Advertisement

Transdiagnostic In Vivo Magnetic Resonance Imaging Markers of Neuroinflammation

  • Lena K.L. Oestreich
    Correspondence
    Address correspondence to Lena K.L. Oestreich, Ph.D.
    Affiliations
    Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia

    Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
    Search for articles by this author
  • Michael J. O’Sullivan
    Affiliations
    Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia

    Institute of Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia

    Department of Neurology, Royal Brisbane and Women’s Hospital, Brisbane, Queensland, Australia
    Search for articles by this author
Open AccessPublished:January 17, 2022DOI:https://doi.org/10.1016/j.bpsc.2022.01.003

      Abstract

      Accumulating evidence suggests that inflammation is not limited to archetypal inflammatory diseases such as multiple sclerosis, but instead represents an intrinsic feature of many psychiatric and neurological disorders not typically classified as neuroinflammatory. A growing body of research suggests that neuroinflammation can be observed in early and prodromal stages of these disorders and, under certain circumstances, may lead to tissue damage. Traditional methods to assess neuroinflammation include serum or cerebrospinal fluid markers and positron emission tomography. These methods require invasive procedures or radiation exposure and lack the exquisite spatial resolution of magnetic resonance imaging (MRI). There is, therefore, an increasing interest in noninvasive neuroimaging tools to evaluate neuroinflammation reliably and with high specificity. While MRI does not provide information at a cellular level, it facilitates the characterization of several biophysical tissue properties that are closely linked to neuroinflammatory processes. The purpose of this review is to evaluate the potential of MRI as a noninvasive, accessible, and cost-effective technology to image neuroinflammation across neurological and psychiatric disorders. We provide an overview of current and developing MRI methods used to study different aspects of neuroinflammation and weigh their strengths and shortcomings. Novel MRI contrast agents are increasingly able to target inflammatory processes directly, therefore offering a high degree of specificity, particularly if used in conjunction with multitissue, biophysical diffusion MRI compartment models. The capability of these methods to characterize several aspects of the neuroinflammatory milieu will likely push MRI to the forefront of neuroimaging modalities used to characterize neuroinflammation transdiagnostically.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Khansari P.S.
        • Sperlagh B.
        Inflammation in neurological and psychiatric diseases.
        Inflammopharmacology. 2012; 20: 103-107
        • Wunder A.
        • Klohs J.
        • Dirnagl U.
        Non-invasive visualization of CNS inflammation with nuclear and optical imaging.
        Neuroscience. 2009; 158: 1161-1173
        • Skaper S.D.
        • Facci L.
        • Zusso M.
        • Giusti P.
        An inflammation-centric view of neurological disease: Beyond the neuron [published correction appears in Front Cell Neurosci 2020; 13:578].
        Front Cell Neurosci. 2018; 12: 72
        • Piirainen S.
        • Youssef A.
        • Song C.
        • Kalueff A.V.
        • Landreth G.E.
        • Malm T.
        • Tian L.
        Psychosocial stress on neuroinflammation and cognitive dysfunctions in Alzheimer’s disease: The emerging role for microglia?.
        Neurosci Biobehav Rev. 2017; 77: 148-164
        • Pasternak O.
        • Kubicki M.
        • Shenton M.E.
        In vivo imaging of neuroinflammation in schizophrenia.
        Schizophr Res. 2016; 173: 200-212
        • da Fonseca A.C.C.
        • Matias D.
        • Garcia C.
        • Amaral R.
        • Geraldo L.H.
        • Freitas C.
        • Lima F.R.S.
        The impact of microglial activation on blood-brain barrier in brain diseases.
        Front Cell Neurosci. 2014; 8: 362
        • Takeshita Y.
        • Ransohoff R.M.
        Inflammatory cell trafficking across the blood-brain barrier: Chemokine regulation and in vitro models.
        Immunol Rev. 2012; 248: 228-239
        • Quarantelli M.
        MRI/MRS in neuroinflammation: Methodology and applications.
        Clin Transl Imaging. 2015; 3: 475-489
        • Thiel A.
        • Radlinska B.A.
        • Paquette C.
        • Sidel M.
        • Soucy J.P.
        • Schirrmacher R.
        • Minuk J.
