Advertisement
Archival Report|Articles in Press

Striatal iron deposition in recreational 3,4-methylendioxymethamphetamine (MDMA, “Ecstasy”) users

  • Rebecca, C Coray
    Correspondence
    Corresponding author: Rebecca Coray, M.Sc. Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of, Zurich, Lenggstrasse 31, CH-8032 Zurich, Switzerland,
    Affiliations
    Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Switzerland

    Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
    Search for articles by this author
  • Jatta Berberat
    Affiliations
    Geriatric Psychiatry, Department of Psychiatry, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland

    Institute of Neuroradiology, Kantonsspital Aarau, Aarau, Switzerland
    Search for articles by this author
  • Josua Zimmermann
    Affiliations
    Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Switzerland

    Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
    Search for articles by this author
  • Erich Seifritz
    Affiliations
    Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
    Search for articles by this author
  • Ann-Kathrin Stock
    Affiliations
    Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
    Search for articles by this author
  • Christian Beste
    Affiliations
    Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
    Search for articles by this author
  • David, M. Cole
    Affiliations
    Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Switzerland

    Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
    Search for articles by this author
  • Paul, G. Unschuld
    Affiliations
    Geriatric Psychiatry, Department of Psychiatry, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland
    Search for articles by this author
  • Boris, B. Quednow
    Affiliations
    Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Switzerland

    Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
    Search for articles by this author
Published:February 25, 2023DOI:https://doi.org/10.1016/j.bpsc.2023.02.005

      Abstract

      Background

      The common club drug 3,4-methylendioxymethamphetamine (MDMA, “Ecstasy”) enhances mood, sensory perception, energy, sociability, and euphoria. While MDMA has been shown to produce neurotoxicity in animal models, research on its potential neurotoxic effects in humans is inconclusive and has focused primarily on the serotonin system.

      Methods

      We investigated 34 regular, largely pure MDMA users for signs of premature neurodegenerative processes in the form of increased iron load in comparison to a group of 36 age-, sex-, and education-matched MDMA-naïve controls. We employed quantitative susceptibility mapping (QSM), a novel tool able to detect even small tissue (non-heme) iron accumulations. Cortical and relevant subcortical gray matter structures were grouped into eight regions-of-interest (ROIs) and analyzed.

      Results

      Significantly increased iron deposition in the striatum was evident in the MDMA user group. The effect survived correction for multiple comparisons and remained after controlling for relevant confounding factors, including age, smoking and stimulant co-use. Although no significant linear relationship between measurements of the amounts of MDMA intake (hair analysis and self-reports) and QSM values could be observed, increased striatal iron deposition might nevertheless point to MDMA-induced neurotoxic processes. Additional factors (hyperthermia, simultaneous co-use of other substances) that possibly amplify neurotoxic effects of MDMA during the state of acute intoxication are discussed.

      Conclusion

      The demonstrated increased striatal iron accumulation may indicate that regular MDMA users have an increased risk potential for neurodegenerative diseases with progressing age.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

      1. Parrott AC (2013): Human psychobiology of MDMA or “Ecstasy”: An overview of 25 years of empirical research. Human Psychopharmacology. https://doi.org/10.1002/hup.2318

      2. Müller F, Brändle R, Liechti ME, Borgwardt S (2019): Neuroimaging of chronic MDMA ("ecstasy") effects: A meta-analysis. Neurosci Biobehav Rev 96: 10–20.

