Advertisement

Manipulating Reward Sensitivity Using Reward Circuit–Targeted Transcranial Magnetic Stimulation

  • Jon Ryan
    Affiliations
    Department of Biomedical Sciences, Florida State University, Tallahassee, Florida

    Department of Psychology, Florida State University, Tallahassee, Florida
    Search for articles by this author
  • Jourdan J. Pouliot
    Affiliations
    Department of Psychology, University of Florida, Gainesville, Florida
    Search for articles by this author
  • Author Footnotes
    1 GH and DEN contributed equally to this work.
    Greg Hajcak
    Footnotes
    1 GH and DEN contributed equally to this work.
    Affiliations
    Department of Biomedical Sciences, Florida State University, Tallahassee, Florida

    Department of Psychology, Florida State University, Tallahassee, Florida
    Search for articles by this author
  • Author Footnotes
    1 GH and DEN contributed equally to this work.
    Derek Evan Nee
    Correspondence
    Address correspondence to Derek Evan Nee, Ph.D.
    Footnotes
    1 GH and DEN contributed equally to this work.
    Affiliations
    Department of Psychology, Florida State University, Tallahassee, Florida
    Search for articles by this author
  • Author Footnotes
    1 GH and DEN contributed equally to this work.
Open AccessPublished:March 06, 2022DOI:https://doi.org/10.1016/j.bpsc.2022.02.011

      Abstract

      Background

      The reward circuit is important for motivation and learning, and dysregulations of the reward circuit are prominent in anhedonic depression. Noninvasive interventions that can selectively target the reward circuit may hold promise for the treatment of anhedonia.

      Methods

      We tested a novel transcranial magnetic stimulation intervention for modulating the reward circuit. A total of 35 healthy individuals participated in a crossover controlled study targeting the reward circuit or a control site with intermittent theta burst stimulation (iTBS), an excitatory form of transcranial magnetic stimulation. Individual reward circuit targets were defined based upon functional magnetic resonance imaging functional connectivity with the ventral striatum, yielding targets in the rostromedial prefrontal cortex (rmPFC). Reward circuit function was assessed at baseline using functional magnetic resonance imaging, and reward circuit modulation was assessed using an event-related potential referred to as the reward positivity, which has been shown to reliably track reward sensitivity, as well as individual differences in depression and risk for depression.

      Results

      Relative to control iTBS, rmPFC iTBS enhanced the reward positivity. This effect was moderated by reward function, suggesting greater enhancements in individuals with lower reward function. This effect was also moderated by rmPFC–ventral striatum connectivity insofar as iTBS reached the rmPFC, suggesting that efficacy relies jointly on the strength of the rmPFC–ventral striatum pathway and ability of transcranial magnetic stimulation to target the rmPFC.

      Conclusions

      These data suggest that the reward circuit can be modulated by rmPFC iTBS, and amenability to such modulations is related to measures of reward circuit function. This provides the first step toward a novel noninvasive treatment of disorders of the reward circuit.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      References