        The temporal dynamics of poststroke neuroinflammation: A longitudinal diffusion tensor imaging-guided PET study with 11C-PK11195 in acute subcortical stroke.
        J Nucl Med. 2010; 51: 1404-1412
        • Degan D.
        • Ornello R.
        • Tiseo C.
        • Carolei A.
        • Sacco S.
        • Pistoia F.
        The role of inflammation in neurological disorders.
        Curr Pharm Des. 2018; 24: 1485-1501
        • Lurie D.I.
        An integrative approach to neuroinflammation in psychiatric disorders and neuropathic pain.
        J Exp Neurosci. 2018; 12 (1179069518793639)
        • Hesdorffer D.C.
        Comorbidity between neurological illness and psychiatric disorders.
        CNS Spectr. 2016; 21: 230-238
        • Pulli B.
        • Chen J.W.
        Imaging neuroinflammation—From bench to bedside.
        J Clin Cell Immunol. 2014; 5: 226
        • Ford A.L.
        • An H.
        • D’Angelo G.
        • Ponisio R.
        • Bushard P.
        • Vo K.D.
        • et al.
        Preexisting statin use is associated with greater reperfusion in hyperacute ischemic stroke.
        Stroke. 2011; 42: 1307-1313
        • Qiao Y.
        • Zeiler S.R.
        • Mirbagheri S.
        • Leigh R.
        • Urrutia V.
        • Wityk R.
        • Wasserman B.A.
        Intracranial plaque enhancement in patients with cerebrovascular events on high-spatial-resolution MR images.
        Radiology. 2014; 271: 534-542
        • Qiao Y.
        • Etesami M.
        • Astor B.C.
        • Zeiler S.R.
        • Trout 3rd, H.H.
        • Wasserman B.A.
        Carotid plaque neovascularization and hemorrhage detected by MR imaging are associated with recent cerebrovascular ischemic events.
        AJNR Am J Neuroradiol. 2012; 33: 755-760
        • Natori T.
        • Sasaki M.
        • Miyoshi M.
        • Ito K.
        • Ohba H.
        • Miyazawa H.
        • et al.
        Intracranial plaque characterization in patients with acute ischemic stroke using pre- and post-contrast three-dimensional magnetic resonance vessel wall imaging.
        J Stroke Cerebrovasc Dis. 2016; 25: 1425-1430
        • Choi H.Y.
        • Lee K.M.
        • Kim H.G.
        • Kim E.J.
        • Choi W.S.
        • Kim B.J.
        • et al.
        Role of hyperintense acute reperfusion marker for classifying the stroke etiology.
        Front Neurol. 2017; 8: 630
        • Wardlaw J.M.
        • Makin S.J.
        • Valdés Hernández M.C.
        • Armitage P.A.
        • Heye A.K.
        • Chappell F.M.
        • et al.
        Blood-brain barrier failure as a core mechanism in cerebral small vessel disease and dementia: Evidence from a cohort study.
        Alzheimers Dement. 2017; 13: 634-643
        • Arba F.
        • Leigh R.
        • Inzitari D.
        • Warach S.J.
        • Luby M.
        • Lees K.R.
        • STIR/VISTA Imaging Collaboration
        Blood-brain barrier leakage increases with small vessel disease in acute ischemic stroke.
        Neurology. 2017; 89: 2143-2150
        • O’Connell G.C.
        • Treadway M.B.
        • Petrone A.B.
        • Tennant C.S.
        • Lucke-Wold N.
        • Chantler P.D.
        • Barr T.L.
        Peripheral blood AKAP7 expression as an early marker for lymphocyte-mediated post-stroke blood brain barrier disruption.
        Sci Rep. 2017; 7: 1172
        • Gupta N.
        • Simpkins A.N.
        • Hitomi E.
        • Dias C.
        • Leigh R.
        • NIH Natural History of Stroke Investigators
        White matter hyperintensity-associated blood-brain barrier disruption and vascular risk factors.
        J Stroke Cerebrovasc Dis. 2018; 27: 466-471
        • Nadareishvili Z.
        • Luby M.
        • Leigh R.
        • Shah J.
        • Lynch J.K.
        • Hsia A.W.
        • et al.