        • Benningfield MM
        • Cowan RL
        Brain serotonin function in MDMA (ecstasy) users: evidence for persisting neurotoxicity.
        Neuropsychopharmacology. 2013; 38: 253
        • Mitchell JM
        • Bogenschutz M
        • Lilienstein A
        • Harrison C
        • Kleiman S
        • Parker-Guilbert K
        • et al.
        MDMA-assisted therapy for severe PTSD: a randomized, double-blind, placebo-controlled phase 3 study.
        Nat Med. 2021; 27: 1025-1033
        • Schenk S
        • Newcombe D
        Methylenedioxymethamphetamine (MDMA) in psychiatry: pros, cons, and suggestions.
        J Clin Psychopharmacol. 2018; 38: 632-638
        • Roberts CA
        • Jones A
        • Montgomery C
        Meta-analysis of molecular imaging of serotonin transporters in ecstasy/polydrug users.
        Neurosci Biobehav Rev. 2016; 63: 158-167
        • Kalechstein AD
        • De La Garza R
        • Mahoney JJ
        • Fantegrossi WE
        • Newton TF
        MDMA use and neurocognition: a meta-analytic review.
        Psychopharmacology (Berl). 2007; 189: 531-537
        • Nulsen CE
        • Fox AM
        • Hammond GR
        Differential effects of ecstasy on short-term and working memory: a meta-analysis.
        Neuropsychol Rev. 2010; 20: 21-32
        • Montgomery C
        • Roberts CA
        Neurological and cognitive alterations induced by MDMA in humans.
        Exp Neurol. 2022; 347113888
        • Murphy PN
        • Bruno R
        • Ryland I
        • Wareing M
        • Fisk JE
        • Montgomery C
        • Hilton J
        The effects of ‘ecstasy’(MDMA) on visuospatial memory performance: Findings from a systematic review with meta‐analyses.
        Hum Psychopharmacol Clin Exp. 2012; 27: 113-138
        • Quednow BB
        • Jessen F
        • Kühn KU
        • Maier W
        • Daum I
        • Wagner M
        Memory deficits in abstinent MDMA (ecstasy) users: Neuropsychological evidence of frontal dysfunction.
        J Psychopharmacol. 2006; 20: 373-384
        • Wunderli MD
        • Vonmoos M
        • Fürst M
        • Schädelin K
        • Kraemer T
        • Baumgartner MR
        • et al.
        Discrete memory impairments in largely pure chronic users of MDMA.
        Eur Neuropsychopharmacol. 2017; 27: 987-999
        • Betzler F
        • Viohl L
        • Romanczuk‐Seiferth N
        Decision‐making in chronic ecstasy users: a systematic review.
        Eur J Neurosci. 2017; 45: 34-44
        • Karlsen SN
        • Spigset O
        • Slørdal L
        The dark side of ecstasy: neuropsychiatric symptoms after exposure to 3, 4‐methylenedioxymethamphetamine.
        Basic Clin Pharmacol Toxicol. 2008; 102: 15-24
        • Morgan MJ
        Ecstasy (MDMA): a review of its possible persistent psychological effects.
        Psychopharmacology (Berl). 2000; 152: 230-248
        • Lyles J
        • Cadet JL
        Methylenedioxymethamphetamine (MDMA, Ecstasy) neurotoxicity: cellular and molecular mechanisms.
        Brain Res Rev. 2003; 42: 155-168
        • Hatzidimitriou G
        • McCann UD
        • Ricaurte GA
        Altered serotonin innervation patterns in the forebrain of monkeys treated with (+/-)3,4-methylenedioxymethamphetamine seven years previously: factors influencing abnormal recovery.
        J Neurosci. 1999; 19: 5096-5107
        • Fischer C
        • Hatzidimitriou G
        • Wlos J
        • Katz J
        • Ricaurte G
        Reorganization of ascending 5-HT axon projections in animals previously exposed to the recreational drug (+/-) 3, 4-methylenedioxymethamphetamine (MDMA," ecstasy").
        J Neurosci. 1995; 15: 5476-5485
        • de Souza EB
        • Battaglia G
        • Insel TR
        Neurotoxic effects of MDMA on brain serotonin neurons: evidence from neurochemical and radioligand binding studies.
        Ann N Y Acad Sci. 1990;
        • Reneman L
        • Booij J
        • Schmand B
        • van den Brink W
        • Gunning B
        Memory disturbances in” Ecstasy” users are correlated with an altered brain serotonin neurotransmission.
        Psychopharmacology (Berl). 2000; 148: 322-324
