Y.
        • Masuda K.
        Fetal development of mice following intrauterine exposure to a static magnetic field of 6.3 T.
        Magn Reson Imaging. 1992; 10: 433-437
        • Mevissen M.
        • Buntenkötter S.
        • Löscher W.
        Effects of static and time-varying (50-Hz) magnetic fields on reproduction and fetal development in rats.
        Teratology. 1994; 50: 229-237
        • Rofsky N.M.
        • Pizzarello D.J.
        • Weinreb J.C.
        • Ambrosino M.M.
        • Rosenberg C.
        Effect on fetal mouse development of exposure to MR imaging and gadopentetate dimeglumine.
        J Magn Reson Imaging. 1994; 4: 805-807
        • Carnes K.I.
        • Magin R.L.
        Effects of in utero exposure to 4.7 T MR imaging conditions on fetal growth and testicular development in the mouse.
        Magn Reson Imaging. 1996; 14: 263-274
        • Narra V.R.
        • Howell R.W.
        • Goddu S.M.
        • Rao D.V.
        Effects of a 1.5-Tesla static magnetic field on spermatogenesis and embryogenesis in mice.
        Invest Radiol. 1996; 31: 586-590
        • High W.B.
        • Sikora J.
        • Ugurbil K.
        • Garwood M.
        Subchronic in vivo effects of a high static magnetic field (9.4 T) in rats.
        J Magn Reson Imaging. 2000; 12: 122-139
        • Magin R.L.
        • Lee J.K.
        • Klintsova A.
        • Carnes K.I.
        • Dunn F.
        Biological effects of long-duration, high-field (4 T) MRI on growth and development in the mouse.
        J Magn Reson Imaging. 2000; 12: 140-149
        • Tablado L.
        • Soler C.
        • Núñez M.
        • Núñez J.
        • Pérez-Sánchez F.
        Development of mouse testis and epididymis following intrauterine exposure to a static magnetic field.
        Bioelectromagnetics. 2000; 21: 19-24
        • Gu Y.
        • Hasegawa T.
        • Yamamoto Y.
        • Kai M.
        • Kusama T.
        The combined effects of MRI and X-rays on ICR mouse embryos during organogenesis.
        J Radiat Res. 2001; 42: 265-272
        • Lee B.C.
        • Bing G.
        • Jhoo W.K.
        • Yoon J.M.
        • Kang K.S.
        • Shin E.J.
        • et al.
        Prenatal exposure to magnetic field increases dopamine levels in the striatum of offspring.
        Clin Exp Pharmacol Physiol. 2001; 28: 884-886
        • Okazaki R.
        • Ootsuyama A.
        • Uchida S.
        • Norimura T.
        Effects of a 4.7 T static magnetic field on fetal development in ICR mice.
        J Radiat Res. 2001; 42: 273-283
        • Jiang M.-L.
        • Han T.-Z.
        • Pang W.
        • Li L.
        Gender- and age-specific impairment of rat performance in the Morris water maze following prenatal exposure to an MRI magnetic field.
        Brain Res. 2004; 995: 140-144
        • Saito K.
        • Suzuki H.
        • Suzuki K.
        Teratogenic effects of static magnetic field on mouse fetuses.
        Reprod Toxicol. 2006; 22: 118-124
        • László J.F.
        • Pórszász R.
        Exposure to static magnetic field delays induced preterm birth occurrence in mice.
        Am J Obstet Gynecol. 2011; 205 (e26–31): 362
        • Hoyer C.
        • Vogt M.A.
        • Richter S.H.
        • Zaun G.
        • Zahedi Y.
        • Maderwald S.
        • et al.
        Repetitive exposure to a 7 Tesla static magnetic field of mice in utero does not cause alterations in basal emotional and cognitive behavior in adulthood.
        Reprod Toxicol. 2012; 34: 86-92
        • Viechtbauer W.
        Conducting Meta-Analyses inRwith themetaforPackage.
        J Stat Softw. 2010; 36https://doi.org/10.18637/jss.v036.i03
        • Balduzzi S.
        • Rücker G.
        • Schwarzer G.
        How to perform a meta-analysis with R: a practical tutorial.
        Evid Based Ment Health. 2019; 22: 153-160
      7. Harrer M, Cuijpers P, Furukawa T, Ebert DD (2019): dmetar: Companion R Package For The Guide ’Doing Meta-Analysis in R. Retrieved from http://dmetar.protectlab.org/

        • Wasserman S.
        • Hedges L.V.
        • Olkin I.
        Statistical methods for meta-analysis.
        J Educ Stat. 1988; 13: 75
        • Hedges L.V.
        Distribution theory for Glass’s estimator of effect size and related estimators.
        J Educ Stat. 1981; 6: 107-128
        • Egger M.
        • Davey Smith G.
        • Schneider M.
        • Minder C.
        Bias in meta-analysis detected by a simple, graphical test.
        BMJ. 1997; 315: 629-634
      8. Harrer M, Cuijpers P, Furukawa TA, Ebert DD (2021): Doing Meta-Analysis with R: A Hands-On Guide. Boca Raton, FL and London: Chapmann & Hall/CRC Press.