        An MRI hyperintense acute reperfusion marker is related to elevated peripheral monocyte count in acute ischemic stroke.
        J Neuroimaging. 2018; 28: 57-60
        • Rost N.S.
        • Cougo P.
        • Lorenzano S.
        • Li H.
        • Cloonan L.
        • Bouts M.J.
        • et al.
        Diffuse microvascular dysfunction and loss of white matter integrity predict poor outcomes in patients with acute ischemic stroke.
        J Cereb Blood Flow Metab. 2018; 38: 75-86
        • Wu F.
        • Ma Q.
        • Song H.
        • Guo X.
        • Diniz M.A.
        • Song S.S.
        • et al.
        Differential features of culprit intracranial atherosclerotic lesions: A whole-brain vessel wall imaging study in patients with acute ischemic stroke.
        J Am Heart Assoc. 2018; 7e009705
        • Lublinsky S.
        • Major S.
        • Kola V.
        • Horst V.
        • Santos E.
        • Platz J.
        • et al.
        Early blood-brain barrier dysfunction predicts neurological outcome following aneurysmal subarachnoid hemorrhage.
        EBioMedicine. 2019; 43: 460-472
        • Nadareishvili Z.
        • Simpkins A.N.
        • Hitomi E.
        • Reyes D.
        • Leigh R.
        Post-stroke blood-brain barrier disruption and poor functional outcome in patients receiving thrombolytic therapy.
        Cerebrovasc Dis. 2019; 47: 135-142
        • Cho Y.E.
        • Latour L.L.
        • Kim H.
        • Turtzo L.C.
        • Olivera A.
        • Livingston W.S.
        • et al.
        Older age results in differential gene expression after mild traumatic brain injury and is linked to imaging differences at acute follow-up.
        Front Aging Neurosci. 2016; 8: 168
        • Livingston W.S.
        • Gill J.M.
        • Cota M.R.
        • Olivera A.
        • O’Keefe J.L.
        • Martin C.
        • Latour L.L.
        Differential gene expression associated with meningeal injury in acute mild traumatic brain injury.
        J Neurotrauma. 2017; 34: 853-860
        • Ding X.B.
        • Wang X.X.
        • Xia D.H.
        • Liu H.
        • Tian H.Y.
        • Fu Y.
        • et al.
        Impaired meningeal lymphatic drainage in patients with idiopathic Parkinson’s disease.
        Nat Med. 2021; 27: 411-418
        • Kallaur A.P.
        • Lopes J.
        • Oliveira S.R.
        • Simão A.N.C.
        • Reiche E.M.V.
        • de Almeida E.R.D.
        • et al.
        Immune-inflammatory and oxidative and nitrosative stress biomarkers of depression symptoms in subjects with multiple sclerosis: Increased peripheral inflammation but less acute neuroinflammation.
        Mol Neurobiol. 2016; 53: 5191-5202
        • Thrippleton M.J.
        • Blair G.W.
        • Valdes-Hernandez M.C.
        • Glatz A.
        • Semple S.I.K.
        • Doubal F.
        • et al.
        MRI relaxometry for quantitative analysis of USPIO uptake in cerebral small vessel disease.
        Int J Mol Sci. 2019; 20: 776
        • Khan S.
        • Amin F.M.
        • Fliedner F.P.
        • Christensen C.E.
        • Tolnai D.
        • Younis S.
        • et al.
        Investigating macrophage-mediated inflammation in migraine using ultrasmall superparamagnetic iron oxide-enhanced 3T magnetic resonance imaging.
        Cephalalgia. 2019; 39: 1407-1420
        • Grossman E.J.
        • Jensen J.H.
        • Babb J.S.
        • Chen Q.
        • Tabesh A.
        • Fieremans E.
        • et al.
        Cognitive impairment in mild traumatic brain injury: A longitudinal diffusional kurtosis and perfusion imaging study.
        AJNR Am J Neuroradiol. 2013; 34 (S1–S3): 951-957
        • Fieremans E.
        • Benitez A.
        • Jensen J.H.
        • Falangola M.F.
        • Tabesh A.
        • Deardorff R.L.
        • et al.
        Novel white matter tract integrity metrics sensitive to Alzheimer disease progression.