        • Gouzoulis‐Mayfrank E
        • Daumann J
        Neurotoxicity of methylenedioxyamphetamines (MDMA; ecstasy) in humans: how strong is the evidence for persistent brain damage?.
        Addiction. 2006; 101: 348-361
        • McCann UD
        • Eligulashvili V
        • Ricaurte GA
        (±) 3, 4-Methylenedioxymethamphetamine (‘Ecstasy’)-induced serotonin neurotoxicity: clinical studies.
        Neuropsychobiology. 2000; 42: 11-16
        • Cowan RL
        • Lyoo IK
        • Sung SM
        • Ahn KH
        • Kim MJ
        • Hwang J
        • et al.
        Reduced cortical gray matter density in human MDMA (Ecstasy) users: a voxel-based morphometry study.
        Drug Alcohol Depend. 2003; 72: 225-235
        • van de Blaak FL
        • Dumont GJH
        Serotonin transporter availability, neurocognitive function and their correlation in abstinent 3, 4‐methylenedioxymethamphetamine users.
        Hum Psychopharmacol Clin Exp. 2022; 37e2811
        • Costa G
        • Gołembiowska K
        Neurotoxicity of MDMA: Main effects and mechanisms.
        Exp Neurol. 2022; 347113894
        • Yamamoto BK
        • Raudensky J
        The role of oxidative stress, metabolic compromise, and inflammation in neuronal injury produced by amphetamine-related drugs of abuse.
        J Neuroimmune Pharmacol. 2008; 3: 203-217
        • Boxler MI
        • Streun GL
        • Liechti ME
        • Schmid Y
        • Kraemer T
        • Steuer AE
        Human metabolome changes after a single dose of 3, 4-methylenedioxymethamphetamine (MDMA) with special focus on steroid metabolism and inflammation processes.
        J Proteome Res. 2018; 17: 2900-2907
        • Macedo C
        • Branco PS
        • Ferreira LM
        • Lobo AM
        • Capela JP
        • Fernandes E
        • et al.
        Synthesis and cyclic voltammetry studies of 3, 4-methylenedioxymethamphetamine (MDMA) human metabolites.
        J Heal Sci. 2007; 53: 31-42
        • Kuhn DM
        • Arthur R
        Dopamine inactivates tryptophan hydroxylase and forms a redox-cycling quinoprotein: possible endogenous toxin to serotonin neurons.
        J Neurosci. 1998; 18: 7111-7117
        • Monzani E
        • Nicolis S
        • Dell’Acqua S
        • Capucciati A
        • Bacchella C
        • Zucca FA
        • et al.
        Dopamine, oxidative stress and protein–quinone modifications in Parkinson’s and other neurodegenerative diseases.
        Angew Chemie Int Ed. 2019; 58: 6512-6527
        • Perfeito R
        • Cunha-Oliveira T
        • Rego AC
        Reprint of: Revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease—resemblance to the effect of amphetamine drugs of abuse.
        Free Radic Biol Med. 2013; 62: 186-201
        • Ravanfar P
        • Loi SM
        • Syeda WT
        • Van Rheenen TE
        • Bush AI
        • Desmond P
        • et al.
        Systematic review: quantitative susceptibility mapping (QSM) of brain iron profile in neurodegenerative diseases.
        Front Neurosci. 2021; 41
        • Daugherty AM
        • Raz N
        Appraising the role of iron in brain aging and cognition: promises and limitations of MRI methods.
        Neuropsychol Rev. 2015; 25: 272-287
        • Khattar N
        • Triebswetter C
        • Kiely M
        • Ferrucci L
        • Resnick SM
        • Spencer RG
        • Bouhrara M
        Investigation of the association between cerebral iron content and myelin content in normative aging using quantitative magnetic resonance neuroimaging.
        Neuroimage. 2021; 239118267
        • Howard CM
        • Jain S
        • Cook AD
        • Packard LE
        • Mullin HA
        • Chen N
        • et al.
        Cortical iron mediates age‐related decline in fluid cognition.
        Hum Brain Mapp. 2022; 43: 1047-1060
      3. Villalón-García I, Povea-Cabello S, Álvarez-Córdoba M, Talaverón-Rey M, Suárez-Rivero JM, Suárez-Carrillo A, et al. (2023): Vicious cycle of lipid peroxidation and iron accumulation in neurodegeneration. Neural Regen Res 18. Retrieved from https://journals.lww.com/nrronline/Fulltext/2023/06000/Vicious_cycle_of_lipid_peroxidation_and_iron.5.aspx