        • Kessler R.C.
        • Bromet E.J.
        The epidemiology of depression across cultures.
        Annu Rev Public Health. 2013; 34: 119-138
        • Greenberg P.E.
        • Fournier A.A.
        • Sisitsky T.
        • Simes M.
        • Berman R.
        • Koenigsberg S.H.
        • Kessler R.C.
        The economic burden of adults with major depressive disorder in the United States (2010 and 2018).
        Pharmacoeconomics. 2021; 39: 653-665
        • Whiteford H.A.
        • Degenhardt L.
        • Rehm J.
        • Baxter A.J.
        • Ferrari A.J.
        • Erskine H.E.
        • et al.
        Global burden of disease attributable to mental and substance use disorders: Findings from the Global Burden of Disease Study 2010.
        Lancet. 2013; 382: 1575-1586
        • Pizzagalli D.A.
        Depression, stress, and anhedonia: Toward a synthesis and integrated model.
        Annu Rev Clin Psychol. 2014; 10: 393-423
        • Keren H.
        • O’Callaghan G.
        • Vidal-Ribas P.
        • Buzzell G.A.
        • Brotman M.A.
        • Leibenluft E.
        • et al.
        Reward processing in depression: A conceptual and meta-analytic review across fMRI and EEG studies.
        Am J Psychiatry. 2018; 175: 1111-1120
        • Ng T.H.
        • Alloy L.B.
        • Smith D.V.
        Meta-analysis of reward processing in major depressive disorder reveals distinct abnormalities within the reward circuit.
        Transl Psychiatry. 2019; 9: 293
        • Zhang W.N.
        • Chang S.H.
        • Guo L.Y.
        • Zhang K.L.
        • Wang J.
        The neural correlates of reward-related processing in major depressive disorder: A meta-analysis of functional magnetic resonance imaging studies.
        J Affect Disord. 2013; 151: 531-539
        • Proudfit G.H.
        The reward positivity: From basic research on reward to a biomarker for depression.
        Psychophysiology. 2015; 52: 449-459
        • Foti D.
        • Novak K.D.
        • Hill K.E.
        • Oumeziane B.A.
        Neurophysiological assessment of anhedonia in depression and schizophrenia.
        in: Neurobiology of Abnormal Emotion and Motivated Behaviors. Elsevier, Amsterdam, the Netherlands2018: 242-256
        • Bress J.N.
        • Hajcak G.
        Self-report and behavioral measures of reward sensitivity predict the feedback negativity.
        Psychophysiology. 2013; 50: 610-616
        • Becker M.P.
        • Nitsch A.M.
        • Miltner W.H.
        • Straube T.
        A single-trial estimation of the feedback-related negativity and its relation to BOLD responses in a time-estimation task.
        J Neurosci. 2014; 34: 3005-3012
        • Carlson J.M.
        • Foti D.
        • Mujica-Parodi L.R.
        • Harmon-Jones E.
        • Hajcak G.
        Ventral striatal and medial prefrontal BOLD activation is correlated with reward-related electrocortical activity: A combined ERP and fMRI study.
        Neuroimage. 2011; 57: 1608-1616
        • Brush C.J.
        • Ehmann P.J.
        • Hajcak G.
        • Selby E.A.
        • Alderman B.L.
        Using multilevel modeling to examine blunted neural responses to reward in major depression.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2018; 3: 1032-1039
        • Foti D.
        • Carlson J.M.
        • Sauder C.L.
        • Proudfit G.H.
        Reward dysfunction in major depression: Multimodal neuroimaging evidence for refining the melancholic phenotype.
        Neuroimage. 2014; 101: 50-58
        • Klawohn J.
        • Burani K.
        • Bruchnak A.
        • Santopetro N.
        • Hajcak G.
        Reduced neural response to reward and pleasant pictures independently relate to depression.
        Psychol Med. 2021; 51: 741-749
        • Liu W.H.
        • Wang L.Z.
        • Shang H.R.
        • Shen Y.
        • Li Z.
        • Cheung E.F.
        • Chan R.C.
        The influence of anhedonia on feedback negativity in major depressive disorder.
        Neuropsychologia. 2014; 53: 213-220
        • Kujawa A.
        • Proudfit G.H.
        • Klein D.N.
        Neural reactivity to rewards and losses in offspring of mothers and fathers with histories of depressive and anxiety disorders.
        J Abnorm Psychol. 2014; 123: 287-297
        • Nelson B.D.
        • Perlman G.
        • Klein D.N.
        • Kotov R.
        • Hajcak G.
        Blunted neural response to rewards as a prospective predictor of the development of depression in adolescent girls.
        Am J Psychiatry. 2016; 173: 1223-1230
        • Burani K.
        • Klawohn J.
        • Levinson A.R.
        • Klein D.N.
        • Nelson B.D.
        • Hajcak G.
        Neural response to rewards, stress and sleep interact to prospectively predict depressive symptoms in adolescent girls.
        J Clin Child Adolesc Psychol. 2021; 50: 131-140
        • Brush C.J.
        • Hajcak G.
        • Bocchine A.J.
        • Ude A.A.
        • Muniz K.M.
        • Foti D.
        • Alderman B.L.
        A randomized trial of aerobic exercise for major depression: Examining neural indicators of reward and cognitive control as predictors and treatment targets.