        AJNR Am J Neuroradiol. 2013; 34: 2105-2112
        • Dong J.W.
        • Jelescu I.O.
        • Ades-Aron B.
        • Novikov D.S.
        • Friedman K.
        • Babb J.S.
        • et al.
        Diffusion MRI biomarkers of white matter microstructure vary nonmonotonically with increasing cerebral amyloid deposition.
        Neurobiol Aging. 2020; 89: 118-128
        • McKenna F.F.
        • Miles L.
        • Babb J.S.
        • Goff D.C.
        • Lazar M.
        Diffusion kurtosis imaging of gray matter in schizophrenia.
        Cortex. 2019; 121: 201-224
        • Ismail R.
        • Parbo P.
        • Madsen L.S.
        • Hansen A.K.
        • Hansen K.V.
        • Schaldemose J.L.
        • et al.
        The relationships between neuroinflammation, beta-amyloid and tau deposition in Alzheimer’s disease: A longitudinal PET study.
        J Neuroinflammation. 2020; 17: 151
        • Archer D.B.
        • Patten C.
        • Coombes S.A.
        Free-water and free-water corrected fractional anisotropy in primary and premotor corticospinal tracts in chronic stroke.
        Hum Brain Mapp. 2017; 38: 4546-4562
        • Duering M.
        • Finsterwalder S.
        • Baykara E.
        • Tuladhar A.M.
        • Gesierich B.
        • Konieczny M.J.
        • et al.
        Free water determines diffusion alterations and clinical status in cerebral small vessel disease.
        Alzheimers Dement. 2018; 14: 764-774
        • Oestreich L.K.L.
        • Wright P.
        • O’Sullivan M.J.
        Microstructural changes in the reward system are associated with post-stroke depression.
        Neuroimage Clin. 2020; 28: 102360
        • Pasternak O.
        • Koerte I.K.
        • Bouix S.
        • Fredman E.
        • Sasaki T.
        • Mayinger M.
        • et al.
        Hockey Concussion Education Project, Part 2. Microstructural white matter alterations in acutely concussed ice hockey players: A longitudinal free-water MRI study [published correction appears in J Neurosurg 2014; 121:498–500].
        J Neurosurg. 2014; 120: 873-881
        • Hoy A.R.
        • Ly M.
        • Carlsson C.M.
        • Okonkwo O.C.
        • Zetterberg H.
        • Blennow K.
        • et al.
        Microstructural white matter alterations in preclinical Alzheimer’s disease detected using free water elimination diffusion tensor imaging.
        PLoS One. 2017; 12e0173982
        • Ji F.
        • Pasternak O.
        • Liu S.
        • Loke Y.M.
        • Choo B.L.
        • Hilal S.
        • et al.
        Distinct white matter microstructural abnormalities and extracellular water increases relate to cognitive impairment in Alzheimer’s disease with and without cerebrovascular disease.
        Alzheimers Res Ther. 2017; 9: 63
        • Montal V.
        • Vilaplana E.
        • Alcolea D.
        • Pegueroles J.
        • Pasternak O.
        • González-Ortiz S.
        • et al.
        Cortical microstructural changes along the Alzheimer’s disease continuum.
        Alzheimers Dement. 2018; 14: 340-351
        • Ofori E.
        • DeKosky S.T.
        • Febo M.
        • Colon-Perez L.
        • Chakrabarty P.
        • Duara R.
        • et al.
        Free-water imaging of the hippocampus is a sensitive marker of Alzheimer’s disease.
        Neuroimage Clin. 2019; 24: 101985
        • Archer D.B.
        • Coombes S.A.
        • McFarland N.R.
        • DeKosky S.T.
        • Vaillancourt D.E.
        Development of a transcallosal tractography template and its application to dementia.
        Neuroimage. 2019; 200: 302-312
        • Vipin A.
        • Ng K.K.
        • Ji F.
        • Shim H.Y.
        • Lim J.K.W.
        • Pasternak O.
        • et al.
        Amyloid burden accelerates white matter degradation in cognitively normal elderly individuals.
        Hum Brain Mapp. 2019; 40: 2065-2075
        • Ji F.
        • Pasternak O.
        • Ng K.K.
        • Chong J.S.X.