        • Melega WP
        • Lacan G
        • Harvey DC
        • Way BM
        Methamphetamine increases basal ganglia iron to levels observed in aging.
        Neuroreport. 2007; 18: 1741-1745
        • Adisetiyo V
        • McGill CE
        • DeVries WH
        • Jensen JH
        • Hanlon CA
        • Helpern JA
        Elevated brain Iron in cocaine use disorder as indexed by magnetic field correlation imaging.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2019; 4: 579-588
      4. Ersche KD, Acosta-Cabronero J, Jones PS, Ziauddeen H, Van Swelm RPL, Laarakkers CMM, et al. (2017): Disrupted iron regulation in the brain and periphery in cocaine addiction. Transl Psychiatry 7: e1040–e1040.

        • Langkammer C
        • Pirpamer L
        • Seiler S
        • Deistung A
        • Schweser F
        • Franthal S
        • et al.
        Quantitative susceptibility mapping in Parkinson’s disease.
        PLoS One. 2016; 11e0162460
        • Daruich A
        • Le Rouzic Q
        • Jonet L
        • Naud M-C
        • Kowalczuk L
        • Pournaras J-A
        • et al.
        Iron is neurotoxic in retinal detachment and transferrin confers neuroprotection.
        Sci Adv. 2022; 5eaau9940
        • Ayton S
        • Lei P
        • Adlard PA
        • Volitakis I
        • Cherny RA
        • Bush AI
        • Finkelstein DI
        Iron accumulation confers neurotoxicity to a vulnerable population of nigral neurons: implications for Parkinson’s disease.
        Mol Neurodegener. 2014; 9: 27
        • Pirpamer L
        • Hofer E
        • Gesierich B
        • De Guio F
        • Freudenberger P
        • Seiler S
        • et al.
        Determinants of iron accumulation in the normal aging brain.
        Neurobiol Aging. 2016; 43: 149-155
        • Zimmermann J
        • Friedli N
        • Bavato F
        • Stämpfli P
        • Coray R
        • Baumgartner MR
        • et al.
        White matter alterations in chronic MDMA use: Evidence from diffusion tensor imaging and neurofilament light chain blood levels.
        NeuroImage Clin. 2022; 103191
      5. Steinhoff A, Shanahan L, Bechtiger L, Zimmermann J, Ribeaud D, Eisner M, et al. (n.d.): When substance use is underreported: comparing self-reports and hair toxicology in an urban cohort of young adults. J Am Acad Child Adolesc Psychiatry.

        • Sheehan D V
        • Lecrubier Y
        • Sheehan KH
        • Amorim P
        • Janavs J
        • Weiller E
        • et al.
        The Mini-International Neuropsychiatric Interview (MINI): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10.
        J Clin Psychiatry. 1998; 59: 22-33
      6. Eaton WW, Smith C, Ybarra M, Muntaner C, Tien A (2004): Center for Epidemiologic Studies Depression Scale: review and revision (CESD and CESD-R).