        • Higgins J.P.T.
        • Thompson S.G.
        Quantifying heterogeneity in a meta-analysis.
        Stat Med. 2002; 21: 1539-1558
        • Trzeciak H.I.
        • Grzesik J.
        • Bortel M.
        • Kuśka R.
        • Duda D.
        • Michnik J.
        • Małecki A.
        Behavioral effects of long-term exposure to magnetic fields in rats.
        Bioelectromagnetics. 1993; 14: 287-297
        • Zhu C.
        • Gao J.
        • Li Q.
        • Huang Z.
        • Zhang Y.
        • Li H.
        • et al.
        Repeated exposure of the developing rat brain to magnetic resonance imaging did not affect neurogenesis, cell death or memory function.
        Biochem Biophys Res Commun. 2011; 404: 291-296
        • Zahedi Y.
        • Zaun G.
        • Maderwald S.
        • Orzada S.
        • Pütter C.
        • Scherag A.
        • et al.
        Impact of repetitive exposure to strong static magnetic fields on pregnancy and embryonic development of mice.
        J Magn Reson Imaging. 2014; 39: 691-699
        • Zaun G.
        • Zahedi Y.
        • Maderwald S.
        • Orzada S.
        • Pütter C.
        • Scherag A.
        • et al.
        Repetitive exposure of mice to strong static magnetic fields in utero does not impair fertility in adulthood but may affect placental weight of offspring.
        J Magn Reson Imaging. 2014; 39: 683-690
        • Schwartz J.L.
        • Crooks L.E.
        NMR imaging produces no observable mutations or cytotoxicity in mammalian cells.
        Magn Reson Imaging. 1984; 2: 72
        • Wolff S.
        • Crooks L.E.
        • Brown P.
        • Howard R.
        • Painter R.B.
        Tests for DNA and chromosomal damage induced by nuclear magnetic resonance imaging.
        Radiology. 1980; 136: 707-710
        • Wolff S.
        • James T.L.
        • Young G.B.
        • Margulis A.R.
        • Bodycote J.
        • Afzal V.
        Magnetic resonance imaging: absence of in vitro cytogenetic damage.
        Radiology. 1985; 155: 163-165
        • Zvi E.
        • Shemer A.
        • Toussia-Cohen S.
        • Zvi D.
        • Bashan Y.
        • Hirschfeld-Dicker L.
        • et al.
        Fetal exposure to MR imaging: Long-term neurodevelopmental outcome.
        AJNR Am J Neuroradiol. 2020; 41 (–1992): 1989
        • Jaimes C.
        • Delgado J.
        • Cunnane M.B.
        • Hedrick H.L.
        • Adzick N.S.
        • Gee M.S.
        • Victoria T.
        Does 3-T fetal MRI induce adverse acoustic effects in the neonate? A preliminary study comparing postnatal auditory test performance of fetuses scanned at 1.5 and 3 T.
        Pediatr Radiol. 2019; 49: 37-45
        • Bouyssi-Kobar M.
        • du Plessis A.J.
        • Robertson R.L.
        • Limperopoulos C.
        Fetal magnetic resonance imaging: exposure times and functional outcomes at preschool age.
        Pediatr Radiol. 2015; 45: 1823-1830
        • Choi J.S.
        • Ahn H.K.
        • Han J.Y.
        • Han Y.J.
        • Kwak D.O.
        • Velazquez-Armenta E.Y.
        • Nava-Ocampo A.A.
        A case series of 15 women inadvertently exposed to magnetic resonance imaging in the first trimester of pregnancy.
        J Obstet Gynaecol. 2015; 35: 871-872
        • Reeves M.J.
        • Brandreth M.
        • Whitby E.H.
        • Hart A.R.
        • Paley M.N.J.
        • Griffiths P.D.
        • Stevens J.C.
        Neonatal cochlear function: measurement after exposure to acoustic noise during in utero MR imaging.
        Radiology. 2010; 257: 802-809
        • Kok R.D.
        • de Vries M.M.
        • Heerschap A.
        • van den Berg P.P.
        Absence of harmful effects of magnetic resonance exposure at 1.5 T in utero during the third trimester of pregnancy: a follow-up study.
        Magn Reson Imaging. 2004; 22: 851-854
        • Myers C.
        • Duncan K.R.
        • Gowland P.A.
        • Johnson I.R.
        • Baker P.N.
        Failure to detect intrauterine growth restriction following in utero exposure to MRI.
        Br J Radiol. 1998; 71: 549-551
        • Victoria T.
        • Jaramillo D.
        • Roberts T.P.L.
        • Zarnow D.
        • Johnson A.M.
        • Delgado J.
        • et al.
        Fetal magnetic resonance imaging: jumping from 1.5 to 3 tesla (preliminary experience).
        Pediatr Radiol. 2014; 44 (quiz 373–5): 376-386
        • Patten A.R.
        • Fontaine C.J.
        • Christie B.R.
        A comparison of the different animal models of fetal alcohol spectrum disorders and their use in studying complex behaviors.
        Front Pediatr. 2014; 2: 93
      9. Andersen MD, Alstrup AKO, Duvald CS, Mikkelsen EFR, Vendelbo MH, Ovesen PG, Pedersen M (2018): Animal models of fetal medicine and obstetrics. Experimental Animal Models of Human Diseases - An Effective Therapeutic Strategy. InTech.

      10. McCann A, Schoenfeld Walker A, Sasani A, Johnston T, Buchanan L, Huang J (2023, January 6): Tracking the States Where Abortion Is Now Banned. New York Times.

      11. Zablocki A, Sutrina MT (2022): The Impact of State Laws Criminalizing Abortion. Retrieved from https://www.lexisnexis.com/community/insights/legal/practical-guidance-journal/b/pa/posts/the-impact-of-state-laws-criminalizing-abortion

      12. People in Alabama Can Be Prosecuted for Taking Abortion Pills, State Attorney General Says (n.d.):

      13. Talk of prosecuting women for abortion pills roils antiabortion movement (n.d.): Washington Post.