        • Liu S.
        • Zhang L.
        • et al.
        White matter microstructural abnormalities and default network degeneration are associated with early memory deficit in Alzheimer’s disease continuum.
        Sci Rep. 2019; 9: 4749
        • Ofori E.
        • Pasternak O.
        • Planetta P.J.
        • Burciu R.
        • Snyder A.
        • Febo M.
        • et al.
        Increased free water in the substantia nigra of Parkinson’s disease: A single-site and multi-site study.
        Neurobiol Aging. 2015; 36: 1097-1104
        • Ofori E.
        • Krismer F.
        • Burciu R.G.
        • Pasternak O.
        • McCracken J.L.
        • Lewis M.M.
        • et al.
        Free water improves detection of changes in the substantia nigra in parkinsonism: A multisite study.
        Mov Disord. 2017; 32: 1457-1464
        • Guttuso Jr., T.
        • Bergsland N.
        • Hagemeier J.
        • Lichter D.G.
        • Pasternak O.
        • Zivadinov R.
        Substantia nigra free water increases longitudinally in Parkinson disease.
        AJNR Am J Neuroradiol. 2018; 39: 479-484
        • Andica C.
        • Kamagata K.
        • Hatano T.
        • Saito A.
        • Uchida W.
        • Ogawa T.
        • et al.
        Free-water imaging in white and gray matter in Parkinson’s disease.
        Cells. 2019; 8: 839
        • Braak H.
        • Braak E.
        Evolution of neuronal changes in the course of Alzheimer’s disease.
        J Neural Transm Suppl. 1998; 53: 127-140
        • Perez-Nievas B.G.
        • Stein T.D.
        • Tai H.C.
        • Dols-Icardo O.
        • Scotton T.C.
        • Barroeta-Espar I.
        • et al.
        Dissecting phenotypic traits linked to human resilience to Alzheimer’s pathology.
        Brain. 2013; 136: 2510-2526
        • Planetta P.J.
        • Ofori E.
        • Pasternak O.
        • Burciu R.G.
        • Shukla P.
        • DeSimone J.C.
        • et al.
        Free-water imaging in Parkinson’s disease and atypical parkinsonism.
        Brain. 2016; 139: 495-508
        • Streit W.J.
        Microglial senescence: Does the brain’s immune system have an expiration date?.
        Trends Neurosci. 2006; 29: 506-510
        • Bergamino M.
        • Pasternak O.
        • Farmer M.
        • Shenton M.E.
        • Hamilton J.P.
        Applying a free-water correction to diffusion imaging data uncovers stress-related neural pathology in depression.
        Neuroimage Clin. 2015; 10: 336-342
        • Tuozzo C.
        • Lyall A.E.
        • Pasternak O.
        • James A.C.D.
        • Crow T.J.
        • Kubicki M.
        Patients with chronic bipolar disorder exhibit widespread increases in extracellular free water.
        Bipolar Disord. 2018; 20: 523-530
        • Pasternak O.
        • Westin C.F.
        • Bouix S.
        • Seidman L.J.
        • Goldstein J.M.
        • Woo T.U.W.
        • et al.
        Excessive extracellular volume reveals a neurodegenerative pattern in schizophrenia onset.
        J Neurosci. 2012; 32: 17365-17372
        • Pasternak O.
        • Westin C.F.
        • Dahlben B.
        • Bouix S.
        • Kubicki M.
        The extent of diffusion MRI markers of neuroinflammation and white matter deterioration in chronic schizophrenia.
        Schizophr Res. 2015; 161: 113-118
        • Oestreich L.K.L.
        • Lyall A.E.
        • Pasternak O.
        • Kikinis Z.
        • Newell D.T.
        • Savadjiev P.
        • et al.
        Characterizing white matter changes in chronic schizophrenia: A free-water imaging multi-site study.
        Schizophr Res. 2017; 189: 153-161
        • Oestreich L.K.L.
        • Pasternak O.
        • Shenton M.E.
        • Kubicki M.
        • Gong X.
        • Australian Schizophrenia Research Bank
        • et al.
        Abnormal white matter microstructure and increased extracellular free-water in the cingulum bundle associated with delusions in chronic schizophrenia.