        • Rösler M
        • Retz W
        • Retz-Junginger P
        • Thome J
        • Supprian T
        • Nissen T
        • et al.
        Tools for the diagnosis of attention-deficit/hyperactivity disorder in adults. Self-rating behaviour questionnaire and diagnostic checklist.
        Nervenarzt. 2004; 75: 888-895
        • First MB
        Structured clinical interview for the DSM (SCID).
        Encycl Clin Psychol. 2014; : 1-6
        • Quednow BB
        • Kühn K-U
        • Hoenig K
        • Maier W
        • Wagner M
        Prepulse inhibition and habituation of acoustic startle response in male MDMA (‘ecstasy’) users, cannabis users, and healthy controls.
        Neuropsychopharmacology. 2004; 29: 982-990
        • Scholz C
        • Cabalzar J
        • Kraemer T
        • Baumgartner MR
        A comprehensive multi-analyte method for hair analysis: substance-specific quantification ranges and tool for task-oriented data evaluation.
        J Anal Toxicol. 2021; 45: 701-712
        • Stewart AW
        • Robinson SD
        • O’Brien K
        • Jin J
        • Widhalm G
        • Hangel G
        • et al.
        QSMxT: Robust masking and artifact reduction for quantitative susceptibility mapping.
        Magn Reson Med. 2022; 87: 1289-1300
        • Fischl B
        • Salat DH
        • Busa E
        • Albert M
        • Dieterich M
        • Haselgrove C
        • et al.
        Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain.
        Neuron. 2002; 33: 341-355
        • Vincent RD
        • Neelin P
        • Khalili-Mahani N
        • Janke AL
        • Fonov VS
        • Robbins SM
        • et al.
        MINC 2.0: a flexible format for multi-modal images.
        Front Neuroinform. 2016; 10: 35
        • Desikan RS
        • Ségonne F
        • Fischl B
        • Quinn BT
        • Dickerson BC
        • Blacker D
        • et al.
        An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest.
        Neuroimage. 2006; 31: 968-980
        • Klein A
        • Tourville J
        101 labeled brain images and a consistent human cortical labeling protocol.
        Front Neurosci. 2012; 6: 171
        • Fischl B
        FreeSurfer. Neuroimage. 2012; 62: 774-781
      7. Team RC (2021): R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2012.

        • Wainer H
        Robust statistics: A survey and some prescriptions.
        J Educ Stat. 1976; 1: 285-312
        • Benjamini Y
        • Hochberg Y
        Controlling the false discovery rate: a practical and powerful approach to multiple testing.
        J R Stat Soc Ser B. 1995; 57: 289-300
      8. Fox J, Weisberg S, Adler D, Bates D, Baud-Bovy G, Ellison S, et al. (2012): Package ‘car.’ Vienna R Found Stat Comput 16.

        • Lüdecke D
        • Ben-Shachar MS
        • Patil I
        • Waggoner P
        • Makowski D
        performance: An R package for assessment, comparison and testing of statistical models.
        J Open Source Softw. 2021; 6
      9. Li J, Lu X, Cheng K, Liu W, Li MJ (2020): Package ‘StepReg.’