        Psychol Med. 2022; 52: 893-903
        • Burkhouse K.L.
        • Gorka S.M.
        • Klumpp H.
        • Kennedy A.E.
        • Karich S.
        • Francis J.
        • et al.
        Neural responsiveness to reward as an index of depressive symptom change following cognitive-behavioral therapy and SSRI treatment.
        J Clin Psychiatry. 2018; 79 (17m11836)
        • Kujawa A.
        • Burkhouse K.L.
        • Karich S.R.
        • Fitzgerald K.D.
        • Monk C.S.
        • Phan K.L.
        Reduced reward responsiveness predicts change in depressive symptoms in anxious children and adolescents following treatment.
        J Child Adolesc Psychopharmacol. 2019; 29: 378-385
        • Klawohn J.
        • Brush C.J.
        • Hajcak G.
        Neural responses to reward and pleasant pictures prospectively predict remission from depression.
        J Abnorm Psychol. 2021; 130: 702-712
        • Wang J.X.
        • Rogers L.M.
        • Gross E.Z.
        • Ryals A.J.
        • Dokucu M.E.
        • Brandstatt K.L.
        • et al.
        Targeted enhancement of cortical-hippocampal brain networks and associative memory.
        Science. 2014; 345: 1054-1057
        • Hermiller M.S.
        • Chen Y.F.
        • Parrish T.B.
        • Voss J.L.
        Evidence for immediate enhancement of hippocampal memory encoding by network-targeted theta-burst stimulation during concurrent fMRI.
        J Neurosci. 2020; 40: 7155-7168
        • Strafella A.P.
        • Paus T.
        • Barrett J.
        • Dagher A.
        Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus.
        J Neurosci. 2001; 21RC157
        • Strafella A.P.
        • Paus T.
        • Fraraccio M.
        • Dagher A.
        Striatal dopamine release induced by repetitive transcranial magnetic stimulation of the human motor cortex.
        Brain. 2003; 126: 2609-2615
        • Haber S.N.
        The primate basal ganglia: Parallel and integrative networks.
        J Chem Neuroanat. 2003; 26: 317-330
        • Draganski B.
        • Kherif F.
        • Klöppel S.
        • Cook P.A.
        • Alexander D.C.
        • Parker G.J.
        • et al.
        Evidence for segregated and integrative connectivity patterns in the human Basal Ganglia.
        J Neurosci. 2008; 28: 7143-7152
        • Gordon E.M.
        • Laumann T.O.
        • Marek S.
        • Newbold D.J.
        • Hampton J.M.
        • Seider N.A.
        • et al.
        Human fronto-striatal connectivity is organized into discrete functional subnetworks.
        bioRxiv. 2021; https://doi.org/10.1101/2021.04.12.439415
        • Huang Y.Z.
        • Edwards M.J.
        • Rounis E.
        • Bhatia K.P.
        • Rothwell J.C.
        Theta burst stimulation of the human motor cortex.
        Neuron. 2005; 45: 201-206
        • Tversky A.
        • Kahneman D.
        Advances in prospect theory: Cumulative representation of uncertainty.
        J Risk Uncertainty. 1992; 5: 297-323
        • Gratton G.
        • Coles M.G.
        • Donchin E.
        A new method for off-line removal of ocular artifact.
        Electroencephalogr Clin Neurophysiol. 1983; 55: 468-484
        • Sambrook T.D.
        • Goslin J.
        A neural reward prediction error revealed by a meta-analysis of ERPs using great grand averages.
        Psychol Bull. 2015; 141: 213-235
        • Baker T.E.
        • Lesperance P.
        • Tucholka A.
        • Potvin S.
        • Larcher K.
        • Zhang Y.U.
        • et al.
        Reversing the atypical valuation of drug and nondrug rewards in smokers using multimodal neuroimaging.
        Biol Psychiatry. 2017; 82: 819-827
        • Fitzgerald P.B.
        Targeting repetitive transcranial magnetic stimulation in depression: Do we really know what we are stimulating and how best to do it?.
        Brain Stimul. 2021; 14: 730-736
        • Power J.D.
        • Barnes K.A.
        • Snyder A.Z.
        • Schlaggar B.L.
        • Petersen S.E.
        Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion.
        Neuroimage. 2012; 59: 2142-2154
        • Parkes L.
        • Fulcher B.
        • Yücel M.
        • Fornito A.
        An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI.
        Neuroimage. 2018; 171: 415-436
        • Pruim R.H.R.
        • Mennes M.
        • van Rooij D.
        • Llera A.
        • Buitelaar J.K.
        • Beckmann C.F.
        ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data.
        Neuroimage. 2015; 112: 267-277
        • Tambini A.
        • Nee D.E.
        • D’Esposito M.
        Hippocampal-targeted theta-burst stimulation enhances associative memory formation.
        J Cogn Neurosci. 2018; 30: 1452-1472
        • Nee D.E.
        • D’Esposito M.
        The hierarchical organization of the lateral prefrontal cortex.
        Elife. 2016; 5e12112
        • Nee D.E.
        • D’Esposito M.
        Causal evidence for lateral prefrontal cortex dynamics supporting cognitive control.
        Elife. 2017; 6e28040
        • Pauli W.M.
        • Nili A.N.
        • Tyszka J.M.