        Neuroimage Clin. 2016; 12: 405-414
        • Lyall A.E.
        • Pasternak O.
        • Robinson D.G.
        • Newell D.
        • Trampush J.W.
        • Gallego J.A.
        • et al.
        Greater extracellular free-water in first-episode psychosis predicts better neurocognitive functioning.
        Mol Psychiatry. 2018; 23: 701-707
        • Di Biase M.A.
        • Zalesky A.
        • Cetin-Karayumak S.
        • Rathi Y.
        • Lv J.
        • Boerrigter D.
        • et al.
        Large-scale evidence for an association between peripheral inflammation and white matter free water in schizophrenia and healthy individuals.
        Schizophr Bull. 2021; 47: 542-551
        • Kraguljac N.V.
        • Anthony T.
        • Monroe W.S.
        • Skidmore F.M.
        • Morgan C.J.
        • White D.M.
        • et al.
        A longitudinal neurite and free water imaging study in patients with a schizophrenia spectrum disorder.
        Neuropsychopharmacology. 2019; 44: 1932-1939
        • Tang Y.
        • Pasternak O.
        • Kubicki M.
        • Rathi Y.
        • Zhang T.
        • Wang J.
        • et al.
        Altered cellular white matter but not extracellular free water on diffusion MRI in individuals at clinical high risk for psychosis.
        Am J Psychiatry. 2019; 176: 820-828
        • Bullmore E.
        The Inflamed Mind: A Radical New Approach to Depression.
        Short Books Book Company Ltd, London, United Kingdom2018
        • Di Biase M.A.
        • Katabi G.
        • Piontkewitz Y.
        • Cetin-Karayumak S.
        • Weiner I.
        • Pasternak O.
        Increased extracellular free-water in adult male rats following in utero exposure to maternal immune activation.
        Brain Behav Immun. 2020; 83: 283-287
        • Churchill N.W.
        • Caverzasi E.
        • Graham S.J.
        • Hutchison M.G.
        • Schweizer T.A.
        White matter during concussion recovery: Comparing diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI).
        Hum Brain Mapp. 2019; 40: 1908-1918
        • Wu Y.C.
        • Mustafi S.M.
        • Harezlak J.
        • Kodiweera C.
        • Flashman L.A.
        • McAllister T.W.
        Hybrid diffusion imaging in mild traumatic brain injury.
        J Neurotrauma. 2018; 35: 2377-2390
        • Metzler-Baddeley C.
        • Mole J.P.
        • Leonaviciute E.
        • Sims R.
        • Kidd E.J.
        • Ertefai B.
        • et al.
        Sex-specific effects of central adiposity and inflammatory markers on limbic microstructure.
        Neuroimage. 2019; 189: 793-803
        • Reid M.A.
        • White D.M.
        • Kraguljac N.V.
        • Lahti A.C.
        A combined diffusion tensor imaging and magnetic resonance spectroscopy study of patients with schizophrenia.
        Schizophr Res. 2016; 170: 341-350
        • Dowell N.G.
        • Bouyagoub S.
        • Tibble J.
        • Voon V.
        • Cercignani M.
        • Harrison N.A.
        Interferon-alpha-induced changes in NODDI predispose to the development of fatigue.
        Neuroscience. 2019; 403: 111-117
        • Yi S.Y.
        • Barnett B.R.
        • Torres-Velázquez M.
        • Zhang Y.
        • Hurley S.A.
        • Rowley P.A.
        • et al.
        Detecting microglial density with quantitative multi-compartment diffusion MRI.
        Front Neurosci. 2019; 13: 81
        • Deddens L.H.
        • Van Tilborg G.A.F.
        • Mulder W.J.M.
        • De Vries H.E.
        • Dijkhuizen R.M.
        Imaging neuroinflammation after stroke: Current status of cellular and molecular MRI strategies.
        Cerebrovasc Dis. 2012; 33: 392-402
        • Bailey M.
        • Christoforidou Z.
        • Lewis M.C.
        The evolutionary basis for differences between the immune systems of man, mouse, pig and ruminants.
        Vet Immunol Immunopathol. 2013; 152: 13-19
        • Walker K.A.
        • Power M.C.
        • Hoogeveen R.C.
        • Folsom A.R.