        • Sprague JE
        • Nichols DE
        The monoamine oxidase-B inhibitor L-deprenyl protects against 3, 4-methylenedioxymethamphetamine-induced lipid peroxidation and long-term serotonergic deficits.
        J Pharmacol Exp Ther. 1995; 273: 667-673
        • Capela JP
        • Macedo C
        • Branco PS
        • Ferreira LM
        • Lobo AM
        • Fernandes E
        • et al.
        Neurotoxicity mechanisms of thioether ecstasy metabolites.
        Neuroscience. 2007; 146: 1743-1757
        • Urrutia PJ
        • Mena NP
        • Núñez MT
        The interplay between iron accumulation, mitochondrial dysfunction, and inflammation during the execution step of neurodegenerative disorders.
        Front Pharmacol. 2014; 5: 38
        • Dixon SJ
        • Lemberg KM
        • Lamprecht MR
        • Skouta R
        • Zaitsev EM
        • Gleason CE
        • et al.
        Ferroptosis: an iron-dependent form of nonapoptotic cell death.
        Cell. 2012; 149: 1060-1072
        • Kajarabille N
        • Latunde-Dada GO
        Programmed cell-death by ferroptosis: antioxidants as mitigators.
        Int J Mol Sci. 2019; 20: 4968
        • Javadov S
        Mitochondria and ferroptosis.
        Curr Opin Physiol. 2022; 100483
        • Burrows KB
        • Gudelsky G
        • Yamamoto BK
        Rapid and transient inhibition of mitochondrial function following methamphetamine or 3, 4-methylenedioxymethamphetamine administration.
        Eur J Pharmacol. 2000; 398: 11-18
        • Kushnareva YE
        • Wiley SE
        • Ward MW
        • Andreyev AY
        • Murphy AN
        Excitotoxic injury to mitochondria isolated from cultured neurons.
        J Biol Chem. 2005; 280: 28894-28902
        • Darvesh AS
        • Gudelsky GA
        Evidence for a role of energy dysregulation in the MDMA-induced depletion of brain 5-HT.
        Brain Res. 2005; 1056: 168-175
        • Andersen HH
        • Johnsen KB
        • Moos T
        Iron deposits in the chronically inflamed central nervous system and contributes to neurodegeneration.
        Cell Mol life Sci. 2014; 71: 1607-1622
        • Kim H-G
        • Park S
        • Rhee HY
        • Lee KM
        • Ryu C-W
        • Rhee SJ
        • et al.
        Quantitative susceptibility mapping to evaluate the early stage of Alzheimer’s disease.
        NeuroImage Clin. 2017; 16: 429-438
        • LeVine SM
        • Bilgen M
        • Lynch SG
        Iron accumulation in multiple sclerosis: an early pathogenic event.
        Expert Rev Neurother. 2013; 13: 247-250
        • Quinn MP
        • Gati JS
        • Klassen ML
        • Lee DH
        • Kremenchutzky M
        • Menon RS
        Increased deep gray matter iron is present in clinically isolated syndromes.
        Mult Scler Relat Disord. 2014; 3: 194-202
        • Riederer P
        • Monoranu C
        • Strobel S
        • Iordache T
        • Sian-Hülsmann J
        Iron as the concert master in the pathogenic orchestra playing in sporadic Parkinson’s disease.
        J Neural Transm. 2021; 128: 1577-1598
        • Biel D
        • Steiger TK
        • Bunzeck N
        Age-related iron accumulation and demyelination in the basal ganglia are closely related to verbal memory and executive functioning.
        Sci Rep. 2021; 11: 1-16
        • Kalpouzos G
        • Garzón B
        • Sitnikov R
        • Heiland C
        • Salami A
        • Persson J
        • Bäckman L
        Higher striatal iron concentration is linked to frontostriatal underactivation and poorer memory in normal aging.
        Cereb Cortex. 2017; 27: 3427-3436
        • Rodrigue KM
        • Daugherty AM
        • Foster CM
        • Kennedy KM
        Striatal iron content is linked to reduced fronto-striatal brain function under working memory load.
        Neuroimage. 2020; 210116544
        • Roberts CA
        • Montgomery C
        What is the evidence for psychobiological harm from the use of ‘ecstasy’(MDMA)?.
        Routledge Int Handb Psychobiol. 2018; : 331-366
        • Deik A
        • Saunders-Pullman R
        • San Luciano M