        A high-resolution probabilistic in vivo atlas of human subcortical brain nuclei.
        Sci Data. 2018; 5180063
        • Cole M.W.
        • Ito T.
        • Schultz D.
        • Mill R.
        • Chen R.
        • Cocuzza C.
        Task activations produce spurious but systematic inflation of task functional connectivity estimates.
        Neuroimage. 2019; 189: 1-18
        • Saturnino G.B.
        • Puonti O.
        • Nielsen J.D.
        • Antonenko D.
        • Madsen K.H.
        • Thielscher A.
        • et al.
        SimNIBS 2.1: A comprehensive pipeline for individualized electric field modelling for transcranial brain stimulation.
        in: Brain and Human Body Modeling: Computational Human Modeling at EMBC 2018. Springer, Cham, Switzerland2019: 3-25
        • Foell J.
        • Klawohn J.
        • Bruchnak A.
        • Brush C.J.
        • Patrick C.J.
        • Hajcak G.
        Ventral striatal activation during reward differs between major depression with and without impaired mood reactivity.
        Psychiatry Res Neuroimaging. 2021; 313111298
        • Carlson J.M.
        • Foti D.
        • Harmon-Jones E.
        • Proudfit G.H.
        Midbrain volume predicts fMRI and ERP measures of reward reactivity.
        Brain Struct Funct. 2015; 220: 1861-1866
        • Bowyer C.B.
        • Joyner K.J.
        • Yancey J.R.
        • Venables N.C.
        • Hajcak G.
        • Patrick C.J.
        Toward a neurobehavioral trait conceptualization of depression proneness.
        Psychophysiology. 2019; 56e13367
        • Mulligan E.M.
        • Flynn H.
        • Hajcak G.
        Neural response to reward and psychosocial risk factors independently predict antenatal depressive symptoms.
        Biol Psychol. 2019; 147107622
        • Belden A.C.
        • Irvin K.
        • Hajcak G.
        • Kappenman E.S.
        • Kelly D.
        • Karlow S.
        • et al.
        Neural correlates of reward processing in depressed and healthy preschool-age children.
        J Am Acad Child Adolesc Psychiatry. 2016; 55: 1081-1089
        • Foti D.
        • Kotov R.
        • Klein D.N.
        • Hajcak G.
        Abnormal neural sensitivity to monetary gains versus losses among adolescents at risk for depression.
        J Abnorm Child Psychol. 2011; 39: 913-924
        • Weinberg A.
        • Liu H.
        • Hajcak G.
        • Shankman S.A.
        Blunted neural response to rewards as a vulnerability factor for depression: Results from a family study.
        J Abnorm Psychol. 2015; 124: 878-889
        • Bress J.N.
        • Smith E.
        • Foti D.
        • Klein D.N.
        • Hajcak G.
        Neural response to reward and depressive symptoms in late childhood to early adolescence.
        Biol Psychol. 2012; 89: 156-162
        • Hausman E.M.
        • Kotov R.
        • Perlman G.
        • Hajcak G.
        • Kessel E.M.
        • Klein D.N.
        Prospective predictors of first-onset depressive disorders in adolescent females with anxiety disorders.
        J Affect Disord. 2018; 235: 176-183
        • Barch D.M.
        • Whalen D.
        • Gilbert K.
        • Kelly D.
        • Kappenman E.S.
        • Hajcak G.
        • Luby J.L.
        Neural indicators of anhedonia: Predictors and mechanisms of treatment change in a randomized clinical trial in early childhood depression.
        Biol Psychiatry. 2019; 85: 863-871
        • Levinson A.R.
        • Speed B.C.
        • Infantolino Z.P.
        • Hajcak G.
        Reliability of the electrocortical response to gains and losses in the doors task.
        Psychophysiology. 2017; 54: 601-607
        • George M.S.
        • Wassermann E.M.
        • Williams W.A.
        • Callahan A.
        • Ketter T.A.
        • Basser P.
        • et al.
        Daily repetitive transcranial magnetic stimulation (rTMS) improves mood in depression.
        Neuroreport. 1995; 6: 1853-1856
        • Pascual-Leone A.
        • Rubio B.
        • Pallardó F.
        • Catalá M.D.
        Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression.
        Lancet. 1996; 348: 233-237
        • Siddiqi S.H.
        • Taylor S.F.
        • Cooke D.
        • Pascual-Leone A.
        • George M.S.
        • Fox M.D.
        Distinct symptom-specific treatment targets for circuit-based neuromodulation.
        Am J Psychiatry. 2020; 177: 435-446
        • Downar J.
        • Geraci J.
        • Salomons T.V.
        • Dunlop K.
        • Wheeler S.
        • McAndrews M.P.
        • et al.
        Anhedonia and reward-circuit connectivity distinguish nonresponders from responders to dorsomedial prefrontal repetitive transcranial magnetic stimulation in major depression.
        Biol Psychiatry. 2014; 76: 176-185
        • Fox M.D.
        • Buckner R.L.
        • White M.P.
        • Greicius M.D.
        • Pascual-Leone A.
        Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate.
        Biol Psychiatry. 2012; 72: 595-603
        • Meteyard L.
        • Holmes N.P.
        TMS SMART - Scalp mapping of annoyance ratings and twitches caused by transcranial magnetic stimulation.
        J Neurosci Methods. 2018; 299: 34-44