        • Ballantyne C.M.
        • Knopman D.S.
        • et al.
        Midlife systemic inflammation, late-life white matter integrity, and cerebral small vessel disease: The Atherosclerosis Risk in Communities Study.
        Stroke. 2017; 48: 3196-3202
        • Besga A.
        • Chyzhyk D.
        • Gonzalez-Ortega I.
        • Echeveste J.
        • Grana-Lecuona M.
        • Grana M.
        • et al.
        White matter tract integrity in Alzheimer’s disease vs. late onset bipolar disorder and its correlation with systemic inflammation and oxidative stress biomarkers.
        Front Aging Neurosci. 2017; 9: 179
        • Cox Jr., C.S.
        • Hetz R.A.
        • Liao G.P.
        • Aertker B.M.
        • Ewing-Cobbs L.
        • Juranek J.
        • et al.
        Treatment of severe adult traumatic brain injury using bone marrow mononuclear cells.
        Stem Cells. 2017; 35: 1065-1079
        • Lueg G.
        • Gross C.C.
        • Lohmann H.
        • Johnen A.
        • Kemmling A.
        • Deppe M.
        • et al.
        Clinical relevance of specific T-cell activation in the blood and cerebrospinal fluid of patients with mild Alzheimer’s disease.
        Neurobiol Aging. 2015; 36: 81-89
        • Chiang P.L.
        • Chen H.L.
        • Lu C.H.
        • Chen P.C.
        • Chen M.H.
        • Yang I.H.
        • et al.
        White matter damage and systemic inflammation in Parkinson's disease.
        BMC Neurosci. 2017; 18: 48
        • Sugimoto K.
        • Kakeda S.
        • Watanabe K.
        • Katsuki A.
        • Ueda I.
        • Igata N.
        • et al.
        Relationship between white matter integrity and serum inflammatory cytokine levels in drug-naive patients with major depressive disorder: Diffusion tensor imaging study using tract-based spatial statistics.
        Transl Psychiatry. 2018; 8: 141
        • Lotrich F.E.
        • Butters M.A.
        • Aizenstein H.
        • Marron M.M.
        • Reynolds 3rd, C.F.
        • Gildengers A.G.
        The relationship between interleukin-1 receptor antagonist and cognitive function in older adults with bipolar disorder.
        Int J Geriatr Psychiatry. 2014; 29: 635-644
        • Benedetti F.
        • Poletti S.
        • Hoogenboezem T.A.
        • Mazza E.
        • Ambree O.
        • de Wit H.
        • et al.
        Inflammatory cytokines influence measures of white matter integrity in bipolar disorder.
        J Affect Disord. 2016; 202: 1-9
        • Poletti S.
        • de Wit H.
        • Mazza E.
        • Wijkhuijs A.J.M.
        • Locatelli C.
        • Aggio V.
        • et al.
        Th17 cells correlate positively to the structural and functional integrity of the brain in bipolar depression and healthy controls.
        Brain Behav Immun. 2017; 61: 317-325
        • Mäntylä T.
        • Mantere O.
        • Raij T.T.
        • Kieseppä T.
        • Laitinen H.
        • Leiviskä J.
        • et al.
        Altered activation of innate immunity associates with white matter volume and diffusion in first-episode psychosis.
        PLoS One. 2015; 10e0125112
        • Prasad K.M.
        • Upton C.H.
        • Nimgaonkar V.L.
        • Keshavan M.S.
        Differential susceptibility of white matter tracts to inflammatory mediators in schizophrenia: An integrated DTI study.
        Schizophr Res. 2015; 161: 119-125
        • Fu G.
        • Zhang W.
        • Dai J.
        • Liu J.
        • Li F.
        • Wu D.
        • et al.
        Increased peripheral interleukin 10 relate to white matter integrity in schizophrenia.
        Front Neurosci. 2019; 13: 52
        • Melah K.E.
        • Lu S.Y.
        • Hoscheidt S.M.
        • Alexander A.L.
        • Adluru N.
        • Destiche D.J.
        • et al.
        Cerebrospinal fluid markers of Alzheimer’s disease pathology and microglial activation are associated with altered white matter microstructure in asymptomatic adults at risk for Alzheimer’s disease.