        Substance abuse and movement disorders: complex interactions and comorbidities.
        Curr Drug Abuse Rev. 2012; 5: 243-253
        • Roberts CA
        • Jones A
        • Montgomery C
        Meta-analysis of executive functioning in ecstasy/polydrug users.
        Psychol Med. 2016; 46: 1581-1596
        • Kish SJ
        What is the evidence that Ecstasy (MDMA) can cause Parkinson’s disease?.
        Mov Disord Off J Mov Disord Soc. 2003; 18: 1219-1223
        • Mintzer S
        • Hickenbottom S
        • Gilman S
        Parkinsonism after taking ecstasy.
        N Engl J Med. 1999; 340: 1443
        • O’Suilleabhain P
        • Giller C
        Rapidly progressive parkinsonism in a self‐reported user of ecstasy and other drugs.
        Mov Disord Off J Mov Disord Soc. 2003; 18: 1378-1381
        • Kuniyoshi SM
        • Jankovic J
        MDMA and parkinsonism.
        N Engl J Med. 2003; 349: 96-97
        • Jayanthi S
        • Daiwile AP
        • Cadet JL
        Neurotoxicity of methamphetamine: Main effects and mechanisms.
        Exp Neurol. 2021; 344113795
        • He N
        • Ling H
        • Ding B
        • Huang J
        • Zhang Y
        • Zhang Z
        • et al.
        Region‐specific disturbed iron distribution in early idiopathic P arkinson’s disease measured by quantitative susceptibility mapping.
        Hum Brain Mapp. 2015; 36: 4407-4420
        • Feltmann K
        • Elgán TH
        • Strandberg AK
        • Kvillemo P
        • Jayaram-Lindström N
        • Grabski M
        • et al.
        Illicit drug use and associated problems in the nightlife scene: a potential setting for prevention.
        Int J Environ Res Public Health. 2021; 18: 4789
        • Cohen I V
        • Makunts T
        • Abagyan R
        • Thomas K
        Concomitant drugs associated with increased mortality for MDMA users reported in a drug safety surveillance database.
        Sci Rep. 2021; 11: 1-9
        • van Amsterdam J
        • Brunt TM
        • Pierce M
        • van den Brink W
        Hard boiled: alcohol use as a risk factor for MDMA-induced hyperthermia: a systematic review.
        Neurotox Res. 2021; : 1-14
        • Hernandez‐Rabaza V
        • Navarro‐Mora G
        • Velazquez‐Sanchez C
        • Ferragud A
        • Marin MP
        • Garcia‐Verdugo JM
        • et al.
        Neurotoxicity and persistent cognitive deficits induced by combined MDMA and alcohol exposure in adolescent rats.
        Addict Biol. 2010; 15: 413-423
        • Izco M
        • Orio L
        • O’Shea E
        • Colado MI
        Binge ethanol administration enhances the MDMA-induced long-term 5-HT neurotoxicity in rat brain.
        Psychopharmacology (Berl). 2007; 189: 459-470
        • Vanattou‐Saïfoudine N
        • McNamara R
        • Harkin A
        Caffeine provokes adverse interactions with 3, 4‐methylenedioxymethamphetamine (MDMA,‘ecstasy’) and related psychostimulants: mechanisms and mediators.
        Br J Pharmacol. 2012; 167: 946-959
        • Brown PL
        • Kiyatkin EA
        Brain hyperthermia induced by MDMA (‘ecstasy’): modulation by environmental conditions.
        Eur J Neurosci. 2004; 20: 51-58
        • Gordon CJ
        Thermophysiological responses to hyperthermic drugs: extrapolating from rodent to human.
        Prog Brain Res. 2007; 162: 63-79
        • Liechti ME
        Effects of MDMA on body temperature in humans.
        Temperature. 2014; 1: 192-200
        • Malberg JE
        • Seiden LS
        Small changes in ambient temperature cause large changes in 3, 4-methylenedioxymethamphetamine (MDMA)-induced serotonin neurotoxicity and core body temperature in the rat.
        J Neurosci. 1998; 18: 5086-5094
        • Parrott AC
        MDMA and 5‐HT neurotoxicity: the empirical evidence for its adverse effects in humans–no need for translation.
        Br J Pharmacol. 2012; 166: 1518-1520
        • Parrott AC
        • Young L
        Saturday night fever in ecstasy/MDMA dance clubbers: Heightened body temperature and associated psychobiological changes.
        Temperature. 2014; 1: 214-219