        J Alzheimers Dis. 2016; 50: 873-886
        • Racine A.M.
        • Merluzzi A.P.
        • Adluru N.
        • Norton D.
        • Koscik R.L.
        • Clark L.R.
        • et al.
        Association of longitudinal white matter degeneration and cerebrospinal fluid biomarkers of neurodegeneration, inflammation and Alzheimer’s disease in late-middle-aged adults.
        Brain Imaging Behav. 2019; 13: 41-52
        • Ramlackhansingh A.F.
        • Brooks D.J.
        • Greenwood R.J.
        • Bose S.K.
        • Turkheimer F.E.
        • Kinnunen K.M.
        • et al.
        Inflammation after trauma: microglial activation and traumatic brain injury.
        Ann Neurol. 2011; 70: 374-383
        • Dennis E.L.
        • Babikian T.
        • Alger J.
        • Rashid F.
        • Villalon-Reina J.E.
        • Jin Y.
        • et al.
        Magnetic resonance spectroscopy of fiber tracts in children with traumatic brain injury: A combined MRS - Diffusion MRI study.
        Hum Brain Mapp. 2018; 39: 3759-3768
        • Alshikho M.J.
        • Zürcher N.R.
        • Loggia M.L.
        • Cernasov P.
        • Chonde D.B.
        • Izquierdo Garcia D.
        • et al.
        Glial activation colocalizes with structural abnormalities in amyotrophic lateral sclerosis.
        Neurology. 2016; 87: 2554-2561
        • Chiappelli J.
        • Hong L.E.
        • Wijtenburg S.A.
        • Du X.
        • Gaston F.
        • Kochunov P.
        • et al.
        Alterations in frontal white matter neurochemistry and microstructure in schizophrenia: Implications for neuroinflammation.
        Transl Psychiatry. 2015; 5: e548
        • Lee Y.
        • Park Y.
        • Nam H.
        • Lee J.W.
        • Yu S.W.
        Translocator protein (TSPO): The new story of the old protein in neuroinflammation.
        BMB Rep. 2020; 53: 20-27
        • Sigovan M.
        • Boussel L.
        • Sulaiman A.
        • Sappey-Marinier D.
        • Alsaid H.
        • Desbleds-Mansard C.
        • et al.
        Rapid-clearance iron nanoparticles for inflammation imaging of atherosclerotic plaque: Initial experience in animal model.
        Radiology. 2009; 252: 401-409
        • Wilhelm C.
        • Billotey C.
        • Roger J.
        • Pons J.N.
        • Bacri J.C.
        • Gazeau F.
        Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating.
        Biomaterials. 2003; 24: 1001-1011
        • Brisset J.C.
        • Desestret V.
        • Marcellino S.
        • Devillard E.
        • Chauveau F.
        • Lagarde F.
        • et al.
        Quantitative effects of cell internalization of two types of ultrasmall superparamagnetic iron oxide nanoparticles at 4.7 T and 7 T.
        Eur Radiol. 2010; 20: 275-285
        • Harrison N.A.
        • Cooper E.
        • Dowell N.G.
        • Keramida G.
        • Voon V.
        • Critchley H.D.
        • Cercignani M.
        Quantitative magnetization transfer imaging as a biomarker for effects of systemic inflammation on the brain.
        Biol Psychiatry. 2015; 78: 49-57
        • Du F.
        • Garg A.V.
        • Kosar K.
        • Majumder S.
        • Kugler D.G.
        • Mir G.H.
        • et al.
        Inflammatory Th17 cells express integrin αvβ3 for pathogenic function.
        Cell Rep. 2016; 16: 1339-1351
        • Schmieder A.H.
        • Winter P.M.
        • Caruthers S.D.
        • Harris T.D.
        • Williams T.A.
        • Allen J.S.
        • et al.
        Molecular MR imaging of melanoma angiogenesis with alphanubeta3-targeted paramagnetic nanoparticles.
        Magn Reson Med. 2005; 53: 621-627
        • Zhang C.
        • Jugold M.
        • Woenne E.C.
        • Lammers T.
        • Morgenstern B.
        • Mueller M.M.
        • et al.
        Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner.
        Cancer Res. 2007; 67: 1555-1562